Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury
<p>Liver of rats: (<b>A</b>) control group, hematoxylin and eosin, ×100; (<b>B</b>) control group, hematoxylin and eosin, ×400; (<b>C</b>) group I, hematoxylin and eosin, ×100; (<b>D</b>,<b>E</b>) group I, hematoxylin and eosin, ×400; (<b>F</b>) group II, hematoxylin and eosin, ×100; (<b>G</b>,<b>H</b>) group II, hematoxylin and eosin, ×400.</p> "> Figure 1 Cont.
<p>Liver of rats: (<b>A</b>) control group, hematoxylin and eosin, ×100; (<b>B</b>) control group, hematoxylin and eosin, ×400; (<b>C</b>) group I, hematoxylin and eosin, ×100; (<b>D</b>,<b>E</b>) group I, hematoxylin and eosin, ×400; (<b>F</b>) group II, hematoxylin and eosin, ×100; (<b>G</b>,<b>H</b>) group II, hematoxylin and eosin, ×400.</p> "> Figure 2
<p>Results of ICH studies: (<b>A</b>) control group, <span class="html-italic">Ki-67</span>; (<b>B</b>) group I, <span class="html-italic">Ki-67</span>; (<b>C</b>) group II, <span class="html-italic">Ki-67</span>. It can be seen that single cells with reaction results are present in the field of view only in animals of the first experimental group. (<b>D</b>) Control group, <span class="html-italic">Per2</span>; (<b>E</b>) group I, <span class="html-italic">Per2</span>; (<b>F</b>) group II, <span class="html-italic">Per2</span>, ×400.</p> "> Figure 2 Cont.
<p>Results of ICH studies: (<b>A</b>) control group, <span class="html-italic">Ki-67</span>; (<b>B</b>) group I, <span class="html-italic">Ki-67</span>; (<b>C</b>) group II, <span class="html-italic">Ki-67</span>. It can be seen that single cells with reaction results are present in the field of view only in animals of the first experimental group. (<b>D</b>) Control group, <span class="html-italic">Per2</span>; (<b>E</b>) group I, <span class="html-italic">Per2</span>; (<b>F</b>) group II, <span class="html-italic">Per2</span>, ×400.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Results of Morphological Study
2.2. Results of Immunohistochemical Studies
2.3. Results of Biochemical and Immunoassay Tests
2.4. Results of the Characterization of Circadian Rhythms of the Studied Parameters
3. Discussion and Conclusions
4. Materials and Methods
4.1. Object of the Study
4.2. Design of Study
4.3. Morphological, Morphometric, and Histochemical Methods
4.4. Immunohistochemical Methods
4.5. Biochemical Methods
4.6. Immunoassay Methods
4.7. Methods for Statistical Processing
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rumanova, V.S.; Okuliarova, M.; Zeman, M. Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. Int. J. Mol. Sci. 2020, 21, 5478. [Google Scholar] [CrossRef] [PubMed]
- Bumgarner, J.R.; Walker, W.H., 2nd; Nelson, R.J. Circadian rhythms and pain. Neurosci Biobehav. Rev. 2021, 129, 296–306. [Google Scholar] [CrossRef]
- Chant, C.A. Notes and queries: Sky-glow from large cities; home-built instruments; these degenerate days. J. R. Astron. Soc. Can. 1935, 29, 79. [Google Scholar]
- Riegel, K.W. Light pollution: Outdoor lighting is a growing threat to astronomy. Science 1973, 179, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.C.M.; Altıntaş, Y.Ö.; Walker, C.E.; Newhouse, M. Citizen scientists report global rapid reductions in the visibility of stars from 2011 to 2022. Science 2023, 379, 265–268. [Google Scholar] [CrossRef]
