Insights into the Therapeutic Potential of Active Ingredients of Citri Reticulatae Pericarpium in Combatting Sarcopenia: An In Silico Approach
<p>Flowchart of the study. TCMP: Traditional Chinese Medicine Systems Pharmacology; BATMAN: Bioinformatics Annotation daTabase for Molecular mechANism; OMIM: Online Mendelian Inheritance in Man; NCBI: National Center for Biotechnology Information; CTD: Comparative Toxicogenomics Database; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein–protein interaction; H-C-T-P: herb-compound-target-pathway.</p> "> Figure 2
<p>Target collection from various drug and disease databases. (<b>A</b>) Active ingredients of <span class="html-italic">Citri Reticulatae Pericarpium</span>-related targets; (<b>B</b>) Sarcopenia-related targets.</p> "> Figure 3
<p>Venn diagram of <span class="html-italic">Citri Reticulatae Pericarpium</span> and sarcopenia: the red part represents <span class="html-italic">Citri Reticulatae Pericarpium</span> with 702 targets, the green part represents sarcopenia with 568 targets, while the brown intersecting part represents the core intersecting targets between <span class="html-italic">Citri Reticulatae Pericarpium</span> and sarcopenia.</p> "> Figure 4
<p>(<b>A</b>) Protein–protein interaction network of key intersecting targets of <span class="html-italic">Citri Reticulatae Pericarpium</span> and sarcopenia; (<b>B</b>) visualized nodes and edges of protein–protein interaction network; (<b>C</b>) top 10 hub genes in the protein–protein interaction network.</p> "> Figure 5
<p>Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment. (<b>A</b>) Biological process (BP); (<b>B</b>) cellular component (CC); (<b>C</b>) molecular function (MF); (<b>D</b>) gene ontology bar chart; (<b>E</b>) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment.</p> "> Figure 5 Cont.
<p>Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment. (<b>A</b>) Biological process (BP); (<b>B</b>) cellular component (CC); (<b>C</b>) molecular function (MF); (<b>D</b>) gene ontology bar chart; (<b>E</b>) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment.</p> "> Figure 6
<p>The herb-compound-target-pathway network. The <span style="color:#FC4E2A">orange diamond</span> in the center represents the herb <span class="html-italic">Citri Reticulatae Pericarpium</span>, the five <span style="color:#0099FF">blue diamonds</span> represent the active ingredients, the <span style="color:#999900">olive-green octagons</span> and <span style="color:#00CCCC">cyan octagons</span> represent the core intersecting targets, while the outer <span style="color:#FF6633">ellipse shapes</span> represent the pathways in the network.</p> "> Figure 7
<p>Heatmap illustrating the binding energies (kcal/mol) between the active ingredients of <span class="html-italic">Citri Reticulatae Pericarpium</span> and 10 hub targets (<span class="html-italic">n</span> = 50).</p> "> Figure 8
<p>Molecular docking of Sitosterol, Hesperetin, Naringenin, and Nobiletin with AKT1, MTOR, and ALB proteins. (<b>A</b>) Sitosterol–AKT1; (<b>B</b>) Sitosterol–MTOR; (<b>C</b>) Sitosterol–ALB; (<b>D</b>) Hesperetin–AKT1, (<b>E</b>) Hesperetin–MTOR; (<b>F</b>) Naringenin–AKT1; (<b>G</b>) Nobiletin–AKT1.</p> "> Figure 9
<p>Molecular dynamics simulation of AKT1, MTOR, ALB, and active ingredients. (<b>A</b>) AKT1–Hesperetin/Naringenin/Nobiletin/Sitosterol; (<b>B</b>) MTOR–Hesperetin/Sitosterol; (<b>C</b>) ALB–Sitosterol.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Active Ingredients of Citri Reticulatae Pericarpium and Associated Targets
