Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model
<p>FTIR spectra of the studied fibers.</p> "> Figure 2
<p>Microphotographs of fibers under polarized light compared with norfloxacin.</p> "> Figure 3
<p>SEM images of the studied fibers.</p> "> Figure 4
<p>Images of burn wounds collected during the first 7 days after application of the dressing.</p> "> Figure 5
<p>Representative histologic images of burns at 3, 5 and 7 days after the application of the fibers. The sections were prepared at a thickness of 200 µm. The inflammatory cell population is higher in control and control+ groups at all times. NCaB shows a superior cell differentiation at Day 7.</p> "> Figure 6
<p>Graphical representation of the fiber composition and the corresponding codes.</p> "> Figure 7
<p>The infliction of burn wound on rats. <b>Left</b>: metal contact rods. <b>Middle</b>: thermocouple used to confirm the temperature. <b>Right</b>: fixing wound dressing on rat burn model skin.</p> "> Figure 8
<p><b>Upper-left</b>: Synthesized electrospun chitosan fiber sheet. <b>Upper-right</b>: close-up image of chitosan dressing cut, placed in situ before fixation (surgical marker used to trace wound contour for precise area calculation). <b>Lower left</b>: cotton gauze folded to the right size. <b>Lower right</b>: Same cotton gauze fixed in four points with surgical staples.</p> "> Figure 9
<p>Graphical representation of the in vivo protocol.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Fiber Characterization
2.2. Structural Analysis
2.3. Burn Wound Lesion Healing
2.4. Macroscopical Analysis of the Burn Wound
2.5. Histopathological Evaluation
3. Discussions
3.1. Fiber Analysis
3.2. Structural Analysis
3.3. Biochemical Analysis
3.3.1. Inflammatory Studies
3.3.2. Oxidative Stress Markers
3.3.3. Limitations
4. Materials and Methods
4.1. Substances
4.2. Chitosan Dressings Preparation
4.3. Equipment and Analysis
4.4. Wound Healing Experiment
- Group 1 (Control): negative reference, bare wound
- Group 2 (Control+): positive reference, covering the wound with a commercial patch (Atrauman Ag®, Heidenheim, Germany—polyamide fibers impregnated in triglycerides and silver particles)
- Group 3 (NCeB): wound covered with NCeB nanofibers (high concentration norfloxacin, 4.35%)
- Group 4 (NCaB): wound covered with NCaB nanofibers (low concentration norfloxacin, 0.94%)
4.5. Blood Markers Examination
4.6. Histological Examination
4.7. Statistical Processing of Data