- Hirt, M.R.; Evans, D.M.; Miller, C.R.; Ryser, R. Light pollution in complex ecological systems. Philos. Trans R Soc. Lond. B Biol. Sci. 2023, 378, 20220351. [Google Scholar] [CrossRef]
- Fárková, E.; Schneider, J.; Šmotek, M.; Bakštein, E.; Herlesová, J.; Kopřivová, J.; Šrámková, P.; Pichlerová, D.; Fried, M. Weight loss in conservative treatment of obesity in women is associated with physical activity and circadian phenotype: A longitudinal observational study. Biopsychosoc. Med. 2019, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.G. Artificial lighting in the industrialized world: Circadian disruption and breast cancer. Cancer Causes Control. 2006, 17, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Audebrand, A.; Désaubry, L.; Nebigil, C.G. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front. Cardiovasc. Med. 2020, 6, 194. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Alsayed, A.R.; Abuawad, A.; Daoud, S.; Mahmod, A.I. Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021, 26, 2506. [Google Scholar] [CrossRef]
- Han, Y.; Chen, L.; Baiocchi, L.; Ceci, L.; Glaser, S.; Francis, H.; Alpini, G.; Kennedy, L. Circadian Rhythm and Melatonin in Liver Carcinogenesis: Updates on Current Findings. Crit. Rev. Oncog. 2021, 26, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Masri, S.; Sassone-Corsi, P. The emerging link between cancer, metabolism, and circadian rhythms. Nat. Med. 2018, 24, 1795–1803. [Google Scholar] [CrossRef]
- Nelson, R.J.; Chbeir, S. Dark matters: Effects of light at night on metabolism. Proc. Nutr. Soc. 2018, 77, 223–229. [Google Scholar] [CrossRef]
- Yalçin, M.; El-Athman, R.; Ouk, K.; Priller, J.; Relógio, A. Analysis of the Circadian Regulation of Cancer Hallmarks by a Cross-Platform Study of Colorectal Cancer Time-Series Data Reveals an Association with Genes Involved in Huntington’s Disease. Cancers 2020, 12, 963. [Google Scholar] [CrossRef]
- Walker, W.H., 2nd; Bumgarner, J.R.; Walton, J.C.; Liu, J.A.; Meléndez-Fernández, O.H.; Nelson, R.J.; DeVries, A.C. Light Pollution and Cancer. Int. J. Mol. Sci. 2020, 21, 9360. [Google Scholar] [CrossRef] [PubMed]
- Levi, F.; Schibler, U. Circadian rhythms: Mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 593–628. [Google Scholar] [CrossRef]
- Fukuhara, C.; Tosini, G. Peripheral circadian oscillators and their rhythmic regulation. Front. Biosci. 2003, 8, d642–d651. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, J.V.; Ramanathan, R.; Lee, K.M.; Muralidhara, S. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity. J. Pharmacol. Exp. Ther. 2002, 300, 273–281. [Google Scholar] [CrossRef]
- Skrzypińska-Gawrysiak, M.; Piotrowski, J.K.; Sporny, S. Circadian variations in hepatotoxicity of carbon tetrachloride in mice. Int. J. Occup. Med. Environ. Health 2000, 13, 165–173. [Google Scholar] [PubMed]
- Paulsen, J.E. The time-course of mouse liver regeneration after carbon tetrachloride injury is influenced by circadian rhythms. Chronobiol. Int. 1990, 7, 271–275. [Google Scholar] [CrossRef]
