Integration and Differentiation of Transplanted Human iPSC-Derived Retinal Ganglion Cell Precursors in Murine Retinas
<p>Induction of retinal organoids from BRN3B-GFP hiPSCs. (<b>A</b>) Schematic illustration of the insertion of P2A-EGFP into the <span class="html-italic">BRN3B</span> locus by CRISPR/Cas9 gene editing. (<b>B</b>) Confirmed DNA sequences around the insertion site of the <span class="html-italic">BRN3B</span> locus before and after gene editing. (<b>C</b>) G-band analysis of BRN3B-GFP iPSCs demonstrated a normal karyotype. The numbers of 1–22 and X, Y represent chromosome numbers. (<b>D</b>) Schematic of the retinal organoid differentiation procedure. (<b>E</b>) Microscopic images of the cell aggregates and retinal organoids derived from both WT and BRN3B-GFP hiPSCs. Optic cup-like neuroepithelia appeared by day 18 of induction, which gradually transitioned to layered retinal organoids by day 40. Scale bar: (<b>E</b>) 100 μm.</p> "> Figure 2
<p>Labeling of RGC precursors by GFP in BRN3B-GFP retinal organoids and their enrichment by fluorescence-activated cell sorting (FACS). (<b>A</b>) BRN3B-GFP retinal organoid sections from the indicated time points were double-immunostained for GFP and PAX6, HUC/D, or BRN3B, followed by DAPI counterstaining. GFP<sup>+</sup> RGC precursors were observed within the inner layer of the organoid after day 40, which co-expressed RGC protein markers HUC/D, BRN3B or PAX6. There was no GFP expression on day 27. (<b>B</b>) Sections from 60-day retinal organoids derived from wild-type (WT) and BRN3B-GFP hiPSCs were double-immunolabeled with an anti-GFP antibody and antibodies against the indicated protein markers and then counterstained with DAPI. In BRN3B-GFP retinal organoids, GFP was seen in differentiating RGCs co-expressing PAX6 or HUC/D but not in retinal progenitor cells expressing PAX6 or SOX2 or in photoreceptor precursor cells expressing OTX2. (<b>C</b>) Sections of 40-day BRN3B-GFP retinal organoids were double-immunostained with antibodies against GFP and BRN3B and counterstained with DAPI. The right panel is a magnification of the part in the dotted box. RGC precursors (GFP<sup>+</sup>BRN3B<sup>+</sup>) were seen in the inner layer. (<b>D</b>) Schematic illustrating the process of enriching GFP<sup>+</sup> precursors derived from 40-day BRN3B-GFP retinal organoids by FACS. The green dots represent GFP<sup>+</sup> cells. The image above depicts the morphology of retinal organoids with GFP fluorescence confined to the inner regions. (<b>E</b>) Cells expressing BRN3B-GFP were sorted by FACS, resulting in an enrichment of GFP-positive RGC precursors. Single cells from 40-day WT retinal organoids were utilized for control gating (upper panel). Scale bar: (<b>A</b>,<b>C</b>) 40 μm; (<b>B</b>) 20 μm; (<b>D</b>) 200 μm.</p> "> Figure 3
<p>Evaluation of retinal damage post intravitreal injection of different dosages of NMDA. (<b>A</b>) TUNEL analysis of mouse retinal cryosections was performed 24 h post NMDA injection. Cells labeled with tetramethylrhodamine-deoxyuridine triphosphate (TMR dUTP, red) indicate DNA fragmentation, which signifies apoptosis. “Untreated” denotes the control group, “PBS” represents PBS injection, while 25 nmol, 50 nmol, 100 nmol, and 200 nmol refer to NMDA injection doses. The retinal layers are labeled as follows: ONL (outer nuclear layer), OPL (outer plexiform layer), INL (inner nuclear layer), IPL (inner plexiform layer), and GCL (ganglion cell layer). (<b>B</b>) Histogram showing the number of TUNEL-positive apoptotic cells in the retina post-intravitreal injection of varying doses of NMDA. Data are shown as mean ± SEM (n = 3 or 