Time-Dependent Comparison of the Structural Variations of Natural Products and Synthetic Compounds
<p>Historical changes of the molecular size-relevant properties of NPs and SCs in each group. (<b>A</b>) Molecular weight. (<b>B</b>) Molecular volume. (<b>C</b>) Molecular surface area. (<b>D</b>) Number of heavy atoms. (<b>E</b>) Number of bonds.</p> "> Figure 2
<p>Historical changes of ring-relevant properties of NPs and SCs in each group. (<b>A</b>) Number of rings. (<b>B</b>) Number of ring assemblies. (<b>C</b>) Number of aromatic rings. (<b>D</b>) Number of nonaromatic rings.</p> "> Figure 3
<p>(<b>A</b>) Glycosylation ratios of each group of NPs; (<b>B</b>) the average number of sugar moieties in a glycoside per group of NPs.</p> "> Figure 4
<p>Historical changes of molecular polarity-relevant properties of NPs and SCs in each group. (<b>A</b>) AlogP. (<b>B</b>) Molecular solubility. (<b>C</b>) TPSA. (<b>D</b>) Number of hydrogen bond receptors. (<b>E</b>) Number of hydrogen bond donors.</p> "> Figure 5
<p>Historical changes of molecular complexity-relevant properties of NPs and SCs in each group. (<b>A</b>) Number of stereo atoms. (<b>B</b>) Number of stereo bonds. (<b>C</b>) Globularity. (<b>D</b>) Number of Csp<sup>3</sup>. (<b>E</b>) Number of chiral centers. (<b>F</b>) Number of rotatable bonds.</p> "> Figure 6
<p>Historical changes of halogen content of NPs and SCs in each group. (<b>A</b>) F atoms. (<b>B</b>) Cl atoms. (<b>C</b>) Br atoms. (<b>D</b>) I atoms.</p> "> Figure 7
<p>PCA based on 39 physicochemical properties for (<b>A</b>) NPs and SCs, (<b>B</b>) only NPs, and (<b>C</b>) only SCs. (<b>D</b>) The loadings plot of PC1 and PC2, which explain 34.66% and 10.89% of the total variance, respectively. The dots in panels (<b>B</b>,<b>C</b>) are colored according to the grouping information.</p> "> Figure 8
<p>PCA using fingerprints for (<b>A</b>) NPs and SCs, (<b>B</b>) only NPs, and (<b>C</b>) only SCs. The dots in panels (<b>B</b>,<b>C</b>) are colored according to the grouping information.</p> "> Figure 9
<p>Historical changes of mean numbers of (<b>A</b>) rings, (<b>B</b>) aromatic rings, (<b>C</b>) spiro atoms, and (<b>D</b>) bridge head atoms of NP ring assemblies and SC ring assemblies in each group.</p> "> Figure 10
<p>Ring assembly (<b>A</b>) abundance, (<b>B</b>) uniqueness, and (<b>C</b>) novelty of each group of NPs and SCs.</p> "> Figure 11
<p>TMAP visualization of ring assemblies (frequency > 5) from NPs and SCs. NP ring assemblies are rendered blue, and SC ring assemblies are rendered red.</p> "> Figure 12
<p>(<b>A</b>) The SAR Map of non-redundant ring assemblies (frequency > 5) extracted from NPs and SCs. Cyan circles represent NP unique ring assemblies. Magenta circles represent SC unique ring assemblies. Blue pentagrams represent common ring assemblies shared by NPs and SCs. One point represents a ring assembly. (<b>B</b>) An enlarged section of the SAR Map of common ring assemblies occurring first in NPs (green pentagrams) and SCs (yellow squares). One point represents a ring assembly. The point size reflects the frequency of a ring assembly. The top 5 most frequent common ring assemblies occurring first in NPs or SCs are shown. The first numerical value indicates the frequency of the ring assembly in NPs, and the latter represents the frequency of the ring assembly in SCs.</p> "> Figure 13
<p>Side chain (<b>A</b>) abundance, (<b>B</b>) uniqueness, and (<b>C</b>) novelty of each group of NPs and SCs.</p> "> Figure 14
<p>(<b>A</b>) Average NP-likeness scores for each group of NPs and SCs; (<b>B</b>) average BR scores for each group of NPs and SCs.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties
2.1.1. Molecular Size
2.1.2. Rings
2.1.3. Molecular Polarity
2.1.4. Molecular Complexity
2.1.5. Heteroatom Contents
2.1.6. PCA
2.2. Scaffold Analysis
2.3. Ring Assembly Analysis
2.4. Side Chain Analysis
2.5. RECAP Fragment Analysis
2.6. Biological Relevance Analysis
3. Materials and Methods
3.1. Data Sets and Processing
3.2. Calculation of Physicochemical Properties
3.3. Generation of Fragment Representations
3.4. Analysis of Fragment Representations
3.5. Evaluation of Biological Relevance
3.6. Chemical Space Visualization
3.6.1. PCA
3.6.2. TMAP
3.6.3. SAR Map
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stratton, C.F.; Newman, D.J.; Tan, D.S. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg. Med. Chem. Lett. 2015, 25, 4802–4807. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Paterson, I.; Anderson, E.A. Chemistry. The renaissance of natural products as drug candidates. Science 2005, 310, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Corson, T.W.; Crews, C.M. Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell 2007, 130, 769–774. [Google Scholar] [CrossRef]
- Baker, D.D.; Chu, M.; Oza, U.; Rajgarhia, V. The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep. 2007, 24, 1225–1244. [Google Scholar] [CrossRef]
- Harvey, A.L. Natural products as a screening resource. Curr. Opin. Chem. Biol. 2007, 11, 480–484. [Google Scholar] [CrossRef]
- Li, J.W.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009, 325, 161–165. [Google Scholar] [CrossRef]
- Kumar, K.; Waldmann, H. Synthesis of natural product inspired compound collections. Angew. Chem. Int. Ed. Engl. 2009, 48, 3224–3242. [Google Scholar] [CrossRef]
- Kinch, M.S. 2015 in review: FDA approval of new drugs. Drug Discov. Today 2016, 21, 1046–1050. [Google Scholar] [CrossRef]
- Wright, G.D. Unlocking the potential of natural products in drug discovery. Microb. Biotechnol. 2019, 12, 55–57. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, Y.; Lv, C.; Liu, Z.; Zhang, L. Cheminformatics analysis of natural products and indication distribution prediction. J. Chin. Pharm. Sci. 2017, 26, 635–641. Available online: http://jcps.bjmu.edu.cn/EN/10.5246/jcps.2017.09.071 (accessed on 24 April 2024). [CrossRef]
- Chavez-Hernandez, A.L.; Sanchez-Cruz, N.; Medina-Franco, J.L. A fragment library of natural products and its comparative chemoinformatic characterization. Mol. Inform. 2020, 39, e2000050. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Schuhmann, T. A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod. 2019, 82, 1258–1263. [Google Scholar] [CrossRef]
- Ertl, P.; Schuhmann, T. Cheminformatics analysis of natural product scaffolds: Comparison of scaffolds produced by animals, plants, fungi and bacteria. Mol. Inform. 2020, 39, e2000017. [Google Scholar] [CrossRef]
- Ertl, P. Substituents of life: The most common substituent patterns present in natural products. Bioorg. Med. Chem. 2022, 54, 116562. [Google Scholar] [CrossRef]
- Chen, Y.; Rosenkranz, C.; Hirte, S.; Kirchmair, J. Ring systems in natural products: Structural diversity, physicochemical properties, and coverage by synthetic compounds. Nat. Prod. Rep. 2022, 39, 1544–1556. [Google Scholar] [CrossRef]
- Shang, J.; Sun, H.; Liu, H.; Chen, F.; Tian, S.; Pan, P.; Li, D.; Kong, D.; Hou, T. Comparative analyses of structural features and scaffold diversity for purchasable compound libraries. J. Cheminform. 2017, 9, 25. [Google Scholar] [CrossRef]
- Shang, J.; Hu, B.; Wang, J.; Zhu, F.; Kang, Y.; Li, D.; Sun, H.; Kong, D.X.; Hou, T. Cheminformatic insight into the differences between terrestrial and marine originated natural products. J. Chem. Inf. Model. 2018, 58, 1182–1193. [Google Scholar] [CrossRef]