2.2. Sarcopenia-Related Targets
2.3. Key Intersecting Targets of Citri Reticulatae Pericarpium and Sarcopenia
2.4. The Intersecting Key Targets and Analysis of Protein–Protein Interaction Network
2.5. Analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment of Key Intersecting Targets
2.6. Molecular Docking
2.7. Analysis of Molecular Dynamics Simulations
2.8. Binding Free Energy MM-GBSA Calculations
3. Discussion
4. Materials and Methods
4.1. Software and Databases
4.2. Database Construction for Active Ingredients
4.3. Identification of Active Ingredients of Citri Reticulatae Pericarpium and Prospective Targets
4.4. Target Acquisition of Sarcopenia
4.5. Key Intersecting Targets of Citri Reticulatae Pericarpium and Sarcopenia
4.6. Protein–Protein Interaction Network Generation
4.7. Enrichment Analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway
4.8. Herb-Compound-Target-Pathway Network Construction
4.9. Molecular Docking
4.10. Molecular Dynamics Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ran, X.; Zhai, J.; Xu, M.; Zhu, X.; Ullah, A.; Lyu, Q. Association of diet quality with the risk of Sarcopenia based on the Chinese diet balance index 2016: A cross-sectional study among Chinese adults in Henan Province. BMC Public Health 2023, 23, 2017. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Ma, H.; Liu, C.; Yang, L. Exploring traditional Chinese medicine as a potential treatment for sarcopenia: A network pharmacology and data mining analysis of drug selection and efficacy. Medicine 2023, 102, e35404. [Google Scholar] [CrossRef] [PubMed]
- Ceyhan, A.B.; Ozcan, M.; Kim, W.; Li, X.; Altay, O.; Zhang, C.; Mardinoglu, A. Novel drug targets and molecular mechanisms for sarcopenia based on systems biology. Biomed. Pharmacother. 2024, 176, 116920. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, H.; Jiang, L.; Zhang, F.; Lin, J.; Wang, L.; Yang, J.; Wang, X. Exploring the therapeutic mechanisms of Sijunzi decoction in the treatment of sarcopenia: Key targets and signaling pathways. Biomed. Chromatogr. 2023, 37, e5722. [Google Scholar] [CrossRef]
- De Spiegeleer, A.; Beckwee, D.; Bautmans, I.; Petrovic, M.; Sarcopenia Guidelines Development group of the Belgian Society of Gerontology and Geriatrics. Pharmacological Interventions to Improve Muscle Mass, Muscle Strength and Physical Performance in Older People: An Umbrella Review of Systematic Reviews and Meta-analyses. Drugs Aging 2018, 35, 719–734. [Google Scholar] [CrossRef]
- Vlietstra, L.; Hendrickx, W.; Waters, D.L. Exercise interventions in healthy older adults with sarcopenia: A systematic review and meta-analysis. Australas. J. Ageing 2018, 37, 169–183. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Gao, S.; Chen, X.; Yu, Z.; Du, R.; Chen, B.; Wang, Y.; Cai, X.; Xu, J.; Chen, J.; Duan, H.; et al. Progress of research on the role of active ingredients of Citri Reticulatae Pericarpium in liver injury. Phytomedicine 2023, 115, 154836. [Google Scholar] [CrossRef]
- Rahib, A.; Karhib, M.M.; Nasr, H.M.; El-Sayed, R.A.; Abdel-Daim, M.M.; Jebur, A.B.; El-Demerdash, F.M. Citrus reticulata peel extract mitigates oxidative stress and liver injury induced by abamectin in rats. Tissue Cell 2024, 87, 102321. [Google Scholar] [CrossRef]
- Wen, C.; Yu, Z.; Wang, J.; Deng, Q.; Deng, J.; Sun, Z.; Ye, Q.; Ye, Z.; Qin, K.; Peng, X. Inhalation of Citrus Reticulata essential oil alleviates airway inflammation and emphysema in COPD rats through regulation of macrophages. J. Ethnopharmacol. 2024, 320, 117407. [Google Scholar] [CrossRef]