- Chen, P.; Han, Z.; Yang, P.; Zhu, L.; Hua, Z.; Zhang, J. Loss of clock gene mPer2 promotes liver fibrosis induced by carbon tetrachloride. Hepatol. Res. 2010, 40, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gu, T.; Li, B.; Li, F.; Ma, Z.; Zhang, Q.; Cai, X.; Lu, L. Delta-like ligand 4/DLL4 regulates the capillarization of liver sinusoidal endothelial cell and liver fibrogenesis. Biochim. Biophys. Acta Mol. Cell. Res. 2019, 1866, 1663–1675. [Google Scholar] [CrossRef]
- Areshidze, D.A.; Kozlova, M.A.; Makartseva, L.A.; Chernov, I.A.; Sinelnikov, M.Y.; Kirillov, Y.A. Influence of constant lightning on liver health: An experimental study. Environ. Sci. Pollut. Res. Int. 2022, 29, 83686–83697. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, M.A.; Kirillov, Y.A.; Makartseva, L.A.; Chernov, I.; Areshidze, D.A. Morphofunctional State and Circadian Rhythms of the Liver under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int. J. Mol. Sci. 2021, 22, 13007. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, E.; Roy, A.; Royapuram Veeraragavan, G.; Magesh, A.; Varikalam Sleeba, A.; Arivarasu, L.; Marimuthu Parasuraman, B. β-Sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 1067–1075. [Google Scholar] [CrossRef]
- Cornelissen, G. Cosinor-based rhythmometry. Theor. Biol. Med. Model. 2014, 11, 16. [Google Scholar] [CrossRef]
- Gaspar, L.S.; Álvaro, A.R.; Carmo-Silva, S.; Mendes, A.F.; Relógio, A.; Cavadas, C. The importance of determining circadian parameters in pharmacological studies. Br. J. Pharmacol. 2019, 176, 2827–2847. [Google Scholar] [CrossRef]
- Leise, T.L. Analysis of Nonstationary Time Series for Biological Rhythms Research. J. Biol. Rhythm. 2017, 32, 187–194. [Google Scholar] [CrossRef]
- Shomer, N.H.; Allen-Worthington, K.H.; Hickman, D.L.; Jonnalagadda, M.; Newsome, J.T.; Slate, A.R.; Valentine, H.; Williams, A.M.; Wilkinson, M. Review of Rodent Euthanasia Methods. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 242–253. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef]
- Areshidze, D.A.; Kozlova, M.A. Morphofunctional State and Circadian Rhythms of the Liver of Female Rats under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int. J. Mol. Sci. 2022, 23, 10744. [Google Scholar] [CrossRef] [PubMed]
- Apte, U.M.; Banerjee, A.; McRee, R.; Wellberg, E.; Ramaiah, S.K. Role of osteopontin in hepatic neutrophil infiltration during alcoholic steatohepatitis. Toxicol. Appl. Pharmacol. 2005, 207, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Stöppeler, S.; Palmes, D.; Fehr, M.; Hölzen, J.P.; Zibert, A.; Siaj, R.; Schmidt, H.H.; Spiegel, H.U.; Bahde, R. Gender and strain-specific differences in the development of steatosis in rats. Lab. Anim. 2013, 47, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Saito, Y.; Ohtake, Y.; Maruko, A.; Yamamoto, Y.; Yamamoto, F.; Kuwahara, Y.; Fukumoto, M.; Fukumoto, M.; Ohkubo, Y. Effect of aging on norepinephrine-related proliferative response in primary cultured periportal and perivenous hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G861–G869. [Google Scholar] [CrossRef]
- Wilkinson, P.D.; Duncan, A.W. Differential Roles for Diploid and Polyploid Hepatocytes in Acute and Chronic Liver Injury. Semin. Liver Dis. 2021, 41, 42–49. [Google Scholar] [CrossRef]
