New-Generation Antibacterial Agent—Cellulose-Binding Thermostable TP84_Endolysin
<p>SDS-PAGE analysis of the purified CBD_TP84_28_His. M, PageRuler Plus Stained Protein Ladder; E, CBD_TP84_28_His. Arrow points at a band corresponding in size to the endolysin CBD_TP84_28_His (64.2 kDa).</p> "> Figure 2
<p>Recombinant fusion endolysin CBD_TP84_28_His activity evaluation—spot assay. Top row (<b>a</b>) shows activity of CBD_TP84_28_His against mesophilic bacteria: <span class="html-italic">B. cereus</span>, <span class="html-italic">B. subtilis</span>, <span class="html-italic">E. coli.</span> Bottom row (<b>b</b>) shows activity of CBD_TP_84_28_His against thermophilic bacteria: <span class="html-italic">G. stearothermophilus</span> strain 10, <span class="html-italic">T. aquaticus</span>, <span class="html-italic">Geobacillus</span> ICI, <span class="html-italic">B. stearothermophilus.</span> Arrows indicate where CBD_TP84_28_His solution was spotted and transparent circles on the bacterial lawn indicate lytic effect of the enzyme.</p> "> Figure 3
<p>CBD_TP84_28_His activity evaluation—TRA on various bacterial strains. The graph shows the reduction in relative OD<sub>600</sub> (ratio of OD<sub>600</sub> of the sample treated with CBD_TP84_28_His to the OD<sub>600</sub> of the control) in bacterial substrate suspensions upon addition of purified CBD_TP84_28_His to the final concentration of 1.43 µg/mL at 55 °C. Top row (<b>a</b>) shows activity of CBD_TP84_28_His against mesophilic bacteria: <span class="html-italic">B. cereus</span>, <span class="html-italic">B. subtilis</span>, <span class="html-italic">E. coli</span>. Bottom rows (<b>b</b>) show activity of CBD_TP_84_28_His against thermophilic bacteria: <span class="html-italic">G. stearothermophilus</span> strain 10, <span class="html-italic">T. aquaticus</span>, <span class="html-italic">Geobacillus</span> ICI, <span class="html-italic">B. stearothermophilus</span>. Results are presented as means ± SD of three independent experiments. Statistically significant differences were determined by one-way ANOVA with Dunnett’s test and marked as (***)—<span class="html-italic">p</span>-value < 0.001, (****)—<span class="html-italic">p</span>-value < 0.0001.</p> "> Figure 4
<p>Comparison of activity of the CBD_TP84_28_His and recombinant TP84_28_His. The graph shows reduction in OD<sub>600</sub> in <span class="html-italic">G. stearothermophilus</span> strain 10, resuspended in buffer R, after addition of equimolar amounts of CBD_TP84_28_His, TP84_28_His or the reaction buffer alone [control (-)]. Results are presented as means ± SD of three independent experiments. Statistical significance was assessed using two-way ANOVA with Tukey’s post hoc test, with symbols indicating significant differences (<span class="html-italic">p</span>-value < 0.05) between groups: (<span>$</span>)—CBD_TP84_28_His vs. TP84_28_His, (^)—CBD_TP84_28_His vs. control (-), (#)—TP84_28_His vs. control (-).</p> "> Figure 5
<p>Inhibition of biofilm formation by <span class="html-italic">G. stearothermophilus</span> strain 10. The graph (<b>a</b>) shows OD<sub>600</sub> measurements of <span class="html-italic">G. stearothermophilus</span> strain 10, cultivated on microtiter plate with addition of 0.05–50 µg of CBD_TP84_28_His for 24 h at 55 °C. The picture below the chart (<b>b</b>) shows biofilm stained with crystal violet: control on the left and samples treated with increasing amounts of the recombinant fusion endolysin CBD_TP84_28_His. Results are presented as means ± SD of three independent experiments. Statistically significant differences were determined by one-way ANOVA with Dunnett’s test and marked as (****)—<span class="html-italic">p</span>-value < 0.0001.</p> "> Figure 6