4.8. Ethical Aspects of the Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michailidou, G.; Christodoulou, E.; Nanaki, S.; Barmpalexis, P.; Karavas, E.; Vergkizi-Nikolakaki, S.; Bikiaris, D.N. Super-hydrophilic and high strength polymeric foam dressings of modified chitosan blends for topical wound delivery of chloramphenicol. Carbohydr. Polym. 2019, 208, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.T.S.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Wu, L.; Wu, S.; Ye, Q.; Zhong, Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr. Polym. 2024, 343, 122233. [Google Scholar] [CrossRef] [PubMed]
- Anisiei, A.; Oancea, F.; Marin, L. Electrospinning of chitosan-based nanofibers: From design to prospective applications. Rev. Chem. Eng. 2023, 39, 31–70. [Google Scholar] [CrossRef]
- Marin, L.; Andreica, B.-I.; Anisiei, A.; Cibotaru, S.; Bardosova, M.; Materon, E.M.; Oliveira, O.N. Quaternized chitosan (nano)fibers: A journey from preparation to high performance applications. Int. J. Biol. Macromol. 2023, 242, 125136. [Google Scholar] [CrossRef]
- Che, X.; Zhao, T.; Hu, J.; Yang, K.; Ma, N.; Li, A.; Sun, Q.; Ding, C.; Ding, Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers 2024, 16, 344. [Google Scholar] [CrossRef]
- Elangwe, C.N.; Morozkina, S.N.; Olekhnovich, R.O.; Krasichkov, A.; Polyakova, V.O.; Uspenskaya, M.V. A Review on Chitosan and Cellulose Hydrogels for Wound Dressings. Polymers 2022, 14, 5163. [Google Scholar] [CrossRef]
- Luo, Y.; Cui, L.; Zou, L.; Zhao, Y.; Chen, L.; Guan, Y.; Zhang, Y. Mechanically strong and on-demand dissoluble chitosan hydrogels for wound dressing applications. Carbohydr. Polym. 2022, 294, 119774. [Google Scholar] [CrossRef]
- Lungu, R.; Paun, M.-A.; Peptanariu, D.; Ailincai, D.; Marin, L.; Nichita, M.-V.; Paun, V.-A.; Paun, V.-P. Biocompatible Chitosan-Based Hydrogels for Bioabsorbable Wound Dressings. Gels 2022, 8, 107. [Google Scholar] [CrossRef]
- Wang, X.; Song, R.; Johnson, M.; Shen, P.; Zhang, N.; Lara-Sáez, I.; Xu, Q.; Wang, W. Chitosan-Based Hydrogels for Infected Wound Treatment. Macromol. Biosci. 2023, 23, 2300094. [Google Scholar] [CrossRef]
- Jin, L.; Yoon, S.-J.; Lee, D.H.; Pyun, Y.C.; Kim, W.Y.; Lee, J.H.; Khang, G.; Chun, H.J.; Yang, D.H. Preparation of Foam Dressings Based on Gelatin, Hyaluronic Acid, and Carboxymethyl Chitosan Containing Fibroblast Growth Factor-7 for Dermal Regeneration. Polymers 2021, 13, 3279. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Leng, Q.; Pang, X.; Shi, H.; Liu, Y.; Xiao, S.; Zhao, L.; Zhou, P.; Fu, S. Therapeutic effects of EGF-modified curcumin/chitosan nano-spray on wound healing. Regen. Biomater. 2021, 8, rbab009. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-C.; Sheng, C.; Chang, L.-S.; Wen, Z.-H.; Ho, C.-Y.; Chen, C.-M. Chitosan-microencapsulated rhEGF in promoting wound healing. J. Wound Care 2021, 30, IXi. [Google Scholar] [CrossRef]
- Duvnjak Romić, M.D.; Špoljarić, D.; Šegvić Klarić, M.Š.; Cetina-Čižmek, B.; Filipović-Grčić, J.; Hafner, A. Melatonin loaded lipid enriched chitosan microspheres-Hybrid dressing for moderate exuding wounds. J. Drug Deliv. Sci. Technol. 2019, 52, 431–439. [Google Scholar] [CrossRef]