- Xu, P.; Yao, J.; Ji, J.; Shi, H.; Jiao, Y.; Hao, S. Deficiency of apoptosisstimulating protein 2 of p53 protects mice from acute hepatic injury induced by CCl4 via autophagy. Toxicol. Lett. 2019, 316, 85–93. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Chen, C. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Sci. Rep. 2017, 7, 5872. [Google Scholar] [CrossRef]
- Boll, M.; Weber, L.; Becker, E.; Stampfl, A. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z. Naturforsch. C. J. Biosci 2001, 56, 649–659. [Google Scholar] [CrossRef]
- Cao, R.; Cao, C.; Hu, X.; Du, K.; Zhang, J.; Li, M.; Li, B.; Lin, H.; Zhang, A.; Li, Y.; et al. Kaempferol attenuates carbon tetrachloride (CCl4)-induced hepatic fibrosis by promoting ASIC1a degradation and suppression of the ASIC1a-mediated ERS. Phytomedicine 2023, 121, 155125. [Google Scholar] [CrossRef]
- Taira, Z.; Ueda, Y.; Monmasu, H.; Yamase, D.; Miyake, S.; Shiraishi, M. Characteristics of intracellular Ca2+ signals consisting of two successive peaks in hepatocytes during liver regeneration after 70% partial hepatectomy in rats. J. Exp. Pharmacol. 2016, 8, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Manchester, L.C.; Reiter, R.J.; Qi, W.B.; Zhang, M.; Weintraub, S.T.; Cabrera, J.; Sainz, R.M.; Mayo, J.C. Identification of highly elevated levels of melatonin in bone marrow: Its origin and significance. Biochim. Biophys. Acta. 1999, 1472, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Acuna-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Extrapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life. Sci. 2014, 71, 2997–3025. [Google Scholar]
- Zhang, H.M.; Zhang, Y. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 2014, 57, 131–146. [Google Scholar] [CrossRef]
- Hatzis, G.; Ziakas, P.; Kavantzas, N.; Triantafyllou, A.; Sigalas, P.; Andreadou, I.; Ioannidis, K.; Chatzis, S.; Filis, K.; Papalampros, A.; et al. Melatonin attenuates high fat diet-induced fatty liver disease in rats. World J. Hepatol. 2013, 5, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Lin, Y.J.; Yu, H.R.; Sheen, J.M.; Tain, Y.L.; Huang, L.T.; Tiao, M.M. Melatonin alleviates liver steatosis induced by prenatal dexamethasone exposure and postnatal high-fat diet. Exp. Ther. Med. 2018, 16, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Song, Y.L.; Xu, J.M.; Gan, H.Z. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J. Pineal Res. 2006, 41, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, Y.; Kan, S.; Hao, M.; Jiang, H.; Li, S.; Li, R.; Wang, Y.; Wang, D.; Liu, W. Melatonin inhibits tongue squamous cell carcinoma: Interplay of ER stress-induced apoptosis and autophagy with cell migration. Heliyon 2024, 10, e29291. [Google Scholar] [CrossRef]
- Fernández, A.; Ordóñez, R.; Reiter, R.J.; González-Gallego, J.; Mauriz, J.L. Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis. J. Pineal Res. 2015, 59, 292–307. [Google Scholar] [CrossRef]
- Colares, J.R.; Hartmann, R.M.; Schemitt, E.G.; Fonseca, S.R.B.; Brasil, M.S.; Picada, J.N.; Dias, A.S.; Bueno, A.F.; Marroni, C.A.; Marroni, N.P. Melatonin prevents oxidative stress, inflammatory activity, and DNA damage in cirrhotic rats. World J. Gastroenterol. 2022, 28, 348–364. [Google Scholar] [CrossRef]