<p>CBD_TP84_28_His thermal stability evaluation. The lytic activity of CBD_TP84_28_His was assayed in optimal conditions after preincubation at various temperatures in a gradient thermocycler. The graph shows a reduction in OD<sub>600</sub> in <span class="html-italic">G. stearothermophilus</span> strain 10 suspension in buffer R after the addition of CBD_TP84_28_His, preincubated for 30 min at temperatures of 37.7–95.8 °C and autoclaving conditions (121 °C, 20 min). As a negative control, buffer R was added instead of CBD_TP84_28_His. Measurements were taken using the Tecan microplate reader. This graph shows the final single-repeat experiment, including all the temperature points. Prior to the combined experiment, each temperature was evaluated with 3 repetitions separately. This arrangement was necessary to eliminate uncontrolled reaction progression due to the high number of samples (14) needing to be processed simultaneously.</p> "> Figure 7
<p>Interactions comparison of recombinant enzymes: endolysin TP84_28_His and CBD_TP84_28_His with µC. (<b>a</b>) The binding of TP84_28_His and CBD_TP84_28_His to µC in a 96-well plate using the detection of His-tag for Western blots (Method 2.2.3.1). Both proteins have a His-tag that is located at the C-terminus, which allows for the detection of the protein attached to the µC using anti-His antibodies. (<b>b</b>) A dot blot assay of endolysin activity using the host <span class="html-italic">G. stearothermophilus</span> strain 10. A control—µC and 1 × PBS dot—was applied, and µC complexes formed with each of the enzymes TP84_28_His and CBD_TP84_28_His, which were applied to the agar plate with spread <span class="html-italic">G. stearothermophilus</span> strain 10. (<b>c</b>) An SDS-PAGE comparative analysis of the formation of insoluble µC complexes with CBD_TP84_28 and with TP84_28_His. Lane M, PageRuler Plus Stained Protein Ladder; lane K, untreated TP84_28_His (<b>left</b>)/CBD_TP84_28 (<b>right</b>); lane 1, insoluble µC complex formed with TP84_28_His (<b>left</b>)/CBD_TP84_28_His (<b>right</b>); lane 2, supernatants of complex formation—unbound protein; lane 3, washing the supernatant of the complexes with 1 × PBS. (<b>d</b>) µC complex formed with each of the enzymes, TP84_28_His and CBD_TP84_28_His, which were applied to the agar plate with spread <span class="html-italic">G. stearothermophilus</span> strain 10 to measure µC complex activity; dot K, TP84_28_His/CBD_TP84_28_His; dot 1, formed and washed µC complexes with TP84_28_His/CBD_TP84_28_His; dot 2, supernatants of insoluble µC complex formation; dot 3, washes of the complexes with 1 × PBS; dots 4, first washes of the complex with water; K1, control of buffer R; K2, control of µC; K3, control of PBS; K4, control of buffer A.</p> "> Figure 8
<p>CBD_TP84_28_His interaction with cellulose paper: (<b>a</b>) scheme showing CBD binding to cellulose filter paper and His-Tag detection with anti-His-HRP antibody, which enables visualization of the reaction after colour development using 3,3′-diaminobenzidine (DAB). (<b>b</b>) Cellulose filter paper with spots: PBS buffer (control), TP84_28_His and CBD_TP84_28_His.</p> ">
Abstract
:1. Introduction
- (i)
- Glycosidases, cleaving the bonds between N-acetylglucosamine and N-acetylmuramic acid, including two subgroups: N-acetylmuramidases and N-acetylglucosaminidases.
- (ii)
- Transglucosylases, cleaving bonds between N-acetylmuramic acid and N-acetylglucosamine (like N-acetylmuramidases), but in a different mechanism; they do not require water and thus are not considered hydrolases.
- (iii)
- Amidases, cleaving the amide bond between N-acetylmuramic acid and L-alanine, the first amino acid in the cross-linking peptide.
- (iv)
2. Results
2.1. Cloning, Overproduction, and Purification of CBD_TP84_28_His
2.2. Properties of CBD_TP84_28_His
2.2.1. Lytic Activity of the Recombinant Fusion Endolysin CBD_TP84_28_His Against Test Bacteria
2.2.2. Comparison of the Activity of the CBD_TP84_28_His with the Recombinant Endolysin TP84_28_His
2.2.3. Lytic Activity of the CBD_TP84_28_His Against Biofilm
- The Inhibition of biofilm formation by G. stearothermophilus strain 10
- The Inhibition of biofilm formation by mesophilic pathogenic-related bacteria
2.2.4. Thermostability of the CBD_TP84_28_His
2.2.5. Cellulose-Binding Properties of CBD_TP84_28
- Interaction with microcellulose (µC) assay
- Cellulose paper-based immunoblotting
3. Discussion
- (i)
- The specificity of CBD_TP84_28_His appears to depend both on the thermophilicity and phylogenetic relatedness of the bacteria.