- Liang, J.; Xi, Y.; Li, J.; Xu, S.; Zheng, Y.; Xu, M.; Zheng, Z.; Deng, X. Metabolomic Profiling Reveals the Quality Variations in Citri Reticulatae Pericarpium (Citrus reticulata Blanco cv. Chachiensis) with Different Storage Ages in Response to “Candidatus Liberibacter Asiaticus” Infection. Foods 2024, 13, 827. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Huang, C.; Wang, S.; Huang, B.; Wu, D.; Zheng, G.; Cai, Y. Network Pharmacology-Based Strategy for Predicting Therapy Targets of Citri Reticulatae Pericarpium on Myocardial Hypertrophy. BioMed Res. Int. 2022, 2022, 4293265. [Google Scholar] [CrossRef] [PubMed]
- Mamy, D.; Huang, Y.; Akpabli-Tsigbe, N.D.K.; Battino, M.; Chen, X. Valorization of Citrus Reticulata Peels for Flavonoids and Antioxidant Enhancement by Solid-State Fermentation Using Aspergillus niger CGMCC 3.6189. Molecules 2022, 27, 8949. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Zhou, C.; Khan, H.; Fu, M.; Cheang, W.S. Citri Reticulatae Pericarpium (Chenpi) Protects against Endothelial Dysfunction and Vascular Inflammation in Diabetic Rats. Nutrients 2022, 14, 5221. [Google Scholar] [CrossRef]
- Chen, X.M.; Tait, A.R.; Kitts, D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017, 218, 15–21. [Google Scholar] [CrossRef]
- Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine 2019, 49, 381–388. [Google Scholar] [CrossRef]
- El-Sebaie, M.; Elwakil, W. Biomarkers of sarcopenia: An unmet need. Egypt. Rheumatol. Rehabil. 2023, 50, 45. [Google Scholar] [CrossRef]
- Li, P.; Zhang, S.; Song, H.; Traore, S.S.; Li, J.; Raubenheimer, D.; Cui, Z.; Kou, G. Naringin Promotes Skeletal Muscle Fiber Remodeling by the AdipoR1-APPL1-AMPK Signaling Pathway. J. Agric. Food Chem. 2021, 69, 11890–11899. [Google Scholar] [CrossRef]
- Yeh, C.H.; Shen, Z.Q.; Wang, T.W.; Kao, C.H.; Teng, Y.C.; Yeh, T.K.; Lu, C.K.; Tsai, T.F. Hesperetin promotes longevity and delays aging via activation of Cisd2 in naturally aged mice. J. Biomed. Sci. 2022, 29, 53. [Google Scholar] [CrossRef]
- Nohara, K.; Mallampalli, V.; Nemkov, T.; Wirianto, M.; Yang, J.; Ye, Y.; Sun, Y.; Han, L.; Esser, K.A.; Mileykovskaya, E.; et al. Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat. Commun. 2019, 10, 3923. [Google Scholar] [CrossRef]
- Kou, G.; Li, Z.; Wu, C.; Liu, Y.; Hu, Y.; Guo, L.; Xu, X.; Zhou, Z. Citrus Tangeretin Improves Skeletal Muscle Mitochondrial Biogenesis via Activating the AMPK-PGC1-alpha Pathway In Vitro and In Vivo: A Possible Mechanism for Its Beneficial Effect on Physical Performance. J. Agric. Food Chem. 2018, 66, 11917–11925. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Huang, R.; Shi, X.; Xu, Z.; Mang, J. Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification. Bioengineered 2021, 12, 12274–12293. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xiao, Y.; Wang, Z.; Xiao, H.; Liu, H. The Mechanism Study of Common Flavonoids on Antiglioma Based on Network Pharmacology and Molecular Docking. Evid.-Based Complement. Altern. Med. 2022, 2022, 2198722. [Google Scholar] [CrossRef]
- Yuan, F.; Xia, G.Q.; Cai, J.N.; Lv, X.; Dai, M. Hesperitin attenuates alcoholic steatohepatitis by regulating TLR4/NF-kappaB signaling in mice. Anal. Biochem. 2023, 682, 115339. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Limon, A.; Aguilar-Toala, J.E.; Liceaga, A.M. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.; Guo, L.; Ma, H.; Wu, H.; Fan, X. Network Pharmacology and Molecular Docking Suggest the Mechanism for Biological Activity of Rosmarinic Acid. Evid.-Based Complement. Altern. Med. 2021, 2021, 5190808. [Google Scholar] [CrossRef]
