In Vitro Purging of Acute Lymphoblastic Leukemia (B-ALL) Cells with the Use of PTL, DMAPT, or PU-H71
<p>PTL, DMAPT, and PU-H71 reduced viability of B-ALL cell lines. Reh and RS4;11 leukemic cell lines were cultured for 48 h at different concentrations of PTL DMAPT and PU-H71. The results in (<b>a</b>) correspond to the viability of each cell line, and the table in (<b>b</b>) represents the IC50. K562 and HL60 cell lines were used as a positive control. All experiments were performed three times in triplicate. * This concentration was calculated due to its low effect at the analyzed concentrations.</p> "> Figure 2
<p>Primary B-ALL samples were highly heterogeneous. Mononuclear cells from primary ALL pediatric patients were obtained and stained by flow cytometry analysis. (<b>a</b>) shows a representative dot plot from different populations associated with CD19 and CD45 expression, and leukemic blast population (CD19<sup>+</sup>CD45<sup>−/med</sup>) is indicated within the square. Also, a representative dot plot with the presence of hematopoietic compartment [stem cells (HSC; CD34<sup>+</sup>CD38<sup>−</sup>) hematopoietic progenitor cells (HPC; CD34<sup>+</sup>CD38<sup>+</sup>), hematopoietic precursor cells (Hprec; CD34<sup>−</sup>CD38<sup>+</sup>) cells, and mature cells MC; CD34<sup>−</sup>CD38<sup>−</sup>)] contained in the leukemic blast is shown. The average percentage of each population in all analyzed samples (n = 15 by duplicate by each primary sample) is included in (<b>b</b>).</p> "> Figure 3
<p>Primary B-ALL samples were surrounded by an inflammatory microenvironment. Cytokine and chemokine concentration (pg/mL) in B-ALL bone marrow plasma was evaluated by LEGENDplex<sup>TM</sup> immunoassay at diagnosis. The data are expressed as mean ± SEM of all analyzed samples (n = 13 by duplicate by each primary sample at diagnosis and 1 sample at relapse). The maximum value of each molecule is indicated at the bottom of the heat map.</p> "> Figure 4
<p>PTL, DMAPT, and PU-H71 induced apoptosis cell death in primary B-ALL cells. MNC from B-ALL samples were cultured in the presence or absence of 5 µM of PTL, DMAPT, or PU-H71 for 48 h, and the apoptosis index was analyzed by flow cytometry with DAPI and Annexin V stain. (<b>a</b>) shows a representative dot plot with the level of apoptosis before and after culture in the presence or absence of each treatment. The average of early (Annexin V<sup>+</sup>DAPI<sup>−</sup>) or late apoptosis (Annexin V<sup>+</sup>DAPI<sup>+</sup>) (<b>b</b>) as well as viable cells (<b>c</b>) in all primary B-ALL samples analyzed (n = 15, by duplicate by each primary sample) is shown. Apoptosis index was determined by dividing the cell number of dead cells in PTL-, DMAPT-, or PU-H71-treated cells by the frequency of cell number detected in the untreated group (considered as 1 and indicated with a horizontal line). A similar strategy was used to determine the viable cell index. The significance between apoptosis index in UT and treated cells was determined by the Mann–Whitney test (* <span class="html-italic">p</span> < 0.03; ** <span class="html-italic">p</span> < 0.0038, *** <span class="html-italic">p</span> < 0.0009, **** <span class="html-italic">p</span> < 0.0001, ns means not significant).</p> "> Figure 5