- Bona, S.; Rodrigues, G.; Moreira, A.J.; Di Naso, F.C.; Dias, A.S.; Da Silveira, T.R.; Marroni, C.A.; Marroni, N.P. Antifibrogenic effect of melatonin in rats with experimental liver cirrhosis induced by carbon tetrachloride. JGH Open 2018, 2, 117–123. [Google Scholar] [CrossRef]
- Mortezaee, K. Human hepatocellular carcinoma: Protection by melatonin. J. Cell. Physiol. 2018, 233, 6486–6508. [Google Scholar] [CrossRef]
- Fernández-Palanca, P.; Méndez-Blanco, C.; Fondevila, F.; Tuñón, M.J.; Reiter, R.J.; Mauriz, J.L.; González-Gallego, J. Melatonin as an Antitumor Agent against Liver Cancer: An Updated Systematic Review. Antioxidants 2021, 10, 103. [Google Scholar] [CrossRef]
- Wang, H.; Wei, W.; Wang, N.P.; Gui, S.Y.; Wu, L.; Sun, W.Y.; Xu, S.Y. Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress. Life Sci. 2005, 77, 1902–1915. [Google Scholar] [CrossRef]
- Aranda, M.; Albendea, C.D.; Lostalé, F.; López-Pingarrón, L.; Fuentes-Broto, L.; Martínez-Ballarín, E.; Reiter, R.J.; Pérez-Castejón, M.C.; García, J.J. In vivo hepatic oxidative stress because of carbon tetrachloride toxicity: Protection by melatonin and pinoline. J. Pineal Res. 2010, 49, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Noyan, T.; Kömüroğlu, U.; Bayram, I.; Sekeroğlu, M.R. Comparison of the effects of melatonin and pentoxifylline on carbon tetrachloride-induced liver toxicity in mice. Cell. Biol. Toxicol. 2006, 22, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, E.; Angelotti, M.L.; Conte, C.; Anders, H.J.; Romagnani, P. Surviving Acute Organ Failure: Cell Polyploidization and Progenitor Proliferation. Trends Mol. Med. 2019, 25, 366–381. [Google Scholar] [CrossRef] [PubMed]
- Benítez-King, G.; Antón-Tay, F. Calmodulin mediates melatonin cytoskeletal effects. Experientia 1993, 49, 635–641. [Google Scholar] [CrossRef]
- Benítez-King, G.; Huerto-Delgadillo, L.; Antón-Tay, F. Binding of 3H-melatonin to calmodulin. Life Sci. 1993, 53, 201–207. [Google Scholar] [CrossRef]
- Jie, L.; Hong, R.T.; Zhang, Y.J.; Sha, L.L.; Chen, W.; Ren, X.F. Melatonin Alleviates Liver Fibrosis by Inhibiting Autophagy. Curr. Med. Sci. 2022, 42, 498–504. [Google Scholar] [CrossRef]
- Mortezaee, K.; Khanlarkhani, N. Melatonin application in targeting oxidative-induced liver injuries: A review. J. Cell. Physiol. 2018, 233, 4015–4032. [Google Scholar] [CrossRef] [PubMed]
Group of Animals | NAS Index | Proportion of Hepatocytes Containing Lipid Droplets, % | Necrosis Index | Proportion of Necrotic Hepatocytes, % | Proportion of Binuclear Hepatocytes, % |
---|---|---|---|---|---|
Control group (n = 40) | 0 ± 0 | 1.70 ± 0.01 | 0 ± 0 | 0.5 ± 0.04 | 7.04 ± 1.98 |
Group I (n = 40) | 1.89 ± 0.04 | 33.41 ± 3.22 *** | 1.0 ± 0.2 *** | 4.87 ± 0.57 *** | 9.97 ± 1.60 * |
Group II (n = 40) | 2.11 ± 0.07 ** ■ | 57.6 ± 6.90 *** ■■ | 2.1 ± 0.31 *** ■■ | 35.82 ± 4.66 *** ■■■ | 5.14 ± 1.44 * ■ |
Group of Animals | Cross-Sectional Area of Nuclei of Hepatocyte, µm2 | Cross-Sectional Area of Hepatocyte, µm2 | NCR |
---|---|---|---|
Control group, n = 40) | 41.72 ± 2.24 | 186.50 ± 28.51 | 0.22 ± 0.05 |
Group I (CCl4, n = 40) | 38.1 ± 3.25 * | 201.10 ± 8.50 * | 0.19 ± 0.04 * |