- Wu, W.Y.; Jiao, X.; Song, W.X.; Wu, P.; Xiao, P.Q.; Huang, X.F.; Wang, K.; Zhan, S.F. Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC. Front. Endocrinol. 2023, 14, 1187882. [Google Scholar] [CrossRef]
- Bi, B.; Dong, X.; Yan, M.; Zhao, Z.; Liu, R.; Li, S.; Wu, H. Dyslipidemia is associated with sarcopenia of the elderly: A meta-analysis. BMC Geriatr. 2024, 24, 181. [Google Scholar] [CrossRef]
- Voulgaridou, G.; Tyrovolas, S.; Detopoulou, P.; Tsoumana, D.; Drakaki, M.; Apostolou, T.; Chatziprodromidou, I.P.; Papandreou, D.; Giaginis, C.; Papadopoulou, S.K. Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence. Nutrients 2024, 16, 436. [Google Scholar] [CrossRef]
- Alhmly, H.F.; Fielding, R.A. A Critical Review of Current Worldwide Definitions of Sarcopenia. Calcif. Tissue Int. 2024, 114, 74–81. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Liu, M.; Song, X.; Wang, D.; Zhang, J. Network pharmacology-based analysis of the effects of puerarin on sarcopenia. Ann. Transl. Med. 2022, 10, 671. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Cawthon, P.M.; Arai, H.; Avila-Funes, J.A.; Barazzoni, R.; Bhasin, S.; Binder, E.F.; Bruyere, O.; Cederholm, T.; Chen, L.K.; et al. The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 2024, 53. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Sun, Q.; Li, J.; Li, J.; Khatun, P.; Kou, G.; Lyu, Q. Bioactive Compounds in Citrus reticulata Peel Are Potential Candidates for Alleviating Physical Fatigue through a Triad Approach of Network Pharmacology, Molecular Docking, and Molecular Dynamics Modeling. Nutrients 2024, 16, 1934. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Ullah, A.; Zhang, R.; Sun, Y.; Li, J.; Kou, G. Network Pharmacology and Molecular Modeling Techniques in Unraveling the Underlying Mechanism of Citri Reticulatae Pericarpium aganist Type 2 Diabetic Osteoporosis. Nutrients 2024, 16, 220. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Huang, W.; Lu, X.; Liu, J.; Zhou, J.; Li, Y.; Shu, P. A Network Pharmacology Study Based on the Mechanism of Citri Reticulatae Pericarpium-Pinelliae Rhizoma in the Treatment of Gastric Cancer. Evid.-Based Complement. Altern. Med. 2021, 2021, 6667560. [Google Scholar] [CrossRef] [PubMed]
- Biesemann, N.; Ried, J.S.; Ding-Pfennigdorff, D.; Dietrich, A.; Rudolph, C.; Hahn, S.; Hennerici, W.; Asbrand, C.; Leeuw, T.; Strubing, C. High throughput screening of mitochondrial bioenergetics in human differentiated myotubes identifies novel enhancers of muscle performance in aged mice. Sci. Rep. 2018, 8, 9408. [Google Scholar] [CrossRef]
- Lv, Z.; Meng, J.; Yao, S.; Xiao, F.; Li, S.; Shi, H.; Cui, C.; Chen, K.; Luo, X.; Ye, Y.; et al. Naringenin improves muscle endurance via activation of the Sp1-ERRgamma transcriptional axis. Cell Rep. 2023, 42, 113288. [Google Scholar] [CrossRef]
- Wang, H.H.; Zhang, Y.; Qu, T.Q.; Sang, X.Q.; Li, Y.X.; Ren, F.Z.; Wen, P.C.; Sun, Y.N. Nobiletin Improves D-Galactose-Induced Aging Mice Skeletal Muscle Atrophy by Regulating Protein Homeostasis. Nutrients 2023, 15, 1801. [Google Scholar] [CrossRef]
- Hah, Y.S.; Lee, W.K.; Lee, S.; Kim, E.J.; Lee, J.H.; Lee, S.J.; Ji, Y.H.; Kim, S.G.; Lee, H.H.; Hong, S.Y.; et al. beta-Sitosterol Attenuates Dexamethasone-Induced Muscle Atrophy via Regulating FoxO1-Dependent Signaling in C2C12 Cell and Mice Model. Nutrients 2022, 14, 2894. [Google Scholar] [CrossRef]