<p>PTL DMAPT and PU-H71 eliminated blast, progenitor, and precursor cells from B-ALL. The viable remaining population before and after culture with 5 µM of PTL, DMAPT, or PU-H71 for 48 h was analyzed according to CD19, CD45, CD34, and CD38 expression. (<b>a</b>) shows a representative dot plot of the blast (CD19<sup>+</sup>CD45<sup>−/med</sup>) population as well as the stem (CD34<sup>+</sup>CD38<sup>−</sup>), progenitor (CD34<sup>+</sup>CD38<sup>+</sup>), or precursor (CD34<sup>−</sup>CD38<sup>+</sup>) content within this. (<b>b</b>) shows the average (n = 15, by duplicate by each primary sample) of viable cells in progenitor or precursor fraction after each treatment. Viable cell index was determined by dividing the cell number of viable cells in PTL-, DMAPT-, or PU-H71-treated cells by the cell number of viable cells detected in the untreated group (considered as 1 and indicated with a horizontal line). The significance between the apoptosis index in UT and treated cells was determined by the Mann–Whitney test (* <span class="html-italic">p</span> < 0.03; *** <span class="html-italic">p</span> < 0.0002, **** <span class="html-italic">p</span> < 0.0001, ns means not significant).</p> "> Figure 6
<p>PTL, DMAPT, and PU-H71 reduced cell viability in enriched CD34<sup>+</sup>lin<sup>−</sup> from B-ALL. CD34<sup>+</sup>lin<sup>−</sup> cells were enriched by immunomagnetic selection and cultured in the presence or absence of 5 µM of PTL, DMAPT, or PU-H71 for 48 h, and viable cells were analyzed. (<b>a</b>) A representative photograph and dot plot of alive cells after each condition culture and their immunophenotype (blast CD19<sup>+</sup>CD45<sup>−/med</sup>, progenitor CD34<sup>+</sup>CD38<sup>+</sup>, or precursor CD34<sup>−</sup>CD38<sup>+</sup>) are shown. (<b>b</b>) The percentage of viable cells in CD34<sup>+</sup>lin<sup>−</sup> enriched cells (n = 3, by duplicate by each primary sample) after each treatment is shown. Percentage was determined by considering 100% as the number of viable cells in untreated culture (indicated with a horizontal line) by the cell number obtained after PTL, DMAPT, or PU-H71 treatment. The significance between viable index in untreated and treated cells was determined by Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>PTL, DMAPT, and PU-H71 had a minimal effect on the viability of normal hematopoietic cells. Enriched CD34<sup>+</sup>lin<sup>−</sup> from mobilized peripheral blood samples was cultured in the presence or absence of 5 µM of PTL, DMAPT, or PU-H71 for 48 h, and the presence of viable hematopoietic stem cells (CD34<sup>+</sup>CD38<sup>−</sup>), hematopoietic progenitor cells (CD34<sup>+</sup>CD38<sup>+</sup>), hematopoietic precursor cells (CD34<sup>−</sup>CD38<sup>+</sup>), and mature cells (CD34<sup>−</sup>CD38<sup>−</sup>) was analyzed by flow cytometry. (<b>a</b>) A representative photograph and dot plot of each culture and hematopoietic population are shown. The percentage of viable cells in total CD34<sup>+</sup>lin<sup>−</sup> enriched cells (n = 3, by duplicate by each primary sample) after each treatment is shown (<b>b</b>). The index of viable cells in CD34<sup>+</sup>lin<sup>−</sup> enriched cells after each treatment is shown. Index was determined by the cell number of viable cells in PTL-, DMAPT-, or PU-H71-treated cells by the cell number of viable cells detected in untreated culture (indicated with horizontal line). The significance between viable index in untreated and treated cells was determined by Student’s <span class="html-italic">t</span>-test test (** <span class="html-italic">p</span> < 0.003, **** <span class="html-italic">p</span> < 0.0001, ns means not significant).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effect of PLT, DMAPT, and PU-H71 in ALL Cell Lines
2.2. Primary B-ALL Cell Characterization
2.3. Leukemic Cell Elimination
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Primary Samples
4.2. Cell Enrichment
4.3. Compounds and Antibodies
4.4. Cultured in the Presence of PTL, DMAPT, and PU-H71