4). Statistical significance was determined using one-way ANOVA followed by Dunnett’s post hoc test: ns, not significant; * <span class="html-italic">p</span> < 0.001; ** <span class="html-italic">p</span> < 0.0001. (<b>C</b>) Representative images of RBPMS-positive RGCs in the central, middle, and peripheral regions of the retina 7 days after intravitreal injection of the indicated doses of NMDA. (<b>D</b>) Quantification of RBPMS<sup>+</sup> RGCs in each indicated group in the central, middle, and peripheral regions of the retina. Data are presented as mean ± SEM (n = 3). Statistical significance was determined using two-way ANOVA followed by Dunnett’s post hoc test: * <span class="html-italic">p</span> < 0.001; ** <span class="html-italic">p</span> < 0.0001. Scale bar: (<b>A</b>,<b>C</b>) 20 μm.</p> "> Figure 4
<p>Transplantation of RGC precursors from the BRN3B-GFP retinal organoids into the mouse retina. The green dots represent GFP<sup>+</sup> cells. (<b>A</b>) Timeline of NMDA injection and RGC precursor transplantation. (<b>B</b>) Transplanted whole-mount retinas from wild-type (WT) and NMDA-injured mice were double-immunostained with antibodies against GFP and RBPMS and counterstained with DAPI. Arrows point to the transplanted cells co-expressing GFP and RBPMS, and the arrowhead indicates a GFP-positive neurite. Scale bar: (<b>B</b>) 20 μm.</p> "> Figure 5
<p>Transplantation of RGC precursors into the retinas of mice administered immunosuppressants. (<b>A</b>) Timeline of NMDA injection, immunosuppressant administration, and RGC precursor transplantation. The green dots represent GFP<sup>+</sup> cells. (<b>B</b>,<b>C</b>) Transplanted whole-mount retinas from wild-type (WT) and NMDA-injured mice were double-immunostained with antibodies against GFP and RBPMS and counterstained with DAPI. The small arrows point to the transplanted cells co-expressing GFP and RBPMS, and the arrowheads indicate GFP-positive neurites/nerve bundles. The big arrow in (<b>B</b>) points to the centripetal direction. The inset in (<b>C</b>) shows a corresponding outlined region at a higher magnification to visualize an axon segment with varicosities. The lower panels in (<b>C</b>) are higher-magnification views of the outlined area 1 in (<b>B</b>). (<b>D</b>) Higher magnification views of the outlined area 2 in (<b>B</b>) show cells immunoreactive for GFP, HuNu, or both, with DAPI counterstaining. Arrows point to the transplanted cells co-expressing GFP and HuNu. (<b>E</b>) Quantification of RBPMS<sup>+</sup> RGCs derived from transplanted GFP<sup>+</sup> precursor cells in each indicated group. Data are presented as mean ± SEM (n = 3–4). Statistical significance was determined using one-way ANOVA followed by Dunnett’s post hoc test: ns, not significant; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> = 0.01. Scale bar: (<b>C</b>,<b>D</b>) 20 μm; (<b>B</b>) 40 μm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Differentiation of 3D Retinal Organoids from Wild-Type (WT) hiPSCs and BRN3B-GFP hiPSCs
2.2. Enrichment of Human RGC Precursors from Retinal Organoids for Transplantation
2.3. Survival, Integration, and Differentiation of Transplanted Human RGC Precursors in Mouse Retinas
2.4. Enhancement of the Survival and Integration of Transplanted RGC Precursors with Immunosuppressants
3. Discussion
4. Materials and Methods
4.1. Maintenance of hiPSCs
4.2. Generation of BRN3B-GFP hiPSC Line
4.3. Karyotyping of hiPSCs
4.4. Induction of 3D Retinal Organoids from hiPSCs
4.5. Dissociation of Retinal Organoid Cells and Enrichment of RGC Precursors
4.6. Transplantation of RGC Precursors
4.7. Immunohistochemistry