- Akachi, T.; Shiina, Y.; Ohishi, Y.; Kawaguchi, T.; Kawagishi, H.; Morita, T.; Mori, M.; Sugiyama, K. Hepatoprotective effects of flavonoids from shekwasha (Citrus depressa) against D-galactosamine-induced liver injury in rats. J. Nutr. Sci. Vitaminol. 2010, 56, 60–67. [Google Scholar] [CrossRef]
- Tsukamoto-Sen, S.; Kawakami, S.; Maruki-Uchida, H.; Ito, R.; Matsui, N.; Komiya, Y.; Mita, Y.; Morisasa, M.; Goto-Inoue, N.; Furuichi, Y.; et al. Effect of antioxidant supplementation on skeletal muscle and metabolic profile in aging mice. Food Funct. 2021, 12, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Chen, J.; Huang, Z.; Men, Y.; Qian, Y.; Yu, M.; Xu, X.; Li, L.; Zhao, X.; Jiang, Y.; et al. Ginsenoside Rg1 can reverse fatigue behavior in CFS rats by regulating EGFR and affecting Taurine and Mannose 6-phosphate metabolism. Front. Pharmacol. 2023, 14, 1163638. [Google Scholar] [CrossRef] [PubMed]
- Sirago, G.; Picca, A.; Calvani, R.; Coelho-Junior, H.J.; Marzetti, E. Mammalian Target of Rapamycin (mTOR) Signaling at the Crossroad of Muscle Fiber Fate in Sarcopenia. Int. J. Mol. Sci. 2022, 23, 13823. [Google Scholar] [CrossRef]
- Oh, H.J.; Jin, H.; Lee, B.Y. Hesperidin Ameliorates Sarcopenia through the Regulation of Inflammaging and the AKT/mTOR/FoxO3a Signaling Pathway in 22-26-Month-Old Mice. Cells 2023, 12, 2015. [Google Scholar] [CrossRef] [PubMed]
- Abedi, F.; Zarei, B.; Elyasi, S. Albumin: A comprehensive review and practical guideline for clinical use. Eur. J. Clin. Pharmacol. 2024, 80, 1151–1169. [Google Scholar] [CrossRef]
- Yin, G.; Qin, J.; Wang, Z.; Lv, F.; Ye, X. A nomogram to predict the risk of sarcopenia in older people. Medicine 2023, 102, e33581. [Google Scholar] [CrossRef]
- Hu, M.; Han, M.; Zhang, H.; Li, Z.; Xu, K.; Kang, H.; Zong, J.; Zhao, F.; Liu, Y.; Liu, W. Curcumin (CUMINUP60(R)) mitigates exercise fatigue through regulating PI3K/Akt/AMPK/mTOR pathway in mice. Aging 2023, 15, 2308–2320. [Google Scholar] [CrossRef]
- Shu, H.; Huang, Y.; Zhang, W.; Ling, L.; Hua, Y.; Xiong, Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front. Endocrinol. 2023, 14, 1073587. [Google Scholar] [CrossRef]
- Abdelrahman, Z.; Wang, X.; Wang, D.; Zhang, T.; Zhang, Y.; Wang, X.; Chen, Z. Identification of novel pathways and immune profiles related to sarcopenia. Front. Med. 2023, 10, 928285. [Google Scholar] [CrossRef]
- Burton, M.A.; Antoun, E.; Garratt, E.S.; Westbury, L.; Baczynska, A.; Dennison, E.M.; Harvey, N.C.; Cooper, C.; Patel, H.P.; Godfrey, K.M.; et al. Adiposity is associated with widespread transcriptional changes and downregulation of longevity pathways in aged skeletal muscle. J. Cachexia Sarcopenia Muscle 2023, 14, 1762–1774. [Google Scholar] [CrossRef]
- Wu, W.; Guo, X.; Qu, T.; Huang, Y.; Tao, J.; He, J.; Wang, X.; Luo, J.; An, P.; Zhu, Y.; et al. The Combination of Lactoferrin and Creatine Ameliorates Muscle Decay in a Sarcopenia Murine Model. Nutrients 2024, 16, 1958. [Google Scholar] [CrossRef] [PubMed]
- Bisht, A.; Tewari, D.; Kumar, S.; Chandra, S. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia. Mol. Divers. 2024, 28, 1743–1763. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Wang, Y.; Li, J.; Zhou, F.; Xiao, K.; Liu, Y.; Zhang, M.; Wang, S.; Yang, S. Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J. Ethnopharmacol. 2023, 302, 115876. [Google Scholar] [CrossRef]
- Kong, X.; Liu, C.; Zhang, Z.; Cheng, M.; Mei, Z.; Li, X.; Liu, P.; Diao, L.; Ma, Y.; Jiang, P.; et al. BATMAN-TCM 2.0: An enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins. Nucleic Acids Res. 2024, 52, D1110–D1120. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017, 45, W356–W360. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38, W609–W614. [Google Scholar] [CrossRef]