- (ii)
- The structure of peptidoglycan varies substantially across Bacillus bacterial species.
- (iii)
- The structure of peptidoglycan of the tested thermophiles has common features, sensitive to CBD_TP84_28_His.
- (iv)
- Differences in external polysaccharide envelopes may play an important role, preventing the enzyme’s access to the cell wall.
4. Materials and Methods
4.1. Bacterial Strains, Media, Reagents, DNA, Software and Devices
4.2. Construction, Expression and Purification of Fusion Endolysin—CBD_TP84_28_His
4.2.1. Cloning tp84_28 Gene into pET28_delSapI_CBD_His Vector
4.2.2. Gene Expression and Overproduction of CBD_TP84_28_His
4.2.3. Recombinant Fusion Endolysin CBD_TP84_28_His Purification
4.3. Characterization of CBD_TP84_28_His
4.3.1. Evaluation of the Lytic Activity of CBD_TP84_28_His
- Spot assay (diffusion test)
- Turbidity reduction assay (spectrophotometer variant)
- Turbidity reduction assay (Tecan microplate reader variant)
- Inhibition of biofilm formation by CBD_TP84_28_His
4.3.2. Evaluation of the Thermostability of the CBD_TP84_28_His
4.3.3. Cellulose-Binding Properties of CBD_TP84_28_His
- Interaction with µC assay
- Cellulose paper-based immunoblotting assay
4.4. Statistical Analysis
5. Conclusions
- (a)
- Enhanced thermostability: CBD_TP84_28_His exhibits significant thermostability, providing a marked advantage over the T4 lysozyme and other mesophilic endolysins. This makes it ideal for applications involving high heat exposure where mesophilic enzymes are ineffective.
- (b)
- Targeted antimicrobial activity: CBD_TP84_28_His exhibits high lytic activity against thermophilic Gram-positive bacteria such as Geobacillus ICI, B. stearothermophilus and T. aquaticus and limited activity against mesophilic Gram-positive Bacillus species.
- (c)
- The inhibition of biofilm formation: CBD_TP84_28_His effectively suppresses biofilm formation by pathogens such as S. aureus and P. aeruginosa, which pose a significant challenge in clinical settings. This underscores the potential of CBD_TP84_28_His in combating multi-drug-resistant infections.
- (d)
- Compatibility with cellulose-based materials: Its fusion with CBD allows CBD_TP84_28_His to anchor onto cellulose-based surfaces, providing long-lasting, localized antimicrobial activity. This property makes it particularly suitable for use in wound dressings, food packaging, and cellulose-based medical devices (patent application WIPO ST 10/C PL446913; WIPO ST 10/C PL449273) (Figure 7 and Figure 8).
- (e)
- Potential for broad applications: beyond healthcare, CBD_TP84_28_His shows promise in the food industry, offering a safer alternative to conventional preservatives (patent application WIPO ST 10/C PL449273).
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Healthcare Quality Promotion. About Antimicrobial Resistance. Available online: https://www.cdc.gov/drugresistance/about.html (accessed on 24 January 2023).