- Karageorgis, G.; Foley, D.J.; Laraia, L.; Brakmann, S.; Waldmann, H. Pseudo natural products-chemical evolution of natural product structure. Angew. Chem. Int. Ed. Engl. 2021, 60, 15705–15723. [Google Scholar] [CrossRef]
- Grigalunas, M.; Brakmann, S.; Waldmann, H. Chemical evolution of natural product structure. J. Am. Chem. Soc. 2022, 144, 3314–3329. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Computational alerts for potential absorption problems: Profiles of clinically tested drugs. In Tools for Oral Absorption. Part Two. Predicting Human Absorption; BIOTEC, PDD Symposium, AAPS: Miami, FL, USA, 1995. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Feher, M.; Schmidt, J.M. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 2003, 43, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.; Newman, D.J.; Colletti, S.L.; Tan, D.S. Cheminformatic analysis of natural product-based drugs and chemical probes. Nat. Prod. Rep. 2022, 39, 20–32. [Google Scholar] [CrossRef]
- Ertl, P.; Jelfs, S.; Mühlbacher, J.; Schuffenhauer, A.; Selzer, P. Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds. J. Med. Chem. 2006, 49, 4568–4573. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Chen, N.; Jin, Y.; Yang, R.; Yao, H.; Kong, D.X. A chemoinformatic analysis on natural glycosides with respect to biological origin and structural class. Nat. Prod. Rep. 2023, 40, 1464–1478. [Google Scholar] [CrossRef]
- Ren, S.; Pan, F.; Zhang, W.; Rao, G.W. Molecules containing cyclobutyl fragments as therapeutic tools: A review on cyclobutyl drugs. Curr. Med. Chem. 2022, 29, 4113–4135. [Google Scholar] [CrossRef]
- Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007, 6, 881–890. [Google Scholar] [CrossRef]
- Liu, X.; Testa, B.; Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 2011, 28, 962–977. [Google Scholar] [CrossRef]
- Waring, M.J. Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability. Bioorg. Med. Chem. Lett. 2009, 19, 2844–2851. [Google Scholar] [CrossRef]
- Gleeson, M.P.; Hersey, A.; Montanari, D.; Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov. 2011, 10, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 2008, 51, 817–834. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.D.; Blagg, J.; Price, D.A.; Bailey, S.; DeCrescenzo, G.A.; Devraj, R.V.; Ellsworth, E.; Fobian, Y.M.; Gibbs, M.E.; Gilles, R.W.; et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 2008, 18, 4872–4875. [Google Scholar] [CrossRef] [PubMed]
- Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert. Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003, 2, 192–204. [Google Scholar] [CrossRef]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef]
- Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem 2004, 5, 571–589. [Google Scholar] [CrossRef]
- Hao, G.; Dong, Q.; Yang, G. A comparative study on the constitutive properties of marketed pesticides. Mol. Inform. 2011, 30, 614–622. [Google Scholar] [CrossRef]
- Greenberg, D.S. Pesticides: White house advisory body issues report recommending steps to reduce hazard to public. Science 1963, 140, 878–879. [Google Scholar] [CrossRef]
- Singh, N.; Guha, R.; Giulianotti, M.A.; Pinilla, C.; Houghten, R.A.; Medina-Franco, J.L. Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J. Chem. Inf. Model. 2009, 49, 1010–1024. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.X.; Guo, M.Y.; Xiao, Z.H.; Chen, L.L.; Zhang, H.Y. Historical variation of structural novelty in a natural product library. Chem. Biodivers 2011, 8, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Dictionary of Natural Products (DNP), Version 2016. Available online: https://dnp.chemnetbase.com (accessed on 8 May 2023).
