Single Intranasal Administration of Ucn3 Affects the Development of PTSD Symptoms in an Animal Model
<p>The effects of intranasal CRHR2 agonist administration on anxiety-like behavior. The results of the elevated plus maze (EPM) behavioral measurements in the open arm (OA; (<b>A</b>–<b>D</b>)) and in the closed arm (CA; (<b>E</b>–<b>H</b>)). The data are presented as averages of the experimental group (mean ± SEM, <span class="html-italic">n</span> = 14 animals per group).</p> "> Figure 2
<p>The effects of intranasal CRHR2 agonist administration on anxiety-like behavior. The results of the open field (OF) behavioral measurements in the peripheral zone (PZ; (<b>A</b>–<b>C</b>)) and in the central zone (CZ; (<b>D</b>–<b>F</b>)). The data are presented as averages of the experimental group (mean ± SEM, <span class="html-italic">n</span> = 14 animals per group). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>The effects of the intranasal administration of CRHR2 agonists on corticosterone (CORT) plasmatic levels. The data are presented as averages of the experimental group (mean ± SEM, <span class="html-italic">n</span> = 9–10 animals per group).</p> "> Figure 4
<p>Changes in the gene expressions of <span class="html-italic">CRH</span> (<b>A</b>,<b>D</b>,<b>G</b>), <span class="html-italic">CRHR1</span> (<b>B</b>,<b>E</b>,<b>H</b>), and <span class="html-italic">CRHR2</span> (<b>C</b>,<b>F</b>,<b>I</b>) in selected brain regions involved in stress response mechanisms (BNST, Amy, and PVN). The data are presented as the fold changes relative to the control, taken as 1 (mean ± SEM, <span class="html-italic">n</span> = 8–10 animals per group). <span class="html-italic">t</span>-test: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 vs. control, ## <span class="html-italic">p</span> < 0.01 SPS vs. SPS + Ucn2.</p> "> Figure 5
<p>Changes in the gene expressions of the glucocorticoid receptor (<span class="html-italic">GR</span>; (<b>A</b>–<b>C</b>)) and <span class="html-italic">FKBP5</span> (<b>D</b>–<b>F</b>) in selected brain regions involved in stress response mechanisms (BNST, Amy, and PVN). The data are presented as fold changes relative to the control, taken as 1 (mean ± SEM, <span class="html-italic">n</span> = 8–10 animals per group). <span class="html-italic">t</span>-test: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 vs. control, # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01, ### <span class="html-italic">p</span> < 0.001 vs. SPS + Ucn3.</p> "> Figure 6
<p>Representative images of immunofluorescence staining with anti-CRH in the PVN. 3V—3rd ventricle. White arrows indicate CRH-immunopositive neurons. Magnification ×200.</p> "> Figure 7
<p>Representative images of immunofluorescence staining with anti-pCREB in the brain regions involved in stress response mechanisms (PVN, Amy, and BNST). The table shows the number of pCREB-immunopositive cells in the ROI (region of interest). 3V—3rd ventricle, ac—anterior commissure, LV—lateral ventricle, opt—optic tract. <span class="html-italic">t</span>-test: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 vs. control.</p> "> Figure 8
<p>A schematic illustration of the experimental design. The animals were randomly assigned to the four experimental groups which were as follows: control– non-stressed group with intranasal (IN) vehicle; SPS (single prolonged stress)—stressed group with IN vehicle; SPS + Ucn2—stressed group with IN Ucn2; SPS + Ucn3—stressed group with IN Ucn3. After SPS, the animals were left undisturbed in their cages for seven days to develop PTSD symptoms. After 7 days in the habituation period, the animals were tested in the elevated plus maze (EPM), and 48 h after the EPM, in the open field (OF). The animals were sacrificed 72 h after the OF test.</p> "> Figure 9