- Amanzadi, B.; Mirzaei, E.; Hassanzadeh, G.; Mahdaviani, P.; Boroumand, S.; Abdollahi, M.; Hosseinabdolghaffari, A.; Majidi, R.F. Chitosan-based layered nanofibers loaded with herbal extract as wound-dressing materials on wound model studies. Biointerface Res. Appl. Chem. 2019, 9, 3979–3986. [Google Scholar] [CrossRef]
- Motasadizadeh, H.; Azizi, S.; Shaabani, A.; Sarvestani, M.G.; Sedghi, R.; Dinarvand, R. Development of PVA/Chitosan-g-Poly (N-vinyl imidazole)/TiO2/curcumin nanofibers as high-performance wound dressing. Carbohydr. Polym. 2022, 296, 119956. [Google Scholar] [CrossRef] [PubMed]
- Ailincai, D.; Cibotaru, S.; Anisiei, A.; Coman, C.G.; Pasca, A.S.; Rosca, I.; Sandu, A.I.; Mititelu-Tartau, L.; Marin, L. Mesoporous chitosan nanofibers loaded with norfloxacin and coated with phenylboronic acid perform as bioabsorbable active dressings to accelerate the healing of burn wounds. Carbohydr. Polym. 2023, 318, 121135. [Google Scholar] [CrossRef]
- Anisiei, A.; Andreica, B.-I.; Mititelu-Tartau, L.; Coman, C.G.; Bilyy, R.; Bila, G.; Rosca, I.; Sandu, A.-I.; Amler, E.; Marin, L. Biodegradable trimethyl chitosan nanofiber mats by electrospinning as bioabsorbable dressings for wound closure and healing. Int. J. Biol. Macromol. 2023, 249, 126056. [Google Scholar] [CrossRef]
- Jungprasertchai, N.; Chuysinuan, P.; Ekabutr, P.; Niamlang, P.; Supaphol, P. Freeze-Dried Carboxymethyl Chitosan/Starch Foam for Use as a Haemostatic Wound Dressing. J. Polym. Environ. 2022, 30, 1106–1117. [Google Scholar] [CrossRef]
- Umar, A.K.; Sriwidodo, S.; Maksum, I.P.; Wathoni, N. Film-Forming Spray of Water-Soluble Chitosan Containing Liposome-Coated Human Epidermal Growth Factor for Wound Healing. Molecules 2021, 26, 5326. [Google Scholar] [CrossRef]
- Valachová, K.; El Meligy, M.A.; Šoltés, L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int. J. Biol. Macromol. 2022, 206, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Li, J.; Wang, Y.; Li, F.; Man, J.; Li, J.; Zhang, C.; Peng, S.; Wang, S. Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects. Carbohydr. Polym. 2022, 297, 120058. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Sun, S.; Wu, S.; Chen, S.; Ma, J.; Zhou, F. Electrospun chitosan nanofibers for wound healing application. Eng. Regen. 2021, 2, 82–90. [Google Scholar] [CrossRef]
- Feng, P.; Luo, Y.; Ke, C.; Qiu, H.; Wang, W.; Zhu, Y.; Hou, R.; Xu, L.; Wu, S. Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front. Bioeng. Biotechnol. 2021, 9, 650598. [Google Scholar] [CrossRef]