4.8. Quantification and Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, H.A. Glaucoma. Lancet 2011, 377, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Rizzo, M.I.; De Virgilio, A.; Gallo, A.; Fusconi, M.; de Vincentiis, M. Emerging Concepts in Glaucoma and Review of the Literature. Am. J. Med. 2016, 129, 1000.e7–1000.e13. [Google Scholar] [CrossRef] [PubMed]
- Mead, B.; Berry, M.; Logan, A.; Scott, R.A.; Leadbeater, W.; Scheven, B.A. Stem cell treatment of degenerative eye disease. Stem Cell Reports 2015, 14, 243–257. [Google Scholar] [CrossRef]
- Aoki, H.; Hara, A.; Niwa, M.; Motohashi, T.; Suzuki, T.; Kunisada, T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 255–265. [Google Scholar] [CrossRef]
- Aoki, H.; Hara, A.; Niwa, M.; Motohashi, T.; Suzuki, T.; Kunisada, T. An in vitro mouse model for retinal ganglion cell replacement therapy using eye-like structures differentiated from ES cells. Exp. Eye Res. 2007, 84, 868–875. [Google Scholar] [CrossRef]
- Assawachananont, J.; Mandai, M.; Okamoto, S.; Yamada, C.; Eiraku, M.; Yonemura, S.; Sasai, Y.; Takahashi, M. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep. 2014, 2, 662–674. [Google Scholar] [CrossRef]
- Lamba, D.A.; Karl, M.O.; Ware, C.B.; Reh, T.A. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 2006, 103, 12769–12774. [Google Scholar] [CrossRef]
- Jagatha, B.; Divya, M.S.; Sanalkumar, R.; Indulekha, C.L.; Vidyanand, S.; Divya, T.S.; Das, A.V.; James, J. In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem. Biophys. Res. Commun. 2009, 380, 230–235. [Google Scholar] [CrossRef]
- Wang, S.T.; Chen, L.L.; Zhang, P.; Wang, X.B.; Sun, Y.; Ma, L.X.; Liu, Q.; Zhou, G.M. Transplantation of Retinal Progenitor Cells from Optic Cup-Like Structures Differentiated from Human Embryonic Stem Cells In Vitro and In Vivo Generation of Retinal Ganglion-Like Cells. Stem Cells Dev. 2019, 28, 258–267. [Google Scholar] [CrossRef]
- Zhang, X.; Tenerelli, K.; Wu, S.; Xia, X.; Yokota, S.; Sun, C.; Galvao, J.; Venugopalan, P.; Li, C.; Madaan, A.; et al. Cell transplantation of retinal ganglion cells derived from hESCs. Restor. Neurol. Neurosci. 2020, 38, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, S.; Balasubramanian, S.; Babai, N.; Qiu, F.; Eudy, J.D.; Thoreson, W.B.; Ahmad, I. Induced Pluripotent Stem Cells Generate Both Retinal Ganglion Cells and Photoreceptors: Therapeutic Implications in Degenerative Changes in Glaucoma and Age-Related Macular Degeneration. Stem Cells 2010, 28, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Bhatia, B.; Jayaram, H.; Becker, S.; Jones, M.F.; Cottrill, P.B.; Khaw, P.T.; Salt, T.E.; Limb, G.A. Human Muller Glia with Stem Cell Characteristics Differentiate into Retinal Ganglion Cell (RGC) Precursors In Vitro and Partially Restore RGC Function In Vivo Following Transplantation. Stem Cell Transl. Med. 2012, 1, 188–199. [Google Scholar] [CrossRef]
- Singhal, S.; Lawrence, J.M.; Bhatia, B.; Ellis, J.S.; Kwan, A.S.; Macneil, A.; Luthert, P.J.; Fawcett, J.W.; Perez, M.T.; Khaw, P.T.; et al. Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Müller stem cells into degenerating retina. Stem Cells 2008, 26, 1074–1082. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, Y.; Xiang, K.; Xiao, D.; Xiang, M. Rapid and efficient generation of a transplantable population of functional retinal ganglion cells from fibroblasts. Cell Prolif. 2024, 57, e13550. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Q.; Sun, X.; Shen, W.; Liu, B.; Zhong, X.; Leng, Y.; Li, C.; Zhang, W.; Chai, F.; et al. Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Invest. Ophthalmol. Vis. Sci. 2010, 51, 5970–5978. [Google Scholar] [CrossRef]