<p>Areas marked with a white circle represent the region of interest (ROI) for counting the pCREB-immunopositive cells. Magnification ×200.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effects of Intranasal CRHR2 Agonist Administration on the Development of Behavioral PTSD Manifestation
2.2. Effects of Intranasal CRHR2 Agonist Administration on Plasma Corticosterone Levels in SPS Animals
2.3. Changes in Gene Expressions in Brain Areas Responsible for Stress Recovery and Anxiety Handling After Intranasal CRHR2 Agonist Administration
2.4. Changes in CRH, cAMP Response Element-Binding Protein (CREB) and Phosphorylated CREB (pCREB) Proteins in Brain Areas Responsible for Stress Recovery and Anxiety Handling After Intranasal CRHR2 Agonist Administration
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Design
4.3. Behavioral Tests
4.3.1. Elevated Plus Maze
4.3.2. Open Field Test
4.4. Tissue Collection and Preparation
Microdissection of the Brain Areas
4.5. RNA Isolation and Real-Time PCR
4.6. Measurement of Plasma Corticosterone
4.7. Immunohistochemistry
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gasparyan, A.; Navarro, D.; Navarrete, F.; Manzanares, J. Pharmacological strategies for post-traumatic stress disorder (PTSD): From animal to clinical studies. Neuropharmacology 2022, 218, 109211. [Google Scholar] [CrossRef] [PubMed]
- Singewald, N.; Sartori, S.B.; Reif, A.; Holmes, A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023, 226, 109418. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, J. From recent advances in underlying neurocircuitry of fear and anxiety to promising pharmacotherapies for PTSD: The saga of heart, sex and the developing brain. Neuropharmacology 2023, 232, 109529. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L.; Vale, W.W. CRF and CRF receptors: Role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 525–557. [Google Scholar] [CrossRef]
- Henckens, M.J.; Deussing, J.M.; Chen, A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat. Rev. Neurosci. 2016, 17, 636–651. [Google Scholar] [CrossRef]
- Deussing, J.M.; Chen, A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol. Rev. 2018, 98, 2225–2286. [Google Scholar] [CrossRef]
- Leistner, C.; Menke, A. Hypothalamic-pituitary-adrenal axis and stress. Handb. Clin. Neurol. 2020, 175, 55–64. [Google Scholar]
- Fekete, E.M.; Zorrilla, E.P. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: Ancient CRF paralogs. Front. Neuroendocrinol. 2007, 28, 1–27. [Google Scholar] [CrossRef]
- Bremner, J.D.; Licinio, J.; Darnell, A.; Krystal, J.H.; Owens, M.J.; Southwick, S.M.; Nemeroff, C.B.; Charney, D.S. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry 1997, 154, 624–629. [Google Scholar]
- Yehuda, R.; Golier, J.A.; Halligan, S.L.; Meaney, M.; Bierer, L.M. The ACTH response to dexamethasone in PTSD. Am. J. Psychiatry 2004, 161, 1397–1403. [Google Scholar] [CrossRef]
- Yehuda, R.; Halligan, S.L.; Golier, J.A.; Grossman, R.; Bierer, L.M. Effects of trauma exposure on the cortisol response to dexamethasone administration in PTSD and major depressive disorder. Psychoneuroendocrinology 2004, 29, 389–404. [Google Scholar] [CrossRef]
- Janssen, D.; Kozicz, T. Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health. Front. Endocrinol. 2013, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Spierling, S.R.; Zorrilla, E.P. Don’t stress about CRF: Assessing the translational failures of CRF(1) antagonists. Psychopharmacology 2017, 234, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.B.; Nemeroff, C.B. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol. Psychiatry 2010, 15, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Elharrar, E.; Warhaftig, G.; Issler, O.; Sztainberg, Y.; Dikshtein, Y.; Zahut, R.; Redlus, L.; Chen, A.; Yadid, G. Overexpression of corticotropin-releasing factor receptor type 2 in the bed nucleus of stria terminalis improves posttraumatic stress disorder-like symptoms in a model of incubation of fear. Biol. Psychiatry 2013, 74, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Lebow, M.; Neufeld-Cohen, A.; Kuperman, Y.; Tsoory, M.; Gil, S.; Chen, A. Susceptibility to PTSD-like behavior is mediated by corticotropin-releasing factor receptor type 2 levels in the bed nucleus of the stria terminalis. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 6906–6916. [Google Scholar] [CrossRef]