- Kren, V.; Martínková, L. Glycosides in medicine: “The role of glycosidic residue in biological activity”. Curr. Med. Chem. 2001, 8, 1303–1328. [Google Scholar] [CrossRef] [PubMed]
- Schaub, J.; Zielesny, A.; Steinbeck, C.; Sorokina, M. Too sweet: Cheminformatics for deglycosylation in natural products. J. Cheminform. 2020, 12, 67. [Google Scholar] [CrossRef]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of Open Natural Products database. J. Cheminform. 2021, 13, 2. [Google Scholar] [CrossRef]
- BIOVIA. Dassault Systèmes; BIOVIA Pipeline Pilot, Release 2016; Dassault Systèmes: San Diego, CA, USA, 2016. [Google Scholar]
- Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC: Montreal, QC, Canada, 2019.
- Bemis, G.W.; Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887–2893. [Google Scholar] [CrossRef]
- BIOVIA. Dassault Systèmes; BIOVIA Discovery Studio, Release 2018; Dassault Systèmes: San Diego, CA, USA, 2018. [Google Scholar]
- Kong, D.X.; Ren, W.; Lü, W.; Zhang, H.Y. Do biologically relevant compounds have more chance to be drugs? J. Chem. Inf. Model. 2009, 49, 2376–2381. [Google Scholar] [CrossRef]
- Chen, Y.; Stork, C.; Hirte, S.; Kirchmair, J. NP-Scout: Machine learning approach for the quantification and visualization of the natural product-likeness of small molecules. Biomolecules 2019, 9, 43. [Google Scholar] [CrossRef]
- Stork, C.; Embruch, G.; Šícho, M.; de Bruyn Kops, C.; Chen, Y.; Svozil, D.; Kirchmair, J. NERDD: A web portal providing access to in silico tools for drug discovery. Bioinformatics 2020, 36, 1291–1292. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Probst, D.; Reymond, J.L. Visualization of very large high-dimensional data sets as minimum spanning trees. J. Cheminform. 2020, 12, 12. [Google Scholar] [CrossRef]
- DataMiner 1.6. Available online: https://www.tripos.com (accessed on 30 November 2023).
- Reymond, J.-L.; van Deursen, R.; Blum, L.C.; Ruddigkeit, L. Chemical space as a source for new drugs. MedChemComm 2010, 1, 30–38. [Google Scholar] [CrossRef]
Database | Version | Size | Number of Molecules with CAS Registry Number |
---|---|---|---|
ChEMBL | 32 | 2,327,928 | 66,248 |
Alinda a | 2020 | 202,332 | 11,034 |
ChEBI | 2023 | 151,162 | 21,634 |
Maybridge a | 2021 | 53,352 | 6239 |
NCI | 2012 | 265,242 | 125,723 |
LI a | 2012 | 1,427,028 | 267,004 |
LN a | 2017 | 320,336 | 306,779 |
BIONET a | 2020 | 212,374 | 211,263 |
HTS Biochemie Innovationen a | 2021 | 52,460 | 4113 |
INDEX-NET a | 2004 | 78,730 | 61,949 |
Lifechemicals a | 2021 | 474,738 | 454,591 |
In-house database b | 2008 | 575,468 | 519,723 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Cai, M.; Zhao, Y.; Hu, Z.; Wu, P.; Kong, D.-X. Time-Dependent Comparison of the Structural Variations of Natural Products and Synthetic Compounds. Int. J. Mol. Sci. 2024, 25, 11475. https://doi.org/10.3390/ijms252111475
Liu Y, Cai M, Zhao Y, Hu Z, Wu P, Kong D-X. Time-Dependent Comparison of the Structural Variations of Natural Products and Synthetic Compounds. International Journal of Molecular Sciences. 2024; 25(21):11475. https://doi.org/10.3390/ijms252111475
Chicago/Turabian StyleLiu, Yi, Mingzhu Cai, Yuxin Zhao, Zilong Hu, Ping Wu, and De-Xin Kong. 2024. "Time-Dependent Comparison of the Structural Variations of Natural Products and Synthetic Compounds" International Journal of Molecular Sciences 25, no. 21: 11475. https://doi.org/10.3390/ijms252111475
APA StyleLiu, Y., Cai, M., Zhao, Y., Hu, Z., Wu, P., & Kong, D.-X. (2024). Time-Dependent Comparison of the Structural Variations of Natural Products and Synthetic Compounds. International Journal of Molecular Sciences, 25(21), 11475. https://doi.org/10.3390/ijms252111475