- Rajinikanth, B.S.; Rajkumar, D.S.R.; Keerthika, K.; Vijayaragavan, V. Chitosan-Based Biomaterial in Wound Healing: A Review. Cureus 2024, 16, e55193. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Okhawilai, M.; Goh, K.L.; Thakur, V.K.; Senthilkumar, N.; Sharma, M.; Uyama, H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. Environ. Res. 2023, 235, 116580. [Google Scholar] [CrossRef]
- Baumann, A.; Tuerck, D.; Prabhu, S.; Dickmann, L.; Sims, J. Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: Quo vadis? Drug Discov. Today 2014, 19, 1623–1631. [Google Scholar] [CrossRef]
- Pathan, S.G.; Fitzgerald, L.M.; Ali, S.M.; Damrauer, S.M.; Bide, M.J.; Nelson, D.W.; Ferran, C.; Phaneuf, T.M.; Phaneuf, M.D. Cytotoxicity associated with electrospun polyvinyl alcohol. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 1652–1662. [Google Scholar] [CrossRef]
- Anisiei, A.; Rosca, I.; Sandu, A.-I.; Bele, A.; Cheng, X.; Marin, L. Imination of Microporous Chitosan Fibers—A Route to Biomaterials with On “Demand Antimicrobial” Activity and Biodegradation for Wound Dressings. Pharmaceutics 2022, 14, 117. [Google Scholar] [CrossRef]
- Lungu, R.; Anisiei, A.; Rosca, I.; Sandu, A.-I.; Ailincai, D.; Marin, L. Double functionalization of chitosan based nanofibers towards biomaterials for wound healing. React. Funct. Polym. 2021, 167, 105028. [Google Scholar] [CrossRef]
- Marin, L.; Dragoi, B.; Olaru, N.; Perju, E.; Coroaba, A.; Doroftei, F.; Scavia, G.; Destri, S.; Zappia, S.; Porzio, W. Nanoporous furfuryl-imine-chitosan fibers as a new pathway towards eco-materials for CO2 adsorption. Eur. Polym. J. 2019, 120, 109214. [Google Scholar] [CrossRef]
- Gouin, J.-P.; Kiecolt-Glaser, J.K. The Impact of Psychological Stress on Wound Healing: Methods and Mechanisms. Immunol. Allergy Clin. N. Am. 2011, 31, 81–93. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Xing, Y.Y.; Wang, Z.Q.; Yan, S.M.; Shi, B.L. Pre-protective effects of dietary chitosan supplementation against oxidative stress induced by diquat in weaned piglets. Cell Stress Chaperones 2018, 23, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Pasa, S.; Aydın, S.; Kalaycı, S.; Boğa, M.; Atlan, M.; Bingul, M.; Şahin, F.; Temel, H. The synthesis of boronic-imine structured compounds and identification of their anticancer, antimicrobial and antioxidant activities. J. Pharm. Anal. 2016, 6, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, T.; Fujii, J. Roles of Antioxidative Enzymes in Wound Healing. J. Dev. Biol. 2015, 3, 57–70. [Google Scholar] [CrossRef]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.S.; Wei, P.; Zhan, S.; Zhang, S.; et al. The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 55. [Google Scholar] [CrossRef]
- Borys, K.M.; Wieczorek, D.; Pecura, K.; Lipok, J.; Adamczyk-Woźniak, A. Antifungal activity and tautomeric cyclization equilibria of formylphenylboronic acids. Bioorg. Chem. 2019, 91, 103081. [Google Scholar] [CrossRef] [PubMed]