- Wolf, E.J.; Mitchell, K.S.; Logue, M.W.; Baldwin, C.T.; Reardon, A.F.; Humphries, D.E.; Miller, M.W. Corticotropin releasing hormone receptor 2 (CRHR-2) gene is associated with decreased risk and severity of posttraumatic stress disorder in women. Depress. Anxiety 2013, 30, 1161–1169. [Google Scholar] [CrossRef]
- Henckens, M.J.A.G.; Printz, Y.; Shamgar, U.; Dine, J.; Lebow, M.; Drori, Y.; Kuehne, C.; Kolarz, A.; Eder, M.; Deussing, J.M.; et al. CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery. Mol. Psychiatry 2017, 22, 1691–1700. [Google Scholar] [CrossRef]
- Bagosi, Z.; Csabafi, K.; Karasz, G.; Jaszberenyi, M.; Foldesi, I.; Siska, A.; Szabo, G.; Telegdy, G. The effects of the urocortins on the hypothalamic-pituitary-adrenal axis—Similarities and discordancies between rats and mice. Peptides 2019, 112, 1–13. [Google Scholar] [CrossRef]
- Bagosi, Z.; Csabafi, K.; Palotai, M.; Jaszberenyi, M.; Foldesi, I.; Gardi, J.; Szabo, G.; Telegdy, G. The interaction of Urocortin II and Urocortin III with amygdalar and hypothalamic cotricotropin-releasing factor (CRF)—reflections on the regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Neuropeptides 2013, 47, 333–338. [Google Scholar] [CrossRef]
- Bagosi, Z.; Palotai, M.; Simon, B.; Bokor, P.; Buzas, A.; Balango, B.; Pinter, D.; Jaszberenyi, M.; Csabafi, K.; Szabo, G. Selective CRF2 receptor agonists ameliorate the anxiety- and depression-like state developed during chronic nicotine treatment and consequent acute withdrawal in mice. Brain Res. 2016, 1652, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.B. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 2009, 34 (Suppl. S1), S186–S195. [Google Scholar] [CrossRef] [PubMed]
- Zannas, A.S.; Wiechmann, T.; Gassen, N.C.; Binder, E.B. Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016, 41, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hatalski, C.G.; Brunson, K.L.; Baram, T.Z. Rapid phosphorylation of the CRE binding protein precedes stress-induced activation of the corticotropin releasing hormone gene in medial parvocellular hypothalamic neurons of the immature rat. Mol. Brain Res. 2001, 96, 39–49. [Google Scholar] [CrossRef]
- Aguilera, G.; Liu, Y. The molecular physiology of CRH neurons. Front. Neuroendocrinol. 2012, 33, 67–84. [Google Scholar] [CrossRef]
- Legradi, G.; Holzer, D.; Kapcala, L.P.; Lechan, R.M. Glucocorticoids inhibit stress-induced phosphorylation of CREB in corticotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 1997, 66, 86–97. [Google Scholar] [CrossRef]
- Nwokafor, C.; Serova, L.I.; Sabban, E.L. Preclinical findings on the potential of intranasal neuropeptide Y for treating hyperarousal features of PTSD. Ann. N. Y. Acad. Sci. 2019, 1455, 149–159. [Google Scholar] [CrossRef]
- Valdez, G.R.; Zorrilla, E.P.; Rivier, J.; Vale, W.W.; Koob, G.F. Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res. 2003, 980, 206–212. [Google Scholar] [CrossRef]
- Zhao, Y.; Valdez, G.R.; Fekete, E.M.; Rivier, J.E.; Vale, W.W.; Rice, K.C.; Weiss, F.; Zorrilla, E.P. Subtype-selective corticotropin-releasing factor receptor agonists exert contrasting, but not opposite, effects on anxiety-related behavior in rats. J. Pharmacol. Exp. Ther. 2007, 323, 846–854. [Google Scholar] [CrossRef]
- Telegdy, G.; Adamik, A. Involvement of transmitters in the anxiolytic action of urocortin 3 in mice. Behav. Brain Res. 2013, 252, 88–91. [Google Scholar] [CrossRef]
