Continuous Use During Disuse: Mechanisms and Effects of Spontaneous Activity of Unloaded Postural Muscle
<p>Alterations in the levels of integrated rat soleus EMG activity before and during 2-week HS. Values are means ± SE. *—significantly different from Control (pre-suspension) level (<span class="html-italic">p</span> < 0.05). Modified from [<a href="#B8-ijms-25-12462" class="html-bibr">8</a>].</p> "> Figure 2
<p>Changes in rat soleus EMG activity and L5 afferent activity (V s<sup>–1</sup>) during 14-day HS. Data are expressed as mean ± SD. *—significant difference from the pre-suspension (CONT) values (<span class="html-italic">p</span> < 0.05). Modified from [<a href="#B9-ijms-25-12462" class="html-bibr">9</a>].</p> "> Figure 3
<p>Regulation of the content of intracellular chloride ions in mature neurons and its effect on the function of GABAA receptor. (<b>a</b>) In intact mature motoneurons, KCC2 activity is higher than NKCC1 activity, resulting in a gradual outflow of chloride ions from the cytoplasm and an increase in concentration of Cl<sup>−</sup> ions on the outer side of the membrane; (<b>b</b>) binding of GABA to its receptors on the membrane surface opens ion channels, resulting in an influx of Cl<sup>−</sup> ions into the motoneuron and subsequent membrane hyperpolarization; (<b>c</b>) in immature motoneurons and after spinal cord injury, higher levels of NKCC1 and lower levels of KCC2 lead to the accumulation of Cl<sup>−</sup> ions at the inner side of the membrane; (<b>d</b>) the opening of ion channels caused by binding of GABA to its receptors causes outflow of Cl<sup>−</sup> ions and membrane depolarization.</p> "> Figure 4
<p>Spinal cord injury may result in reduced expression of KCC2 in motoneuron membranes resulting in a more positive equilibrium potential for chloride ions, a switch in synaptic input from inhibitory to excitatory, motoneuron hyperactivity, and muscle spasticity. Modified from [<a href="#B16-ijms-25-12462" class="html-bibr">16</a>].</p> "> Figure 5
<p>Changes in rat soleus muscle EMG activity and KCC2 content in spinal motoneurons with prochlorperazine and CLP-290 administration during hindlimb suspension (HS). (<b>a</b>) Typical patterns of EMG activity of rat soleus before and during HS with and without prochlorperazine or CLP-290 administration; (<b>b</b>) KCC2 content in rat lumbar spinal cord after administration of prochlorperazine or CLP290; (<b>c</b>) integral EMG activity of rat soleus HS with and without administration of prochlorperazine and CLP-290. C—control, 1HS—7HS—days of hindlimb suspension, 7HS + Phpz—7-day HS with prochlorperazine administration, 7 HS + CLP-290—7-day HS with CLP290 administration, *—significant difference from control (<span class="html-italic">p</span> < 0.05). #—significant difference from HS + Phpz or HS + CLP-290 (<span class="html-italic">p</span> < 0.05). Adapted from [<a href="#B28-ijms-25-12462" class="html-bibr">28</a>,<a href="#B29-ijms-25-12462" class="html-bibr">29</a>].</p> "> Figure 6
<p>Effects of prochlorperazine and CLP-290 administration during HS on PGC1α expression and p70S6K phosphorylation in rat soleus muscle. (<b>a</b>) Changes in PGC1α mRNA expression in rat soleus muscle with prochlorperazine and CLP-290 administration during 7-day hindlimb suspension (HS); (<b>b</b>) Changes in p70S6K (Thr389) phosphorylation in rat soleus muscle with prochlorperazine and CLP-290 administration during 7-day hindlimb suspension. C—control, 7 HS—7 days of hindlimb suspension, 7 HS + Phpz—7-day HS with prochlorperazine administration, 7 HS + CLP-290—7-day HS with CLP290 administration, *—significant difference from control (<span class="html-italic">p</span> < 0.05), #—significant difference from 7 HS (<span class="html-italic">p</span> < 0.05). Adapted from [<a href="#B33-ijms-25-12462" class="html-bibr">33</a>,<a href="#B34-ijms-25-12462" class="html-bibr">34</a>].</p> ">