4.5. Cell Viability and Colony-Forming Cell Content
4.6. Cell Death
4.7. Secretion of Soluble Components
4.8. Data Analysis and Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017, 7, e577. [Google Scholar] [CrossRef] [PubMed]
- Diamanti, P.; Cox, C.V.; Moppett, J.P.; Blair, A. Parthenolide eliminates leukemia-initiating cell populations and improves survival in xenografts of childhood acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2013, 121, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Yoshida, S.; Saito, Y.; Doi, T.; Nagatoshi, Y.; Fukata, M.; Saito, N.; Yang, S.M.; Iwamoto, C.; Okamura, J.; et al. CD34+ CD38+ CD19+ as well as CD34+ CD38− CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia 2008, 22, 1207–1213. [Google Scholar] [CrossRef]
- Lee, A.Q.; Konishi, H.; Duong, C.; Yoshida, S.; Davis, R.R.; Van Dyke, J.E.; Ijiri, M.; McLaughlin, B.; Kim, K.; Li, Y.; et al. A distinct subpopulation of leukemia initiating cells in acute precursor B lymphoblastic leukemia: Quiescent phenotype and unique transcriptomic profile. Front. Oncol. 2022, 12, 972323. [Google Scholar] [CrossRef]
- Inaba, H.; Pui, C.H. Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J. Clin. Med. 2021, 10, 1926. [Google Scholar] [CrossRef]
- Fregona, V.; Bayet, M.; Gerby, B. Oncogene-induced reprogramming in acute lymphoblastic leukemia: Towards targeted therapy of leukemia-initiating cells. Cancers 2021, 13, 5511. [Google Scholar] [CrossRef]
- Carlisi, D.; Lauricella, M.; D’Anneo, A.; De Blasio, A.; Celesia, A.; Pratelli, G.; Notaro, A.; Calvaruso, G.; Giuliano, M.; Emanuele, S. Parthenolide and its soluble analogues: Multitasking compounds with antitumor properties. Biomedicines 2022, 10, 514. [Google Scholar] [CrossRef]
- Guzman, M.L.; Rossi, R.M.; Karnischky, L.; Li, X.; Peterson, D.R.; Howard, D.S.; Jordan, C.T. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005, 105, 4163–4169. [Google Scholar] [CrossRef]
- Guzman, M.L.; Rossi, R.M.; Neelakantan, S.; Li, X.; Corbett, C.A.; Hassane, D.C.; Becker, M.W.; Bennett, J.M.; Sullivan, E.; Lachowicz, J.L.; et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007, 110, 4427–4435. [Google Scholar] [CrossRef]
- Flores-Lopez, G.; Moreno-Lorenzana, D.; Ayala-Sanchez, M.; Aviles-Vazquez, S.; Torres-Martinez, H.; Crooks, P.A.; Guzman, M.L.; Mayani, H.; Chávez-González, A. Parthenolide and DMAPT induce cell death in primitive CML cells through reactive oxygen species. J. Cell. Mol. Med. 2018, 22, 4899–4912. [Google Scholar] [CrossRef]
- Shrestha, L.; Bolaender, A.; JPatel, H.; Taldone, T. Heat shock protein (HSP) drug discovery and development: Targeting heat shock proteins in disease. Curr. Top. Med. Chem. 2016, 16, 2753–2764. [Google Scholar] [CrossRef] [PubMed]
- Zong, H.; Gozman, A.; Caldas-Lopes, E.; Taldone, T.; Sturgill, E.; Brennan, S.; Ochiana, S.O.; Gomes-DaGama, E.M.; Sen, S.; Rodina, A.; et al. A hyperactive signalosome in acute myeloid leukemia drives addiction to a tumor-specific Hsp90 species. Cell Rep. 2015, 13, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Dunphy, M. PET Imaging of Cancer Patients Using 124I-PUH71: A Pilot Study; Memorial Sloan Kettering Cancer Center: New York, NY, USA, 2015. [Google Scholar]
- Chávez-González, A.; Rosas-Cabral, A.; Vela-Ojeda, J.; González, J.C.; Mayani, H. Severe functional alterations in vitro in CD34+ cell subpopulations from patients with chronic myeloid leukemia. Leuk. Res. 2004, 28, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 2018, 18, 471–484. [Google Scholar] [CrossRef]