- Xiao, D.; Deng, Q.; Guo, Y.; Huang, X.; Zou, M.; Zhong, J.; Rao, P.; Xu, Z.; Liu, Y.; Hu, Y.; et al. Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts. Sci. Adv. 2020, 6, eaaz5858. [Google Scholar] [CrossRef]
- Raab, S.; Klingenstein, M.; Liebau, S.; Linta, L. A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells Int. 2014, 2014, 768391. [Google Scholar] [CrossRef]
- Cheng, L.; Lei, Q.; Yin, C.; Wang, H.Y.; Jin, K.; Xiang, M. Generation of Urine Cell-Derived Non-integrative Human iPSCs and iNSCs: A Step-by-Step Optimized Protocol. Front. Mol. Neurosci. 2017, 10, 348. [Google Scholar] [CrossRef]
- Lei, Q.; Xiang, K.; Cheng, L.; Xiang, M. Human retinal organoids with an OPA1 mutation are defective in retinal ganglion cell differentiation and function. Stem Cell Reports 2024, 19, 68–83. [Google Scholar] [CrossRef]
- Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011, 472, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Ando, S.; Takata, N.; Kawada, M.; Muguruma, K.; Sekiguchi, K.; Saito, K.; Yonemura, S.; Eiraku, M.; Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012, 10, 771–785. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Pearson, R.A.; MacNeil, A.; Douglas, R.H.; Salt, T.E.; Akimoto, M.; Swaroop, A.; Sowden, J.C.; Ali, R.R. Retinal repair by transplantation of photoreceptor precursors. Nature 2006, 444, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Badea, T.C.; Cahill, H.; Ecker, J.; Hattar, S.; Nathans, J. Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 2009, 61, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Xiang, M.; Zhou, L.; Wagner, D.S.; Klein, W.H.; Nathans, J. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc. Natl. Acad. Sci. USA 1996, 93, 3920–3925. [Google Scholar] [CrossRef]
- Xiang, M. Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev. Biol. 1998, 197, 155–169. [Google Scholar] [CrossRef]
- Xiang, M.; Zhou, L.; Peng, Y.W.; Eddy, R.L.; Shows, T.B.; Nathans, J. Brn-3b: A POU domain gene expressed in a subset of retinal ganglion cells. Neuron 1993, 11, 689–701. [Google Scholar] [CrossRef]
- Qiu, F.; Jiang, H.; Xiang, M. A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J. Neurosci. 2008, 28, 3392–3403. [Google Scholar] [CrossRef]
- Kuwahara, A.; Ozone, C.; Nakano, T.; Saito, K.; Eiraku, M.; Sasai, Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun. 2015, 6, 6286. [Google Scholar] [CrossRef]
- Hertz, J.; Qu, B.; Hu, Y.; Patel, R.D.; Valenzuela, D.A.; Goldberg, J.L. Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation. Cell Transplant. 2014, 23, 855–872. [Google Scholar] [CrossRef]
- Chen, H.S.; Pellegrini, J.W.; Aggarwal, S.K.; Lei, S.Z.; Warach, S.; Jensen, F.E.; Lipton, S.A. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: Therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 1992, 12, 4427–4436. [Google Scholar] [CrossRef] [PubMed]
- West, E.L.; Pearson, R.A.; Barker, S.E.; Luhmann, U.F.; Maclaren, R.E.; Barber, A.C.; Duran, Y.; Smith, A.J.; Sowden, J.C.; Ali, R.R. Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 2010, 28, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Venugopalan, P.; Wang, Y.; Nguyen, T.; Huang, A.; Muller, K.J.; Goldberg, J.L. Transplanted neurons integrate into adult retinas and respond to light. Nat. Commun. 2016, 7, 10472. [Google Scholar] [CrossRef] [PubMed]
- Divya, M.S.; Rasheed, V.A.; Schmidt, T.; Lalitha, S.; Hattar, S.; James, J. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models. Front. Cell Neurosci. 2017, 11, 295. [Google Scholar] [CrossRef]