Abstract
:1. Introduction
2. Spontaneous Activity of the Postural Soleus Muscle
3. Mechanisms of Increased Neuromuscular Activity and Development of Delayed-Onset Spasticity with Spinal Cord Injury
4. Spinal Mechanisms of Spontaneous Muscle Activity and Its Effects on Soleus Muscle During Gravitational Unloading
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Hodgson, J.A.; Roy, R.R.; Higuchi, N.; Monti, R.J.; Zhong, H.; Grossman, E.; Edgerton, V.R. Does daily activity level determine muscle phenotype? J. Exp. Biol. 2005, 208, 3761–3770. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.A.; Polgar, J.; Weightman, D.; Appleton, D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J. Neurol. Sci. 1973, 18, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Delp, M.D.; Duan, C. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J. Appl. Physiol. 1996, 80, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Shenkman, B.S.; Mirzoev, T.M.; Kozlovskaya, I.B. Tonic activity and gravitational control of postural muscle. Aerosp. Environ. Med. 2020, 54, 58–72. [Google Scholar] [CrossRef]
- Yuganov, E.M.; Kasyan, I.I.; Asyamolov, B.F. Bioelectrical activity of skeletal muscle under condition of intermittent action of overloading and weightlessness. Izv. Akad. Nauk. SSSR. Ser. Biolog. 1963, 5, 746–754. [Google Scholar]
- Kawano, F.; Nomura, T.; Ishihara, A.; Nonaka, I.; Ohira, Y. Afferent input-associated reduction of muscle activity in microgravity environment. Neuroscience 2002, 114, 1133–1138. [Google Scholar] [CrossRef]
- Alford, E.K.; Roy, R.R.; Hodgson, J.A.; Edgerton, V.R. Electromyography of rat soleus, medial gastrocnemius, and tibialis anterior during hind limb suspension. Exp. Neurol. 1987, 96, 635–649. [Google Scholar] [CrossRef]
- Kawano, F.; Ishihara, A.; Stevens, J.L.; Wang, X.D.; Ohshima, S.; Horisaka, M.; Maeda, Y.; Nonaka, I.; Ohira, Y. Tension- and afferent input-associated responses of neuromuscular system of rats to hindlimb unloading and/or tenotomy. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2004, 287, R76–R86. [Google Scholar] [CrossRef]
- De-Doncker, L.; Kasri, M.; Picquet, F.; Falempin, M. Physiologically adaptive changes of the L5 afferent neurogram and of the rat soleus EMG activity during 14 days of hindlimb unloading and recovery. J. Exp. Biol. 2005, 208, 4585–4592. [Google Scholar] [CrossRef]
- Ohira, Y.; Yoshinaga, T.; Ohara, M.; Kawano, F.; Wang, X.D.; Higo, Y.; Terada, M.; Matsuoka, Y.; Roy, R.R.; Edgerton, V.R. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties. Cells Tissues Organs 2006, 182, 129–142. [Google Scholar] [CrossRef]
- Dupont, E.; Cieniewski-Bernard, C.; Bastide, B.; Stevens, L. Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Grigor’ev, A.I.; Kozlovskaia, I.B.; Shenkman, B.S. The role of support afferents in organization of the tonic muscle system. Ross. Fiziol. Zhurnal Im. I.M. Sechenova 2004, 90, 508–521. [Google Scholar]
- Kozlovskaya, I.; Dmitrieva, I.; Grigorieva, L.; Kirenskaya, A.V.; Kreidich, Y.V. Gravitational Mechanisms in the Motor System. Studies in Real and Simulated Weightlessness. In Stance and Motion: Facts and Concepts; Gurfinkel, V.S., Ioffe, M.E., Massion, J., Eds.; Plenum Press: New York, NY, USA, 1988; pp. 37–48. [Google Scholar]
- Bilchak, J.N.; Yeakle, K.; Caron, G.; Malloy, D.; Cote, M.P. Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury. Exp. Neurol. 2021, 338, 113605. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, K.M.; Haddad, F.; Pandorf, C.E.; Roy, R.R.; Edgerton, V.R. Alterations in muscle mass and contractile phenotype in response to unloading models: Role of transcriptional/pretranslational mechanisms. Front. Physiol. 2013, 4, 284. [Google Scholar] [CrossRef]