- Pires, D.P.; Melo, L.; Vilas Boas, D.; Sillankorva, S.; Azeredo, J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 2017, 39, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Bondy-Denomy, J.; Pawluk, A.; Maxwell, K.; Davidson, A.R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 2013, 493, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Doub, J.B.; Ng, V.Y.; Johnson, A.J.; Slomka, M.; Fackler, J.; Horne, B.; Brownstein, M.J.; Henry, M.; Malagon, F.; Biswas, B. Salvage Bacteriophage Therapy for a Chronic MRSA Prosthetic Joint Infection. Antibiotics 2020, 9, 241. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Smith, B.E.; Cristinziano, M.; Freeman, K.G.; Jacobs-Sera, D.; Belessis, Y.; Whitney Brown, A.; Cohen, K.A.; Davidson, R.M.; van Duin, D.; et al. Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients with Drug-Resistant Mycobacterial Disease. Clin. Infect. Dis. 2023, 76, 103–112. [Google Scholar] [CrossRef]
- Onallah, H.; Hazan, R.; Nir-Paz, R. Israeli Phage Therapy Center (IPTC) Study Team Compassionate Use of Bacteriophages for Failed Persistent Infections During the First 5 Years of the Israeli Phage Therapy Center. Open Forum Infect. Dis. 2023, 10, ofad221. [Google Scholar] [CrossRef] [PubMed]
- Young, M.J.; Hall, L.M.L.; Merabishvilli, M.; Pirnay, J.P.; Clark, J.R.; Jones, J.D. Phage Therapy for Diabetic Foot Infection: A Case Series. Clin. Ther. 2023, 45, 797–801. [Google Scholar] [CrossRef]
- Sawa, T.; Moriyama, K.; Kinoshita, M. Current Status of Bacteriophage Therapy for Severe Bacterial Infections. J. Intensive Care 2024, 12, 44. [Google Scholar] [CrossRef]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of Phage Therapy Across the World. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Li, M.; Yang, Y.; Lu, S.; Rao, X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J. Biomed. Sci. 2023, 30, 29. [Google Scholar] [CrossRef]
- Gladskin, E.U. Microbiome-Balancing Skincare Endolysin Science Gladskin. Available online: https://gladskin.com/products/gladskin-eczema-cream-with-micreobalance (accessed on 3 December 2024).
- Briers, Y.; Walmagh, M.; Grymonprez, B.; Biebl, M.; Pirnay, J.P.; Defraine, V.; Michiels, J.; Cenens, W.; Aertsen, A.; Miller, S.; et al. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2014, 58, 3774–3784. [Google Scholar] [CrossRef]
- Grishin, A.V.; Karyagina, A.S.; Vasina, D.V.; Vasina, I.V.; Gushchin, V.A.; Lunin, V.G. Resistance to peptidoglycan-degrading enzymes. Crit. Rev. Microbiol. 2020, 46, 703–726. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.U.; Wang, W.; Sun, Q.; Shah, J.A.; Li, C.; Sun, Y.; Li, Y.; Zhang, B.; Chen, W.; Wang, S. Endolysin, a promising solution against antimicrobial resistance. Antibiotics 2021, 10, 1277. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Mayer, C. Peptidoglycan structure, biosynthesis, and dynamics during bacterial growth. In Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems; Cohen, E., Merzendorfer, H., Eds.; Springer: Cham, Switzerland, 2019; Volume 12, pp. 237–299. [Google Scholar] [CrossRef]
- Fenton, M.; Ross, P.; McAuliffe, O.; O’Mahony, J.; Coffey, A. Recombinant bacteriophage lysins as antibacterials. Bioeng. Bugs 2010, 1, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, Q.; Li, Z.; Guo, X.; Liu, X. Bacteriophage endolysin: A powerful weapon to control bacterial biofilms. Protein J. 2023, 42, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, H.; Ryu, S. Bacteriophage and endolysin engineering for biocontrol of food pathogens: Recent advances and future trends. Crit. Rev. Food Sci. Nutr. 2023, 63, 8919–8938. [Google Scholar] [CrossRef]