- Nickerson, P.E.B.; Ortin-Martinez, A.; Wallace, V.A. Material Exchange in Photoreceptor Transplantation: Updating Our Understanding of Donor/Host Communication and the Future of Cell Engraftment Science. Front. Neural Circuits 2018, 12, 17. [Google Scholar] [CrossRef]
- Pearson, R.A.; Gonzalez-Cordero, A.; West, E.L.; Ribeiro, J.R.; Aghaizu, N.; Goh, D.; Sampson, R.D.; Georgiadis, A.; Waldron, P.V.; Duran, Y.; et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat. Commun. 2016, 7, 13029. [Google Scholar] [CrossRef]
- Singh, M.S.; Balmer, J.; Barnard, A.R.; Aslam, S.A.; Moralli, D.; Green, C.M.; Barnea-Cramer, A.; Duncan, I.; MacLaren, R.E. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat. Commun. 2016, 7, 13537. [Google Scholar] [CrossRef]
- Waldron, P.V.; Di Marco, F.; Kruczek, K.; Ribeiro, J.; Graca, A.B.; Hippert, C.; Aghaizu, N.D.; Kalargyrou, A.A.; Barber, A.C.; Grimaldi, G.; et al. Transplanted Donor- or Stem Cell-Derived Cone Photoreceptors Can Both Integrate and Undergo Material Transfer in an Environment-Dependent Manner. Stem Cell Reports 2018, 10, 406–421. [Google Scholar] [CrossRef]
- Xiao, D.; Jin, K.; Qiu, S.; Lei, Q.; Huang, W.; Chen, H.; Su, J.; Xu, Q.; Xu, Z.; Gou, B.; et al. In vivo Regeneration of Ganglion Cells for Vision Restoration in Mammalian Retinas. Front. Cell Dev. Biol. 2021, 9, 755544. [Google Scholar] [CrossRef]
- Todd, L.; Jenkins, W.; Finkbeiner, C.; Hooper, M.J.; Donaldson, P.C.; Pavlou, M.; Wohlschlegel, J.; Ingram, N.; Mu, X.; Rieke, F.; et al. Reprogramming Müller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors. Sci. Adv. 2022, 8, eabq7219. [Google Scholar] [CrossRef]
- VanderWall, K.B.; Huang, K.C.; Pan, Y.; Lavekar, S.S.; Fligor, C.M.; Allsop, A.R.; Lentsch, K.A.; Dang, P.; Zhang, C.; Tseng, H.C.; et al. Retinal ganglion cells with a glaucoma OPTN(E50K) mutation exhibit neurodegenerative phenotypes when derived from three-dimensional retinal organoids. Stem Cell Rep. 2020, 15, 52–66. [Google Scholar] [CrossRef]
- Zhang, R.; Yuan, F.; Xiang, M. Establishment and application of a retinal ganglion cell-specific reporter stem cell line. Yan Ke Xue Bao 2022, 37, 245–254. [Google Scholar]
- Watanabe, K.; Ueno, M.; Kamiya, D.; Nishiyama, A.; Matsumura, M.; Wataya, T.; Takahashi, J.B.; Nishikawa, S.; Nishikawa, S.; Muguruma, K.; et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 2007, 25, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, M.; Liu, S.; Chen, H.; Li, Y.; Yuan, F.; Yang, L.; Qiu, S.; Wang, H.; Xie, Z.; et al. A lncRNA-encoded mitochondrial micropeptide exacerbates microglia-mediated neuroinflammation in retinal ischemia/reperfusion injury. Cell Death Dis. 2023, 14, 126. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Q.; Zhang, R.; Yuan, F.; Xiang, M. Integration and Differentiation of Transplanted Human iPSC-Derived Retinal Ganglion Cell Precursors in Murine Retinas. Int. J. Mol. Sci. 2024, 25, 12947. https://doi.org/10.3390/ijms252312947
Lei Q, Zhang R, Yuan F, Xiang M. Integration and Differentiation of Transplanted Human iPSC-Derived Retinal Ganglion Cell Precursors in Murine Retinas. International Journal of Molecular Sciences. 2024; 25(23):12947. https://doi.org/10.3390/ijms252312947
Chicago/Turabian StyleLei, Qiannan, Rong Zhang, Fa Yuan, and Mengqing Xiang. 2024. "Integration and Differentiation of Transplanted Human iPSC-Derived Retinal Ganglion Cell Precursors in Murine Retinas" International Journal of Molecular Sciences 25, no. 23: 12947. https://doi.org/10.3390/ijms252312947
APA StyleLei, Q., Zhang, R., Yuan, F., & Xiang, M. (2024). Integration and Differentiation of Transplanted Human iPSC-Derived Retinal Ganglion Cell Precursors in Murine Retinas. International Journal of Molecular Sciences, 25(23), 12947. https://doi.org/10.3390/ijms252312947