- Edgerton, V.R.; Roy, R.R. Spasticity: A switch from inhibition to excitation. Nat. Med. 2010, 16, 270–271. [Google Scholar] [CrossRef]
- Boulenguez, P.; Liabeuf, S.; Bos, R.; Bras, H.; Jean-Xavier, C.; Brocard, C.; Stil, A.; Darbon, P.; Cattaert, D.; Delpire, E.; et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat. Med. 2010, 16, 302–307. [Google Scholar] [CrossRef]
- Koumangoye, R.; Bastarache, L.; Delpire, E. NKCC1: Newly Found as a Human Disease-Causing Ion Transporter. Function 2021, 2, zqaa028. [Google Scholar] [CrossRef]
- Toda, T.; Ishida, K.; Kiyama, H.; Yamashita, T.; Lee, S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS ONE 2014, 9, e114328. [Google Scholar] [CrossRef]
- Coq, J.O.; Delcour, M.; Ogawa, Y.; Peyronnet, J.; Castets, F.; Turle-Lorenzo, N.; Montel, V.; Bodineau, L.; Cardot, P.; Brocard, C.; et al. Mild Intrauterine Hypoperfusion Leads to Lumbar and Cortical Hyperexcitability, Spasticity, and Muscle Dysfunctions in Rats: Implications for Prematurity. Front. Neurol. 2018, 9, 423. [Google Scholar] [CrossRef]
- Kerzonkuf, M.; Verneuil, J.; Brocard, C.; Dingu, N.; Trouplin, V.; Ramirez Franco, J.J.; Bartoli, M.; Brocard, F.; Bras, H. Knockdown of calpain1 in lumbar motoneurons reduces spasticity after spinal cord injury in adult rats. Mol. Ther. J. Am. Soc. Gene Ther. 2024, 32, 1096–1109. [Google Scholar] [CrossRef]
- Akhter, E.T.; Griffith, R.W.; English, A.W.; Alvarez, F.J. Removal of the Potassium Chloride Co-Transporter from the Somatodendritic Membrane of Axotomized Motoneurons Is Independent of BDNF/TrkB Signaling But Is Controlled by Neuromuscular Innervation. eNeuro 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Hugues, N.; Pin-Barre, C.; Brioche, T.; Pellegrino, C.; Berton, E.; Rivera, C.; Laurin, J. High-intensity training with short and long intervals regulate cortical neurotrophic factors, apoptosis markers and chloride homeostasis in rats with stroke. Physiol. Behav. 2023, 266, 114190. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, X.; Fang, L.; Ding, J.; Qi, L.; Wang, Q.; Dong, C.; Wang, S.; Wu, J.; Wang, T.; et al. Body Weight-Supported Treadmill Training Ameliorates Motoneuronal Hyperexcitability by Increasing GAD-65/67 and KCC2 Expression via TrkB Signaling in Rats with Incomplete Spinal Cord Injury. Neurochem. Res. 2022, 47, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.L. The Expanding Therapeutic Potential of Neuronal KCC2. Cells 2020, 9, 240. [Google Scholar] [CrossRef] [PubMed]
- Liabeuf, S.; Stuhl-Gourmand, L.; Gackiere, F.; Mancuso, R.; Sanchez Brualla, I.; Marino, P.; Brocard, F.; Vinay, L. Prochlorperazine Increases KCC2 Function and Reduces Spasticity after Spinal Cord Injury. J. Neurotrauma 2017, 34, 3397–3406. [Google Scholar] [CrossRef]
- Gagnon, M.; Bergeron, M.J.; Lavertu, G.; Castonguay, A.; Tripathy, S.; Bonin, R.P.; Perez-Sanchez, J.; Boudreau, D.; Wang, B.; Dumas, L.; et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 2013, 19, 1524–1528. [Google Scholar] [CrossRef]
- Kalashnikov, V.E.; Tyganov, S.A.; Turtikova, O.V.; Kalashnikova, E.P.; Glazova, M.V.; Mirzoev, T.M.; Shenkman, B.S. Prochlorperazine Withdraws the Delayed Onset Tonic Activity of Unloaded Rat Soleus Muscle: A Pilot Study. Life 2021, 11, 1161. [Google Scholar] [CrossRef]
- Kalashnikov, V.E.; Sergeeva, K.V.; Turtikova, O.V.; Tyganov, S.A.; Mirzoev, T.M.; Shenkman, B.S. Spontaneous Tonic Activity Revealed in Rat Soleus Muscle by CLP290, a Novel Spinal Cord Potassium-Chloride Cotransporter Activator, during Hindlimb Suspension. J. Evol. Biochem. Physiol. 2024, 60, 1660–1668. [Google Scholar] [CrossRef]
- Richelson, E.; Nelson, A. Antagonism by neuroleptics of neurotransmitter receptors of normal human brain In Vitro. Eur. J. Pharmacol. 1984, 103, 197–204. [Google Scholar] [CrossRef]
- Belkacemi, L.; Darmani, N.A. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol. Res. 2020, 161, 105124. [Google Scholar] [CrossRef]