- Marin, L.; Ailincai, D.; Mares, M.; Paslaru, E.; Cristea, M.; Nica, V.; Simionescu, B.C. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydr. Polym. 2015, 117, 762–770. [Google Scholar] [CrossRef]
- Sahoo, S.; Chakraborti, C.K.; Behera, P.K.; Mishra, S.C. FTIR and Raman Spectroscopic Investigations of a Norfloxacin/Carbopol934 Polymeric Suspension. J. Young Pharm. 2012, 4, 138–145. [Google Scholar] [CrossRef]
- Branca, C.; D’Angelo, G.; Crupi, C.; Khouzami, K.; Rifici, S.; Ruello, G.; Wanderlingh, U. Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer 2016, 99, 614–622. [Google Scholar] [CrossRef]
- Holzer-Geissler, J.C.J.; Schwingenschuh, S.; Zacharias, M.; Einsiedler, J.; Kainz, S.; Reisenegger, P.; Holecek, C.; Hofmann, E.; Wolff-Winiski, B.; Fahrngruber, H.; et al. The Impact of Prolonged Inflammation on Wound Healing. Biomedicines 2022, 10, 856. [Google Scholar] [CrossRef] [PubMed]
- Schönfelder, U.; Abel, M.; Wiegand, C.; Klemm, D.; Elsner, P.; Hipler, U.-C. Influence of selected wound dressings on PMN elastase in chronic wound fluid and their antioxidative potential in vitro. Biomaterials 2005, 26, 6664–6673. [Google Scholar] [CrossRef]
- Wilgus, T.A.; Roy, S.; McDaniel, J.C. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv. Wound Care 2013, 2, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Fulkerson, P.C.; Rothenberg, M.E. Targeting eosinophils in allergy, inflammation and beyond. Nat. Rev. Drug Discov. 2013, 12, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, R.; Kim, B.S. Skin-homing basophils and beyond. Front. Immunol. 2022, 13, 1059098. [Google Scholar] [CrossRef]
- Coden, M.E.; Berdnikovs, S. Eosinophils in wound healing and epithelial remodeling: Is coagulation a missing link? J. Leukoc. Biol. 2020, 108, 93–103. [Google Scholar] [CrossRef]
- Kratofil, R.M.; Shim, H.B.; Shim, R.; Lee, W.Y.; Labit, E.; Sinha, S.; Keenan, C.M.; Surewaard, B.G.J.; Noh, J.Y.; Sun, Y.; et al. A monocyte–leptin–angiogenesis pathway critical for repair post-infection. Nature 2022, 609, 166–173. [Google Scholar] [CrossRef]
- Bilgen, F.; Ural, A.; Kurutas, E.B.; Bekerecioglu, M. The effect of oxidative stress and Raftlin levels on wound healing. Int. Wound J. 2019, 16, 1178–1184. [Google Scholar] [CrossRef]
- Fujiwara, T.; Duscher, D.; Rustad, K.C.; Kosaraju, R.; Rodrigues, M.; Whittam, A.J.; Januszyk, M.; Maan, Z.N.; Gurtner, G.C. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function. Exp. Dermatol. 2016, 25, 206–211. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Z. ROS-scavenging materials for skin wound healing: Advancements and applications. Front. Bioeng. Biotechnol. 2023, 11, 1304835. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, R.L.; Raghubir, R. Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol. Cell. Biochem. 2002, 241, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.; Lin, E.J.; Tartar, D. Immunology of Wound Healing. Curr. Dermatol. Rep. 2018, 7, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Inglis, J.E.; Radziwon, K.A.; Maniero, G.D. The serum complement system: A simplified laboratory exercise to measure the activity of an important component of the immune system. Adv. Physiol. Educ. 2008, 32, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Cazander, G.; Jukema, G.N.; Nibbering, P.H. Complement Activation and Inhibition in Wound Healing. Clin. Dev. Immunol. 2012, 2012, 534291. [Google Scholar] [CrossRef]
- Narváez-Cuenca, C.-E.; Caicedo-Suárez, A.; Arias-Carmona, L.; Cadavid-Restrepo, G.; Franco-Castañeda, F.-A.; Porras-Villamil, J.-R. Effect of Aloe Vera and Chitosan Coatings on the Shelf Life of Cape Gooseberries (Physalis peruviana L.). Int. J. Biol. Macromol. 2022, 213, 823–830. [Google Scholar] [CrossRef]
- Gad, A.A.M.; Sirko, A. L-gulono-γ-lactone Oxidase, the Key Enzyme for L-Ascorbic Acid Biosynthesis. Curr. Issues Mol. Biol. 2024, 46, 11057–11074. [Google Scholar] [CrossRef]
Day/Code | Control | Control+ | NCeB | NCaB |
---|---|---|---|---|
0 | 0.968 ± 0.03 | 0.975 ± 0.01 | 0.969 ± 0.03 | 0.976 ± 0.01 |
3 | 1.348 ± 0.05 * | 1.016 ± 0.03 ♦ | 1.076 ± 0.01 ♦ | 1.088 ± 0.01 ♦ |
5 | 1.335 ± 0.05 * | 0.993 ± 0.01 ♦ | 1.060 ± 0.03 ♦ | 1.074 ± 0.01 ♦ |
7 | 1.308 ± 0.03 * | 0.981 ± 0.01 ♦ | 1.035 ± 0.01 ♦ | 1.052 ± 0.03 ♦ |
Code | Moment of Determination (Day) | Leucocyte Count | ||||
---|---|---|---|---|---|---|
% | ||||||
PMN | Ly | E | M | B | ||
Control | 0 | 26.6 ± 8.13 | 69.2 ± 12.37 | 0.5 ± 0.03 | 3.5 ± 0.1 | 0.2 ± 0.03 |
3 | 16.0 ± 6.19 * | 79.6 ± 13.25 * | 0.4 ± 0.01 | 3.8 ± 0.05 | 0.2 ± 0.03 | |
5 | 16.8 ± 7.43 * | 78.9 ± 11.69 * | 0.4 ± 0.01 | 3.7 ± 0.1 | 0.2 ± 0.01 | |
7 | 18.2 ± 6.38 * | 77.3 ± 11.47 * | 0.6 ± 0.03 | 3.7 ± 0.1 | 0.2 ± 0.01 | |
Control+ | 0 | 26.8 ± 6.45 | 69.0 ± 11.53 | 0.4 ± 0.03 | 3.6 ± 0.05 | 0.2 ± 0.03 |
3 | 26.3 ± 7.37 ♦ | 69.5 ± 13.19 ♦ | 0.5 ± 0.03 | 3.7 ± 0.05 | 0.2 ± 0.01 | |
5 | 26.1 ± 6.29 ♦ | 69.6 ± 12.55 ♦ | 0.6 ± 0.01 | 3.6 ± 0.05 | 0.2 ± 0.03 | |
7 | 26.5 ± 6.11 ♦ | 68.8 ± 12.43 ♦ | 0.5 ± 0.03 | 3.6 ± 0.1 | 0.2 ± 0.01 | |
NCeB | 0 | 26.8 ± 6.29 | 68.8 ± 11.35 | 0.5 ± 0.03 | 3.7 ± 0.1 | 0.2 ± 0.03 |
3 | 23.2 ± 6.33 | 72.5 ± 11.29 | 0.6 ± 0.01 | 3.5 ± 0.05 | 0.2 ± 0.01 | |
5 | 23.7 ± 5.51 | 72.2 ± 11.53 | 0.4 ± 0.01 | 3.5 ± 0.05 | 0.2 ± 0.03 | |
7 | 23.7 ± 7.13 | 72.0 ± 12.41 | 0.5 ± 0.03 | 3.6 ± 0.05 | 0.2 ± 0.01 | |
NCaB | 0 | 26.7 ± 6.67 | 69.1 ± 10.67 | 0.5 ± 0.03 | 3.5 ± 0.1 | 0.2 ± 0.03 |
3 | 23.0 ± 6.29 | 72.6 ± 11.55 | 0.5 ± 0.03 | 3.7 ± 0.05 | 0.2 ± 0.01 | |