- Nickel, J.; Gohlke, B.O.; Erehman, J.; Banerjee, P.; Rong, W.W.; Goede, A.; Dunkel, M.; Preissner, R. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res. 2014, 42, W26–W31. [Google Scholar] [CrossRef]
- Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.A.; Redaschi, N.; Bridge, A.; UniProt, C. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023, 39. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54. [Google Scholar] [CrossRef]
- Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789–D798. [Google Scholar] [CrossRef] [PubMed]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Pinero, J.; Ramirez-Anguita, J.M.; Sauch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, T.; Li, X.; Zhang, Y.; Fu, S.; Huo, R.; Duan, Y. A study on the anti-osteoporosis mechanism of isopsoralen based on network pharmacology and molecular experiments. J. Orthop. Surg. Res. 2023, 18, 304. [Google Scholar] [CrossRef]
- Davis, A.P.; Wiegers, T.C.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res 2023, 51, D1257–D1262. [Google Scholar] [CrossRef]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Wang, M.; Liu, F.; Yao, Y.; Zhang, Q.; Lu, Z.; Zhang, R.; Liu, C.; Lin, C.; Zhu, C. Network pharmacology-based mechanism prediction and pharmacological validation of Xiaoyan Lidan formula on attenuating alpha-naphthylisothiocyanate induced cholestatic hepatic injury in rats. J. Ethnopharmacol. 2021, 270, 113816. [Google Scholar] [CrossRef]
- Wang, S.; Xing, Y.; Wang, R.; Jin, Z. Jianpi Huayu Decoction suppresses cellular senescence in colorectal cancer via p53-p21-Rb pathway: Network pharmacology and in vivo validation. J. Ethnopharmacol. 2024, 319, 117347. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zeng, Z.; Zhang, J.; Wu, D.; Li, H.; Geng, F. Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chem. 2023, 405, 134824. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2019-4; Schrödinger, LLC: New York, NY, USA, 2019.
- Protein Preparation Wizard Schrödinger Release 2019-4; Schrödinger, LLC: New York, NY, USA, 2019.
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tuckerman, M.E.; Tobias, D.J.; Klein, M.L. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 1996, 87, 1117–1157. [Google Scholar] [CrossRef]
- Krieger, E.; Darden, T.; Nabuurs, S.B.; Finkelstein, A.; Vriend, G. Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins Struct. Funct. Bioinform. 2004, 57, 678–683. [Google Scholar] [CrossRef]
- Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 2015, 36, 996–1007. [Google Scholar] [CrossRef]
- Kräutler, V.; Van Gunsteren, W.F.; Hünenberger, P.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001, 22, 501–508. [Google Scholar] [CrossRef]
Software/Database | Version | Website |
---|---|---|
Cytoscape | 3.9.1 | https://cytoscape.org/ (accessed on 21 August 2024) |
Chem3D | 12.0.2 | https://revvitysignals.com/ (accessed on 18 August 2024) |
AutoDockTools | 1.5.6 | http://mgltools.scripps.edu/ (accessed on 22 August 2024) |
PyMol | 2.5.8 | https://pymol.org/ (accessed on 23 August 2024) |
PubChem | 1.8.0 beta | https://pubchem.ncbi.nlm.nih.gov/ (accessed on 18 August 2024) |
TCMSP | 2.3 | https://old.tcmsp-e.com/tcmsp.php (accessed on 17 August 2024) |
BATMAN-TCM | 2.0 | http://bionet.ncpsb.org.cn/batman-tcm/#/home (accessed on 18 August 2024) |
PharmMapper | 2017 | https://www.lilab-ecust.cn/pharmmapper/ (accessed on 18 August 2024) |