- Fregona, V.; Bayet, M.; Bouttier, M.; Largeaud, L.; Hamelle, C.; Jamrog, L.A.; Prade, N.; Lagarde, S.; Hebrard, S.; Luquet, I.; et al. Stem cell–like reprogramming is required for leukemia-initiating activity in B-ALL. J. Exp. Med. 2023, 221, e20230279. [Google Scholar] [CrossRef]
- Ebinger, S.; Özdemir, E.Z.; Ziegenhain, C.; Tiedt, S.; Alves, C.C.; Grunert, M.; Dworzak, M.; Lutz, C.; Turati, V.A.; Enver, T.; et al. Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell 2016, 30, 849–862. [Google Scholar] [CrossRef]
- Cario, G.; Rhein, P.; Mitlöhner, R.; Zimmermann, M.; Bandapalli, O.R.; Romey, R.; Moericke, A.; Ludwig, W.-D.; Ratei, R.; Muckenthaler, M.U.; et al. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 2014, 99, 103. [Google Scholar] [CrossRef]
- Orlando, E.J.; Han, X.; Tribouley, C.; Wood, P.A.; Leary, R.J.; Riester, M.; Levine, J.E.; Qayed, M.; Grupp, S.A.; Boyer, M.; et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 2018, 24, 1504–1506. [Google Scholar] [CrossRef]
- Modvig, S.; Wernersson, R.; Øbro, N.F.; Olsen, L.R.; Christensen, C.; Rosthøj, S.; Degn, M.; Jürgensen, G.W.; Madsen, H.O.; Albertsen, B.K.; et al. High CD34 surface expression in BCP-ALL predicts poor induction therapy response and is associated with altered expression of genes related to cell migration and adhesion. Mol. Oncol. 2022, 16, 2015–2030. [Google Scholar] [CrossRef]
- Hong, Z.; Wei, Z.; Xie, T.; Fu, L.; Sun, J.; Zhou, F.; Jamal, M.; Zhang, Q.; Shao, L. Targeting chemokines for acute lymphoblastic leukemia therapy. J. Hematol. Oncol. 2021, 14, 48. [Google Scholar] [CrossRef]
- Vilchis-Ordoñez, A.; Contreras-Quiroz, A.; Vadillo, E.; Dorantes-Acosta, E.; Reyes-López, A.; Quintela-Nuñez del Prado, H.M.; Venegas-Vázquez, J.; Mayani, H.; Ortiz-Navarrete, V.; López-Martínez, B.; et al. Bone marrow cells in acute lymphoblastic leukemia create a proinflammatory microenvironment influencing normal hematopoietic differentiation fates. BioMed Res. Int. 2015, 2015, 386165. [Google Scholar] [CrossRef] [PubMed]
- Romo-Rodríguez, R.; Zamora-Herrera, G.; López-Blanco, J.A.; López-García, L.; Rosas-Cruz, A.; Alfaro-Hernández, L.; Trejo-Pichardo, C.O.; Alberto-Aguilar, D.R.; Casique-Aguirre, D.; Vilchis-Ordoñez, A.; et al. Subclassification of B-acute lymphoblastic leukemia according to age, immunophenotype and microenvironment, predicts MRD risk in Mexican children from vulnerable regions. Front. Oncol. 2024, 13, 1304662. [Google Scholar] [CrossRef] [PubMed]
- Demanou-Peylin, E.; Blanc, S.; Da Costa Pereira, T.; Parietti, V.; Saintpierre, B.; Letourneur, F.; Souyri, M.; Domenech, C. Novel insights into residual hematopoiesis from stem cell populations in pediatric B-acute lymphoblastic leukemia. Pediatr. Res. 2022, 91, 1064–1068. [Google Scholar] [CrossRef]
- Diamanti, P.; Cox, C.V.; Moppett, J.P.; Blair, A. Dual targeting of Hsp90 in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 2018, 180, 147–149. [Google Scholar] [CrossRef]
- Hong, D.; Gupta, R.; Ancliff, P.; Atzberger, A.; Brown, J.; Soneji, S.; Green, J.; Colman, S.; Piacibello, W.; Buckle, V.; et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008, 319, 336–339. [Google Scholar] [CrossRef]
- Mshaik, R.; Simonet, J.; Georgievski, A.; Jamal, L.; Bechoua, S.; Ballerini, P.; Bellaye, P.-S.; Mlamla, Z.; de Barros, J.-P.P.; Geissler, A.; et al. HSP90 inhibitor NVP-BEP800 affects stability of SRC kinases and growth of T-cell and B-cell acute lymphoblastic leukemias. Blood Cancer J. 2021, 11, 61. [Google Scholar] [CrossRef]
- Ede, B.C.; Asmaro, R.R.; Moppett, J.P.; Diamanti, P.; Blair, A. Investigating chemoresistance to improve sensitivity of childhood T-cell acute lymphoblastic leukemia to parthenolide. Haematologica 2018, 103, 1493. [Google Scholar] [CrossRef]