- Tanaka, M.; Telegdy, G. Antidepressant-like effects of the CRF family peptides, urocortin 1, urocortin 2 and urocortin 3 in a modified forced swimming test in mice. Brain Res. Bull. 2008, 75, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.; Vale, W.; Markou, A. The effect of lateral septum corticotropin-releasing factor receptor 2 activation on anxiety is modulated by stress. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 9142–9152. [Google Scholar] [CrossRef] [PubMed]
- Skorzewska, A.; Bidzinski, A.; Lehner, M.; Turzynska, D.; Sobolewska, A.; Wislowska-Stanek, A.; Maciejak, P.; Szyndler, J.; Plaznik, A. The localization of brain sites of anxiogenic-like effects of urocortin-2. Neuropeptides 2011, 45, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Souza, T.M.O.; Pereira, B.A.; Ribeiro, D.A.; Cespedes, I.C.; Bittencourt, J.C.; Viana, M.B. The blockage of ventromedial hypothalamus CRF type 2 receptors impairs escape responses in the elevated T-maze. Behav. Brain Res. 2017, 329, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Chudoba, R.; Dabrowska, J. Distinct populations of corticotropin-releasing factor (CRF) neurons mediate divergent yet complementary defensive behaviors in response to a threat. Neuropharmacology 2023, 228, 109461. [Google Scholar] [CrossRef]
- Serova, L.I.; Nwokafor, C.; Van Bockstaele, E.J.; Reyes, B.A.S.; Lin, X.; Sabban, E.L. Single prolonged stress PTSD model triggers progressive severity of anxiety, altered gene expression in locus coeruleus and hypothalamus and effected sensitivity to NPY. Eur. Neuropsychopharmacol. 2019, 29, 482–492. [Google Scholar] [CrossRef]
- Laukova, M.; Alaluf, L.G.; Serova, L.I.; Arango, V.; Sabban, E.L. Early intervention with intranasal NPY prevents single prolonged stress-triggered impairments in hypothalamus and ventral hippocampus in male rats. Endocrinology 2014, 155, 3920–3933. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, C.; Wang, Y.; Guo, C.; Lu, P.; Mou, F.; Shao, S. Electroacupuncture alleviates anxiety and modulates amygdala CRH/CRHR1 signaling in single prolonged stress mice. Acupunct. Med. J. Br. Med. Acupunct. Soc. 2022, 40, 369–378. [Google Scholar] [CrossRef]
- Sztainberg, Y.; Kuperman, Y.; Tsoory, M.; Lebow, M.; Chen, A. The anxiolytic effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Mol. Psychiatry 2010, 15, 905–917. [Google Scholar] [CrossRef]
- Gehlert, D.R.; Shekhar, A.; Morin, S.M.; Hipskind, P.A.; Zink, C.; Gackenheimer, S.L.; Shaw, J.; Fitz, S.D.; Sajdyk, T.J. Stress and central Urocortin increase anxiety-like behavior in the social interaction test via the CRF1 receptor. Eur. J. Pharmacol. 2005, 509, 145–153. [Google Scholar] [CrossRef]
- Sahuque, L.L.; Kullberg, E.F.; McGeehan, A.J.; Kinder, J.R.; Hicks, M.P.; Blanton, M.G.; Janak, P.H.; Olive, M.F. Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: Role of CRF receptor subtypes. Psychopharmacology 2006, 186, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Lin, C.C.; Tzeng, N.S.; Tung, C.S.; Liu, Y.P. Effects of oxytocin on prosocial behavior and the associated profiles of oxytocinergic and corticotropin-releasing hormone receptors in a rodent model of posttraumatic stress disorder. J. Biomed. Sci. 2019, 26, 26. [Google Scholar] [CrossRef] [PubMed]
- McCullough, K.M.; Chatzinakos, C.; Hartmann, J.; Missig, G.; Neve, R.L.; Fenster, R.J.; Carlezon, W.A., Jr.; Daskalakis, N.P.; Ressler, K.J. Genome-wide translational profiling of amygdala Crh-expressing neurons reveals role for CREB in fear extinction learning. Nat. Commun. 2020, 11, 5180. [Google Scholar] [CrossRef] [PubMed]
- Adamec, R.; Hebert, M.; Blundell, J. Long lasting effects of predator stress on pCREB expression in brain regions involved in fearful and anxious behavior. Behav. Brain Res. 2011, 221, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.G.; West, S.A.; Nicholson, W.E.; Ekhator, N.N.; Kasckow, J.W.; Hill, K.K.; Bruce, A.B.; Orth, D.N.; Geracioti, T.D., Jr. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 1999, 156, 585–588. [Google Scholar] [CrossRef]