- Żebrowska, J.; Żołnierkiewicz, O.; Ponikowska, M.; Puchalski, M.; Krawczun, N.; Makowska, J.; Skowron, P.M. Cloning and characterization of a thermostable endolysin of bacteriophage TP-84 as a potential disinfectant and biofilm-removing biological agent. Int. J. Mol. Sci. 2022, 23, 7612. [Google Scholar] [CrossRef]
- Saunders, G.F.; Campbell, L.L. Characterization of a thermophilic bacteriophage for Bacillus stearothermophilus. J. Bacteriol. 1966, 91, 340–348. [Google Scholar] [CrossRef]
- Epstein, I.; Campbell, L.L. Production and purification of the thermophilic bacteriophage TP-84. Appl. Microbiol. 1975, 29, 219–223. [Google Scholar] [CrossRef]
- Łubkowska, B.; Jeżewska-Frąckowiak, J.; Sobolewski, I.; Skowron, P.M. Bacteriophages of thermophilic Bacillus group bacteria—A review. Microorganisms 2021, 9, 1522. [Google Scholar] [CrossRef]
- Żebrowska, J.; Witkowska, M.; Struck, A.; Laszuk, P.E.; Raczuk, E.; Ponikowska, M.; Skowron, P.M.; Zylicz-Stachula, A. Antimicrobial potential of the genera Geobacillus and Parageobacillus, as well as endolysins biosynthesized by their bacteriophages. Antibiotics 2022, 11, 242. [Google Scholar] [CrossRef]
- Skowron, P.M.; Kropinski, A.M.; Żebrowska, J.; Janus, L.; Szemiako, K.; Czajkowska, E.; Maciejewska, N.; Skowron, M.; Łoś, J.; Łoś, M.; et al. Sequence, genome organization, annotation and proteomics of the thermophilic, 47.7-kb Geobacillus stearothermophilus bacteriophage TP-84 and its classification in the new Tp84 virus genus. PLoS ONE 2018, 13, e0196798. [Google Scholar] [CrossRef]
- Skowron, P.M.; Łubkowska, B.; Sobolewski, I.; Zylicz-Stachula, A.; Šimoliūnienė, M.; Šimoliūnas, E. Bacteriophages of thermophilic ‘Bacillus Group’ bacteria: A systematic review, 2023 update. Int. J. Mol. Sci. 2024, 25, 3125. [Google Scholar] [CrossRef] [PubMed]
- Shoseyov, O.; Takagi, M.; Goldstein, M.A.; Doi, R.H. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc. Natl. Acad. Sci. USA 1992, 89, 3483–3487. [Google Scholar] [CrossRef] [PubMed]
- Abouhmad, A.; Mamo, G.; Dishisha, T.; Amin, M.A.; Hatti-Kaul, R. T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J. Appl. Microbiol. 2016, 121, 115–125. [Google Scholar] [CrossRef]
- Murray, E.; Draper, L.A.; Ross, R.P.; Hill, C. The advantages and challenges of using endolysins in a clinical setting. Viruses 2021, 13, 680. [Google Scholar] [CrossRef]
- Gontijo, M.T.P.; Jorge, G.P.; Brocchi, M. Current status of endolysin-based treatments against Gram-negative bacteria. Antibiotics 2021, 10, 1143. [Google Scholar] [CrossRef]
- Wang, S.; Gu, J.; Lv, M.; Guo, Z.; Yan, G.; Yu, L.; Du, C.; Feng, X.; Han, W.; Sun, C.; et al. The antibacterial activity of E. coli bacteriophage lysin Lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region. J. Microbiol. 2017, 55, 403–408. [Google Scholar] [CrossRef]
- Briers, Y.; Walmagh, M.; Van Puyenbroeck, V.; Cornelissen, A.; Cenens, W.; Aertsen, A.; Oliveira, H.; Azeredo, J.; Verween, G.; Pirnay, J.P.; et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. mBio 2014, 5, e01379-14. [Google Scholar] [CrossRef]
- Lysando. Lysando-Brochure-Digital. Available online: https://www.lysando.com/wp-content/uploads/2023/08/Lysando-Brochure-Digital.pdf (accessed on 29 March 2024).