5 | 23.9 ± 6.11 | 72.0 ± 11.45 | 0.4 ± 0.03 | 3.5 ± 0.05 | 0.2 ± 0.03 | |
7 | 24.1 ± 6.39 | 71.8 ± 11.27 | 0.4 ± 0.01 | 3.5 ± 0.05 | 0.2 ± 0.01 |
Cortisol (µg/dL) | ||||
---|---|---|---|---|
Moment | C | C+ | NCeB | NCaB |
0 | 26.83 ± 2.48 | 26.67 ± 3.61 | 26.17 ± 1.60 | 26.33 ± 2.58 |
3 | 54.33 ± 1.51 ** | 30.50 ± 1.38 ♦ | 35.67 ± 1.51 ♦ | 35.33 ± 1.03 ♦ |
5 | 53.33 ± 1.86 ** | 29.17 ± 0.75 ♦ | 35.17 ± 1.17 ♦ | 34.67 ± 1.37 ♦ |
7 | 52.83 ± 2.14 ** | 27.83 ± 1.17 ♦ | 34.83 ± 1.60 ♦ | 34.33 ± 1.21 ♦ |
SOD (U/mg Protein) | ||||
---|---|---|---|---|
Moment | C | C+ | NCeB | NCaB |
0 | 19.33 ± 1.41 | 19.33 ± 1.06 | 19.33 ± 1.33 | 19.67 ± 0.95 |
3 | 11.17 ± 0.68 * | 16.5 ± 1.41 ♦ | 15.50 ± 1.41 ♦ | 15.50 ± 0.68 ♦ |
5 | 10.83 ± 1.06 * | 16.33 ± 0.68 ♦ | 14.33 ± 0.68 ♦ | 14.67 ± 0.71 ♦ |
7 | 10.67 ± 0.68 * | 16.17 ± 0.71 ♦ | 14.17 ± 0.71 ♦ | 14.17 ± 0.68 ♦ |
GPX (mU/mg Protein) | ||||
---|---|---|---|---|
Moment | C | C+ | NCeB | NCaB |
0 | 111.83 ± 20.58 | 111.67 ± 21.93 | 112.17 ± 25.58 | 111.5 ± 25.33 |
3 | 87.50 ± 27.53 * | 98.50 ± 25.62 ♦ | 101.67 ± 26.67 ♦ | 101.50 ± 26.41 ♦ |
5 | 87.50 ± 26.82 * | 98.17 ± 26.33 ♦ | 101.83 ± 26.33 ♦ | 101.50 ± 29.93 ♦ |
7 | 87.33 ± 27.17 * | 97.67 ± 27.17 ♦ | 101.50 ± 26.82 ♦ | 101.33 ± 26.62 ♦ |
MDA (nmol/g) | ||||
---|---|---|---|---|
Moment | C | C+ | NCeB | NCaB |
0 | 32.33 ± 6.21 | 32.17 ± 7.17 | 32.5 ± 6.95 | 32.33 ± 6.62 |
3 | 43.5 ± 7.27 * | 34.67 ± 5.93 ♦ | 38.50 ± 6.37 ♦ | 38.17 ± 6.43 ♦ |
5 | 43.17 ± 6.33 * | 34.50 ± 6.45 ♦ | 38.17 ± 7.43 ♦ | 37.17 ± 6.58 ♦ |
7 | 42.83 ± 6.62 * | 34.17 ± 6.58 ♦ | 37.33 ± 6.17 ♦ | 36.83 ± 5.82 ♦ |
Complement (UCH50) | ||||
---|---|---|---|---|
Moment | C | C+ | NCeB | NCaB |
0 | 53.33 ± 8.62 | 53.67 ± 9.06 | 53.50 ± 8.45 | 53.33 ± 8.29 |
3 | 39.17 ± 8.21 * | 52.17 ± 8.58 ♦ | 50.50 ± 8.27 ♦ | 50.67 ± 7.33 ♦ |
5 | 39.67 ± 7.39 * | 52.50 ± 8.33 ♦ | 50.57 ± 8.39 ♦ | 50.50 ± 7.67 ♦ |
7 | 39.50 ± 8.42 * | 52.67 ± 8.45 ♦ | 50.83 ± 8.95 ♦ | 51.17 ± 8.58 ♦ |
NBT (%) | ||||
---|---|---|---|---|
Moment | C | C+ | NCeB | NCaB |
0 | 14.67 ± 3.42 | 14.83 ± 3.39 | 14.83 ± 3.37 | 15.17 ± 4.17 |
3 | 19.33 ± 4.06 * | 15.50 ± 3.44 ♦ | 17.67 ± 4.33 | 17.50 ± 3.67 |
5 | 20.17 ± 4.22 * | 15.50 ± 3.82 ♦ | 17.67 ± 3.42 | 17.67 ± 3.58 |
7 | 18.67 ± 3.58 * | 15.33 ± 3.67 ♦ | 17.83 ± 3.27 | 16.50 ± 3.45 |
3 Days | ||||
---|---|---|---|---|
Evaluation Criteria | Code | |||
Control | Control+ | NCeB | NCaB | |
Intensity of Inflammation | ||||
Congestion | 2 | 2 | 2 | 3 |
Inflammatory oedema | 3 | 2 | 2 | 2 |
Fibrinous exudation | 0 | 0 | 0 | 0 |
Leukocyte infiltrate (neutrophils, macrophages, lymphocytes, histiocytes) | 3 | 4 | 4 | 4 |
Cleansing of the necrosis zone and resorption of the fibrinous matrix | 1 | 2 | 2 | 2 |