Prediction | 2022 | https://prediction.charite.de/ (accessed on 18 August 2024) |
UniProt | 2024.4 | https://www.uniprot.org/ (accessed on 18 August 2024) |
GeneCards | 5.21.0 | https://www.genecards.org/ (accessed on 19 August 2024) |
OMIM | 2024.8.26 | https://omim.org/ (accessed on 19 August 2024) |
PharmGKB | 4.0 | https://www.pharmgkb.org/ (accessed on 19 August 2024) |
DISGENET | 24.2 | https://disgenet.com/ (accessed on 19 August 2024) |
NCBI | 262.0 | https://www.ncbi.nlm.nih.gov/ (accessed on 20 August 2024) |
CTD | 2024.7.31 | https://ctdbase.org/ (accessed on 20 August 2024) |
InteractiVenn | 2015 | https://www.interactivenn.net/ (accessed on 21 August 2024) |
STRING | 12.0 | https://cn.string-db.org/ (accessed on 21 August 2024) |
Metascape | 3.5.20240101 | https://metascape.org/ (accessed on 22 August 2024 ) |
Wei Sheng Xin | 2024 | https://www.bioinformatics.com.cn/ (accessed on 22 August 2024) |
RCSBPDB | 2024.8.27 | https://www.rcsb.org/ (accessed on 22 August 2024) |
Desmond | 2019-4 | https://www.schrodinger.com/ (accessed on 26 August 2024) |
Molecule ID | Molecule Name | OB (%) | DL | Molecular Formula | CAS Number | Molecular Weight (g/mol) |
---|---|---|---|---|---|---|
MOL005100 | Hesperetin | 47.74 | 0.27 | C16H14O6 | 520-33-2 | 302.28 |
MOL004328 | Naringenin | 59.29 | 0.21 | C15H12O5 | 480-41-1 | 272.25 |
MOL005828 | Nobiletin | 61.67 | 0.52 | C21H22O8 | 478-01-3 | 402.4 |
MOL000359 | Sitosterol | 36.91 | 0.75 | C29H50O | 83-46-5 | 414.7 |
MOL005815 | Citromitin | 86.90 | 0.51 | C21H24O8 | 3570-71-6 | 404.4 |
Complex Name | ΔGbind | ΔGCoulomb | ΔGCovalent | ΔGH-bond | ΔGLipo | ΔGSolv_GB | ΔGSA | ΔGvdW |
---|---|---|---|---|---|---|---|---|
AKT1–Hesperetin | −62.47 | −4.97 | 8.92 | −0.54 | −50.93 | 21.61 | −0.25 | −36.31 |
AKT1–Naringenin | −58.30 | −6.14 | 5.44 | −0.25 | −47.22 | 26.61 | −0.23 | −36.50 |
AKT1–Nobiletin | −58.30 | −6.14 | 5.44 | −0.25 | −47.22 | 26.61 | −0.23 | −36.50 |
AKT1–Sitosterol | −102.22 | −11.26 | 2.44 | −0.49 | −65.86 | 30.91 | −0.32 | −57.63 |
MTOR–Hesperetin | −27.14 | −1.21 | 1.96 | −0.52 | −16.16 | 8.01 | −0.08 | −19.14 |
MTOR–Sitosterol | −84.79 | −0.66 | 2.09 | −0.02 | −61.97 | 28.05 | −0.31 | −51.97 |
ALB–Sitosterol | −91.12 | −4.89 | 2.81 | −0.08 | −54.51 | 10.86 | −0.27 | −45.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Bo, Y.; Li, J.; Li, J.; Khatun, P.; Lyu, Q.; Kou, G. Insights into the Therapeutic Potential of Active Ingredients of Citri Reticulatae Pericarpium in Combatting Sarcopenia: An In Silico Approach. Int. J. Mol. Sci. 2024, 25, 11451. https://doi.org/10.3390/ijms252111451
Ullah A, Bo Y, Li J, Li J, Khatun P, Lyu Q, Kou G. Insights into the Therapeutic Potential of Active Ingredients of Citri Reticulatae Pericarpium in Combatting Sarcopenia: An In Silico Approach. International Journal of Molecular Sciences. 2024; 25(21):11451. https://doi.org/10.3390/ijms252111451
Chicago/Turabian StyleUllah, Amin, Yacong Bo, Jiangtao Li, Jinjie Li, Pipasha Khatun, Quanjun Lyu, and Guangning Kou. 2024. "Insights into the Therapeutic Potential of Active Ingredients of Citri Reticulatae Pericarpium in Combatting Sarcopenia: An In Silico Approach" International Journal of Molecular Sciences 25, no. 21: 11451. https://doi.org/10.3390/ijms252111451
APA StyleUllah, A., Bo, Y., Li, J., Li, J., Khatun, P., Lyu, Q., & Kou, G. (2024). Insights into the Therapeutic Potential of Active Ingredients of Citri Reticulatae Pericarpium in Combatting Sarcopenia: An In Silico Approach. International Journal of Molecular Sciences, 25(21), 11451. https://doi.org/10.3390/ijms252111451