- Zampara, A.; Sørensen, M.C.H.; Grimon, D.; Antenucci, F.; Vitt, A.R.; Bortolaia, V.; Briers, Y.; Brøndsted, L. Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Sci. Rep. 2020, 10, 12087. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA—Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334. [Google Scholar] [CrossRef]
- Yakandawala, N.; Gawande, P.V.; LoVetri, K.; Cardona, S.T.; Romeo, T.; Nitz, M.; Madhyastha, S. Characterization of the Poly-β-1,6-N-acetylglucosamine Polysaccharide Component of Burkholderia Biofilms. Appl. Environ. Microbiol. 2011, 77, 8303–8309. [Google Scholar] [CrossRef] [PubMed]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015, 7, 493–512. [Google Scholar] [CrossRef] [PubMed]
- Siondalski, P.; Kołaczkowska, M.; Bieńkowski, M.; Pęksa, R.; Kowalik, M.M.; Dawidowska, K.; Vandendriessche, K.; Meuris, B. Bacterial cellulose as a promising material for pulmonary valve prostheses: In vivo study in a sheep model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35355. [Google Scholar] [CrossRef] [PubMed]
- Marangoz, B.; Kahraman, S.; Bostan, K. Bacillus spp. responsible for spoilage of dairy products. Int. J. Food Eng. 2018, 4, 43–46. [Google Scholar]
- André, S.; Vallaeys, T.; Planchon, S. Spore-forming bacteria responsible for food spoilage. Res. Microbiol. 2017, 168, 379–387. [Google Scholar] [CrossRef]
- Golosova, N.N.; Khlusevich, Y.A.; Morozova, V.V.; Matveev, A.L.; Kozlova, Y.N.; Tikunov, A.Y.; Panina, E.A.; Tikunova, N.V. Characterization of a Thermostable Endolysin of the Aeribacillus Phage AeriP45 as a Potential Staphylococcus Biofilm-Removing Agent. Viruses 2024, 16, 93. [Google Scholar] [CrossRef]
- Mohammadi, T.N.; Lin, Y.; Maung, A.T.; Shen, C.; Zhao, J.; El-Telbany, M.; Zayda, M.; Masuda, Y.; Honjoh, K.; Miyamoto, T. Characterization and Antibacterial Activity of Highly Thermo- and pH-Stable Endolysin LysCPQ7 and Its Application as a Biocontrol Agent Against Clostridium perfringens in Milk and Cheese. Food Control 2024, 156, 110157. [Google Scholar] [CrossRef]
- Żebrowska, J.; Mucha, P.; Prusinowski, M.; Krefft, D.; Żylicz-Stachula, A.; Deptuła, M.; Skoniecka, A.; Tymińska, A.; Zawrzykraj, M.; Zieliński, J.; et al. Development of hybrid biomicroparticles: Cellulose-exposing functionalized fusion proteins. Microb. Cell Fact. 2024, 23, 81. [Google Scholar] [CrossRef]
- Sun, X.; Yang, S.; Al-Dossary, A.A.; Broitman, S.; Ni, Y.; Guan, M.; Yang, M.; Li, J. Nanobody-functionalized cellulose for capturing SARS-CoV-2. Appl. Environ. Microbiol. 2022, 88, e0230321. [Google Scholar] [CrossRef]
Bacteria | Control [OD600] | Treatment [OD600] | Reduction [%] | p-Value |
---|---|---|---|---|
E. coli (DSM 1103) | 5.5 ± 0.10 | 3.15 ± 0.15 | 39 | 0.0675 |
S. aureus (ATCC 25923) | 1.3 ± 0.30 | 0.225 ± 0.075 | 81 * | 0.0143 |
P. aeruginosa (ATCC 17503) | 12.45 ± 2.45 | 6.35 ± 2.25 | 42 *** | 0.0004 |
S. enteritidis (ATCC 25928) | 0.135 ± 0.005 | 0.08 ± 0.01 | 34 ** | 0.0034 |
B. cereus (DSM 31) | 9.05 ± 2.85 | 4.9 ± 3.10 | 33 ** | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponikowska, M.; Żebrowska, J.; Skowron, P.M. New-Generation Antibacterial Agent—Cellulose-Binding Thermostable TP84_Endolysin. Int. J. Mol. Sci. 2024, 25, 13111. https://doi.org/10.3390/ijms252313111
Ponikowska M, Żebrowska J, Skowron PM. New-Generation Antibacterial Agent—Cellulose-Binding Thermostable TP84_Endolysin. International Journal of Molecular Sciences. 2024; 25(23):13111. https://doi.org/10.3390/ijms252313111
Chicago/Turabian StylePonikowska, Małgorzata, Joanna Żebrowska, and Piotr M. Skowron. 2024. "New-Generation Antibacterial Agent—Cellulose-Binding Thermostable TP84_Endolysin" International Journal of Molecular Sciences 25, no. 23: 13111. https://doi.org/10.3390/ijms252313111
APA StylePonikowska, M., Żebrowska, J., & Skowron, P. M. (2024). New-Generation Antibacterial Agent—Cellulose-Binding Thermostable TP84_Endolysin. International Journal of Molecular Sciences, 25(23), 13111. https://doi.org/10.3390/ijms252313111