Cell differentiation in the wound (endothelial cells, fibroblasts) | 1 | 1 | 1 | 1 |
Fibrillar neogenesis (collagen fibers) and formation of new blood vessels | 0 | 0 | 0 | 0 |
Re-epithelization | 0 | 0 | 0 | 0 |
5 days | ||||
Intensity of Inflammation | ||||
Congestion | 3 | 2 | 2 | 2 |
Inflammatory oedema | 2 | 1 | 2 | 2 |
Fibrinous exudation | 1 | 1 | 1 | 1 |
Leukocyte infiltrate (neutrophils, macrophages, lymphocytes, histiocytes) | 4 | 3 | 3 | 3 |
Cleansing of the necrosis zone and resorption of the fibrinous matrix | 1 | 2 | 1 | 1 |
Cell differentiation in the wound (endothelial cells, fibroblasts) | 1 | 3 | 1 | 1 |
Fibrillar neogenesis (collagen fibers) and formation of new blood vessels. | 1 | 1 | 1 | 1 |
Re-epithelization | 0 | 0 | 0 | 0 |
7 days | ||||
Intensity of Inflammation | ||||
Congestion | 1 | 2 | 1 | 1 |
Inflammatory oedema | 0 | 0 | 0 | 0 |
Fibrinous exudation | 0 | 0 | 0 | 0 |
Leukocyte infiltrate (neutrophils, macrophages, lymphocytes, histiocytes) | 2 | 2 | 2 | 3 |
Cleansing of the necrosis zone and resorption of the fibrinous matrix | 0 | 0 | 1 | 1 |
Cell differentiation in the wound (endothelial cells, fibroblasts) | 1 | 2 | 2 | 4 |
Fibrillar neogenesis (collagen fibers) and formation of new blood vessels. | 0 | 2 | 1 | 2 |
Re-epithelization | 0 | 0 | 1 | 1 |
Group | Epithelialization Score (0–3) | Inflammation Score (0–3) | Granulation Tissue Score (0–3) |
---|---|---|---|
Control | 1.0 ± 0.2 | 2.5 ± 0.3 | 1.0 ± 0.2 |
Control+ | 1.5 ± 0.2 | 2.0 ± 0.2 | 1.5 ± 0.3 |
NCeB | 2.5 ± 0.1 | 1.0 ± 0.1 | 2.5 ± 0.2 |
NCaB | 2.7 ± 0.1 | 0.8 ± 0.1 | 2.7 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coman, C.-G.; Anisiei, A.; Cibotaru, S.; Ailincai, D.; Pasca, S.A.; Chabot, C.; Gardikiotis, I.; Mititelu-Tartau, L. Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model. Int. J. Mol. Sci. 2024, 25, 12709. https://doi.org/10.3390/ijms252312709
Coman C-G, Anisiei A, Cibotaru S, Ailincai D, Pasca SA, Chabot C, Gardikiotis I, Mititelu-Tartau L. Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model. International Journal of Molecular Sciences. 2024; 25(23):12709. https://doi.org/10.3390/ijms252312709
Chicago/Turabian StyleComan, Corneliu-George, Alexandru Anisiei, Sandu Cibotaru, Daniela Ailincai, Sorin Aurelian Pasca, Caroline Chabot, Ioannis Gardikiotis, and Liliana Mititelu-Tartau. 2024. "Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model" International Journal of Molecular Sciences 25, no. 23: 12709. https://doi.org/10.3390/ijms252312709
APA StyleComan, C.-G., Anisiei, A., Cibotaru, S., Ailincai, D., Pasca, S. A., Chabot, C., Gardikiotis, I., & Mititelu-Tartau, L. (2024). Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model. International Journal of Molecular Sciences, 25(23), 12709. https://doi.org/10.3390/ijms252312709