- Jiang, Z.; Deng, M.; Wei, X.; Ye, W.; Xiao, Y.; Lin, S.; Wang, S.; Li, B.; Liu, X.; Zhang, G.; et al. Heterogeneity of CD34 and CD38 expression in acute B lymphoblastic leukemia cells is reversible and not hierarchically organized. J. Hematol. Oncol. 2016, 9, 94. [Google Scholar] [CrossRef]
- Dircio-Maldonado, R.; Flores-Guzman, P.; Corral-Navarro, J.; Mondragón-García, I.; Hidalgo-Miranda, A.; Beltran-Anaya, F.O.; Cedro-Tanda, A.; Arriaga-Pizano, L.; Balvanera-Ortiz, O.; Mayani, H. Functional integrity and gene expression profiles of human cord blood-derived hematopoietic stem and progenitor cells generated in vitro. Stem Cells Transl. Med. 2018, 7, 602–614. [Google Scholar] [CrossRef]
- Hernandez-Lopez, R.; Chavez-Gonzalez, A.; Torres-Barrera, P.; Moreno-Lorenzana, D.; Lopez-DiazGuerrero, N.; Santiago-German, D.; Isordia-Salas, I.; Smadja, D.; Yoder, M.C.; Majluf-Cruz, A.; et al. Reduced proliferation of endothelial colony-forming cells in unprovoked venous thromboembolic disease as a consequence of endothelial dysfunction. PLoS ONE 2017, 12, e0183827. [Google Scholar] [CrossRef]
- Fajardo-Orduña, G.R.; Mayani, H.; Flores-Guzmán, P.; Flores-Figueroa, E.; Hernández-Estévez, E.; Castro-Manrreza, M.; Piña-Sánchez, P.; Arriaga-Pizano, L.; Gómez-Delgado, A.; Alarcón-Santos, G.; et al. Human mesenchymal stem/stromal cells from umbilical cord blood and placenta exhibit similar capacities to promote expansion of hematopoietic progenitor cells in vitro. Stem Cells Int. 2017, 2017, 6061729. [Google Scholar] [CrossRef] [PubMed]
- Prinz, H. Hill coefficients, dose–response curves and allosteric mechanisms. J. Chem. Biol. 2010, 3, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barrera, P.; Moreno-Lorenzana, D.; Alvarado-Moreno, J.A.; García-Ruiz, E.; Lagunas, C.; Mayani, H.; Chávez-González, A. Cell Contact with Endothelial Cells Favors the In Vitro Maintenance of Human Chronic Myeloid Leukemia Stem and Progenitor Cells. Int. J. Mol. Sci. 2022, 23, 10326. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Reyes, A.E.; García-Sánchez, S.; Serrano, M.; Núñez-Enriquez, J.C.; Alvarado-Moreno, J.A.; Montesinos, J.J.; Fajardo-Orduña, G.; Guzman, M.L.; Villasis-Keever, M.A.; Mancilla-Herrera, I.; et al. In Vitro Purging of Acute Lymphoblastic Leukemia (B-ALL) Cells with the Use of PTL, DMAPT, or PU-H71. Int. J. Mol. Sci. 2024, 25, 11707. https://doi.org/10.3390/ijms252111707
Ortiz-Reyes AE, García-Sánchez S, Serrano M, Núñez-Enriquez JC, Alvarado-Moreno JA, Montesinos JJ, Fajardo-Orduña G, Guzman ML, Villasis-Keever MA, Mancilla-Herrera I, et al. In Vitro Purging of Acute Lymphoblastic Leukemia (B-ALL) Cells with the Use of PTL, DMAPT, or PU-H71. International Journal of Molecular Sciences. 2024; 25(21):11707. https://doi.org/10.3390/ijms252111707
Chicago/Turabian StyleOrtiz-Reyes, Ana Elenka, Sergio García-Sánchez, Montserrat Serrano, Juan Carlos Núñez-Enriquez, José Antonio Alvarado-Moreno, Juan José Montesinos, Guadalupe Fajardo-Orduña, Monica L. Guzman, Miguel Angel Villasis-Keever, Ismael Mancilla-Herrera, and et al. 2024. "In Vitro Purging of Acute Lymphoblastic Leukemia (B-ALL) Cells with the Use of PTL, DMAPT, or PU-H71" International Journal of Molecular Sciences 25, no. 21: 11707. https://doi.org/10.3390/ijms252111707
APA StyleOrtiz-Reyes, A. E., García-Sánchez, S., Serrano, M., Núñez-Enriquez, J. C., Alvarado-Moreno, J. A., Montesinos, J. J., Fajardo-Orduña, G., Guzman, M. L., Villasis-Keever, M. A., Mancilla-Herrera, I., Mayani, H., & Chavez-Gonzalez, A. (2024). In Vitro Purging of Acute Lymphoblastic Leukemia (B-ALL) Cells with the Use of PTL, DMAPT, or PU-H71. International Journal of Molecular Sciences, 25(21), 11707. https://doi.org/10.3390/ijms252111707