Group II (CCl4 + CC), n = 40) | 35.81 ± 3.05 *** ■ | 215.20 ± 17.18 * ■ | 0.16 ± 0.03 *** ■ |
Group of Animals | Total Protein, g/L | Albumin, g/L | ALT, U/L | AST, U/L | Glucose, mmol/L | Melatonin, pg/mL |
---|---|---|---|---|---|---|
Control group, (n = 40) | 69.71 ± 8.14 | 41.26 ± 6.54 | 68.35 ± 7.22 | 123.21 ± 14.51 | 7.82 ± 1.15 | 18.54 ± 1.21 |
Group I (CCl4, n = 40) | 50.11 ± 5.10 *** | 30.14 ± 5.22 * | 87.41 ± 8.22 ** | 156.81 ± 18.52 * | 8.91 ± 1.16 * | 14.22 ± 0.91 * |
Group II (CCl4 + CL), n = 40) | 41.29 ± 6.1 *** ■ | 20.15 ± 3.25 ** ■ | 121.11 ± 13.55 *** ■ | 183.71 ± 22.1 ** ■ | 8.22 ± 1.72 * | 4.51 ± 0.39 *** ■■■ |
Group of Animals | Cross-Sectional Area of Nuclei | Cross-Sectional Area of Hepatocytes | NCR | ||||
---|---|---|---|---|---|---|---|
Acrophase | Amplitude | Acrophase | Amplitude | Acrophase | Amplitude | ||
Control n = 40) | 12:18 | 9.45 | 10:26 | 18.14 | 11:04 | 0.06 | |
Group I (CCl4, n = 40) | 20:24 | 5.14 | 23:44 | 16.88 | No reliable CR | ||
Group II (CCl4 + CL), n = 40) | No reliable CR | No reliable CR | No reliable CR | ||||
Ki-67 | Per2 | Glucose | |||||
Acrophase | Amplitude | Acrophase | Amplitude | Acrophase | Amplitude | ||
Control, n = 40) | 6:48 | 0.17 | 3:48 | 7.54 | 13:14 | 1.52 | |
Group I (CCl4, n = 40) | 10:55 | 0.54 | 14:33 | 5.88 | 15:49 | 2.14 | |
Group II (CCl4 + CL), n = 40) | No reliable CR | No reliable CR | 14.39 | 5.11 | |||
AST | ALT | Total protein | |||||
Acrophase | Amplitude | Acrophase | Amplitude | Acrophase | Amplitude | ||
Control, n = 40) | 10:48 | 18.56 | 19:08 | 2.03 | 15:26 | 7.25 | |
Group I (CCl4, n = 40) | No reliable CR | No reliable CR | 16:14 | 6.89 | |||
Group II (CCl4 + CL), n = 40) | No reliable CR | No reliable CR | No reliable CR | ||||
Albumin | Melatonin | ||||||
Acrophase | Amplitude | Acrophase | Amplitude | ||||
Control, n = 40) | 14:39 | 8.66 | 1:27 | 14.18 | |||
Group I (CCl4, n = 40) | 11:06 | 9.24 | 2:09 | 16.22 | |||
Group II (CCl4 + CL), n = 40) | No reliable CR | No reliable CR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabeklis, S.A.; Kozlova, M.A.; Mikhaleva, L.M.; Dygai, A.M.; Vandysheva, R.A.; Anurkina, A.I.; Areshidze, D.A. Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury. Int. J. Mol. Sci. 2024, 25, 12476. https://doi.org/10.3390/ijms252212476
Grabeklis SA, Kozlova MA, Mikhaleva LM, Dygai AM, Vandysheva RA, Anurkina AI, Areshidze DA. Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury. International Journal of Molecular Sciences. 2024; 25(22):12476. https://doi.org/10.3390/ijms252212476
Chicago/Turabian StyleGrabeklis, Sevil A., Maria A. Kozlova, Lyudmila M. Mikhaleva, Alexander M. Dygai, Rositsa A. Vandysheva, Anna I. Anurkina, and David A. Areshidze. 2024. "Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury" International Journal of Molecular Sciences 25, no. 22: 12476. https://doi.org/10.3390/ijms252212476
APA StyleGrabeklis, S. A., Kozlova, M. A., Mikhaleva, L. M., Dygai, A. M., Vandysheva, R. A., Anurkina, A. I., & Areshidze, D. A. (2024). Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury. International Journal of Molecular Sciences, 25(22), 12476. https://doi.org/10.3390/ijms252212476