- Sautter, F.J.; Bissette, G.; Wiley, J.; Manguno-Mire, G.; Schoenbachler, B.; Myers, L.; Johnson, J.E.; Cerbone, A.; Malaspina, D. Corticotropin-releasing factor in posttraumatic stress disorder (PTSD) with secondary psychotic symptoms, nonpsychotic PTSD, and healthy control subjects. Biol. Psychiatry 2003, 54, 1382–1388. [Google Scholar] [CrossRef]
- Yehuda, R. Status of glucocorticoid alterations in post-traumatic stress disorder. Ann. N. Y. Acad. Sci. 2009, 1179, 56–69. [Google Scholar] [CrossRef]
- de Kloet, C.S.; Vermetten, E.; Geuze, E.; Kavelaars, A.; Heijnen, C.J.; Westenberg, H.G. Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review. J. Psychiatr. Res. 2006, 40, 550–567. [Google Scholar] [CrossRef]
- Lin, C.C.; Cheng, P.Y.; Hsiao, M.; Liu, Y.P. Effects of RU486 in Treatment of Traumatic Stress-Induced Glucocorticoid Dysregulation and Fear-Related Abnormalities: Early versus Late Intervention. Int. J. Mol. Sci. 2022, 23, 5494. [Google Scholar] [CrossRef]
- Jamieson, P.M.; Li, C.; Kukura, C.; Vaughan, J.; Vale, W. Urocortin 3 modulates the neuroendocrine stress response and is regulated in rat amygdala and hypothalamus by stress and glucocorticoids. Endocrinology 2006, 147, 4578–4588. [Google Scholar] [CrossRef]
- Pariante, C.M.; Miller, A.H. Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biol. Psychiatry 2001, 49, 391–404. [Google Scholar] [CrossRef]
- Wochnik, G.M.; Ruegg, J.; Abel, G.A.; Schmidt, U.; Holsboer, F.; Rein, T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J. Biol. Chem. 2005, 280, 4609–4616. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Chen, X.; da Silva, M.S.; Lingeman, J.; Han, F.; Meijer, O.C. Effects of RU486 treatment after single prolonged stress depend on the post-stress interval. Mol. Cell Neurosci. 2020, 108, 103541. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, T.; Klengel, T.; Armario, A.; Jovanovic, T.; Norrholm, S.D.; Ressler, K.J.; Andero, R. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala. Neuropsychopharmacology 2016, 41, 832–846. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Gonik, M.; Klengel, T.; Rex-Haffner, M.; Menke, A.; Rubel, J.; Mercer, K.B.; Putz, B.; Bradley, B.; Holsboer, F.; et al. Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: Evidence from endocrine and gene expression studies. Arch. Gen. Psychiatry 2011, 68, 901–910. [Google Scholar] [CrossRef]
- Liberzon, I.; Krstov, M.; Young, E.A. Stress-restress: Effects on ACTH and fast feedback. Psychoneuroendocrinology 1997, 22, 443–453. [Google Scholar] [CrossRef]
- Palkovits, M.; Brownstein, M.J. Maps and Guide to Microdissection of the Rat Brain; Elsevier Science Publishing Co.: New York, NY, USA, 1988; p. 223. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tillinger, A.; Zvozilová, A.; Mach, M.; Horváthová, Ľ.; Dziewiczová, L.; Osacká, J. Single Intranasal Administration of Ucn3 Affects the Development of PTSD Symptoms in an Animal Model. Int. J. Mol. Sci. 2024, 25, 11908. https://doi.org/10.3390/ijms252211908
Tillinger A, Zvozilová A, Mach M, Horváthová Ľ, Dziewiczová L, Osacká J. Single Intranasal Administration of Ucn3 Affects the Development of PTSD Symptoms in an Animal Model. International Journal of Molecular Sciences. 2024; 25(22):11908. https://doi.org/10.3390/ijms252211908
Chicago/Turabian StyleTillinger, Andrej, Alexandra Zvozilová, Mojmír Mach, Ľubica Horváthová, Lila Dziewiczová, and Jana Osacká. 2024. "Single Intranasal Administration of Ucn3 Affects the Development of PTSD Symptoms in an Animal Model" International Journal of Molecular Sciences 25, no. 22: 11908. https://doi.org/10.3390/ijms252211908
APA StyleTillinger, A., Zvozilová, A., Mach, M., Horváthová, Ľ., Dziewiczová, L., & Osacká, J. (2024). Single Intranasal Administration of Ucn3 Affects the Development of PTSD Symptoms in an Animal Model. International Journal of Molecular Sciences, 25(22), 11908. https://doi.org/10.3390/ijms252211908