- Sergeeva, K.V.; Sharlo, K.A.; Kalashnikov, V.E.; Turtikova, O.V.; Tyganov, S.A.; Shenkman, B.S. The Effect of Spontaneous Neuromuscular Activity on the Development of Atrophy of the Functionally Unloaded m. Soleus. Ross. Fiziol. Zhurnal Im. I.M. Sechenova 2023, 109, 1430–1442. [Google Scholar] [CrossRef]
- Sergeeva, X.V.; Sharlo, K.A.; Tyganov, S.A.; Kalashnikov, V.E.; Shenkman, B.S. Molecular Signaling Effects behind the Spontaneous Soleus Muscle Activity Induced by 7-Day Rat Hindlimb Suspension. Int. J. Mol. Sci. 2024, 25. [Google Scholar] [CrossRef] [PubMed]
- Sharlo, K.A.; Lvova, I.D.; Tyganov, S.A.; Sergeeva, K.V.; Kalashnikov, V.Y.; Kalashnikova, E.P.; Mirzoev, T.M.; Kalamkarov, G.R.; Shevchenko, T.F.; Shenkman, B.S. A Prochlorperazine-Induced Decrease in Autonomous Muscle Activity during Hindlimb Unloading Is Accompanied by Preserved Slow Myosin mRNA Expression. Curr. Issues Mol. Biol. 2023, 45, 5613–5630. [Google Scholar] [CrossRef] [PubMed]
- Memme, J.M.; Erlich, A.T.; Phukan, G.; Hood, D.A. Exercise and mitochondrial health. J. Physiol. 2021, 599, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Mirzoev, T.; Tyganov, S.; Vilchinskaya, N.; Lomonosova, Y.; Shenkman, B. Key Markers of mTORC1-Dependent and mTORC1-Independent Signaling Pathways Regulating Protein Synthesis in Rat Soleus Muscle During Early Stages of Hindlimb Unloading. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2016, 39, 1011–1020. [Google Scholar] [CrossRef]
- Chibalin, A.V.; Benziane, B.; Zakyrjanova, G.F.; Kravtsova, V.V.; Krivoi, I.I. Early endplate remodeling and skeletal muscle signaling events following rat hindlimb suspension. J. Cell. Physiol. 2018, 233, 6329–6336. [Google Scholar] [CrossRef]
- You, J.S.; Anderson, G.B.; Dooley, M.S.; Hornberger, T.A. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Dis. Models Mech. 2015, 8, 1059–1069. [Google Scholar] [CrossRef]
- Tang, H.; Inoki, K.; Lee, M.; Wright, E.; Khuong, A.; Khuong, A.; Sugiarto, S.; Garner, M.; Paik, J.; DePinho, R.A.; et al. mTORC1 promotes denervation-induced muscle atrophy through a mechanism involving the activation of FoxO and E3 ubiquitin ligases. Sci. Signal. 2014, 7, ra18. [Google Scholar] [CrossRef]
- Shenkman, B.S. From activity to inactivity, and back to activity again. Signaling processes in the postural muscle during the transition period. Aerosp. Environ. Med. 2023, 57, 103–118. [Google Scholar] [CrossRef]
- Rennie, M.J. Why muscle stops building when it’s working. J. Physiol. 2005, 569, 3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenkman, B.S.; Kalashnikov, V.E.; Sharlo, K.A.; Turtikova, O.V.; Bokov, R.O.; Mirzoev, T.M. Continuous Use During Disuse: Mechanisms and Effects of Spontaneous Activity of Unloaded Postural Muscle. Int. J. Mol. Sci. 2024, 25, 12462. https://doi.org/10.3390/ijms252212462
Shenkman BS, Kalashnikov VE, Sharlo KA, Turtikova OV, Bokov RO, Mirzoev TM. Continuous Use During Disuse: Mechanisms and Effects of Spontaneous Activity of Unloaded Postural Muscle. International Journal of Molecular Sciences. 2024; 25(22):12462. https://doi.org/10.3390/ijms252212462
Chicago/Turabian StyleShenkman, Boris S., Vitaliy E. Kalashnikov, Kristina A. Sharlo, Olga V. Turtikova, Roman O. Bokov, and Timur M. Mirzoev. 2024. "Continuous Use During Disuse: Mechanisms and Effects of Spontaneous Activity of Unloaded Postural Muscle" International Journal of Molecular Sciences 25, no. 22: 12462. https://doi.org/10.3390/ijms252212462
APA StyleShenkman, B. S., Kalashnikov, V. E., Sharlo, K. A., Turtikova, O. V., Bokov, R. O., & Mirzoev, T. M. (2024). Continuous Use During Disuse: Mechanisms and Effects of Spontaneous Activity of Unloaded Postural Muscle. International Journal of Molecular Sciences, 25(22), 12462. https://doi.org/10.3390/ijms252212462