Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation
"> Figure 1
<p>Chemical structures of (<b>A</b>) poloxamer 407, (<b>Β</b>) Tween 80, (<b>C</b>) methyl-β-cyclodextrin, (<b>D</b>) hydroxypropyl-β-cyclodextrin, and (<b>E</b>) ropinirole hydrochloride.</p> "> Figure 2
<p>DSC thermograms. The heating curves of (<b>a</b>) P407, (<b>b</b>) P407/Tw80, (<b>c</b>) P407/MβCD, (<b>d</b>) P407/HPβCD, (<b>e</b>) P407/Tw80/MβCD, (<b>f</b>) P407/Tw80/HPβCD. The limits for the calculation of thermotropic parameters are from 10 °C to 300 °C.</p> "> Figure 3
<p>(<b>A</b>) mDSC traces and (<b>B</b>) sound speed vs. temperature profiles from HR-US for P407, P407/Tw80, P407/Tw80/MβCD, and P407/Tw80/HPβCD formulations.</p> "> Figure 4
<p>Cryo-TEM micrographs of hybrid P407/Tw80/MβCD (<b>A</b>,<b>B</b>) and P407/Tw80/HPβCD (<b>C</b>,<b>D</b>) systems.</p> "> Figure 5
<p>MTΤ cell viability assay after 24 h treatment of HEK-293 of hybrid colloidal systems: pure P407, P407/Tw80, P407/Tw80/MβCD, and P407/Tw80/HPβCD systems. Cell viability is expressed as % cell viability ± SD between two experiments.</p> "> Figure 6
<p>DSC thermograms. Heating curves of (<b>A</b>) (<b>a</b>) RH and (P407/Tw80/MβCD)/RH at different weight ratios: (<b>b</b>) 10:10, (<b>c</b>) 10:5, (<b>d</b>) 10:1, (<b>e</b>) 10:0.5, (<b>f</b>) 10:0.1. Heating curves of (<b>B</b>) (<b>a</b>) RH and (P407/Tw80/HPβCD)/RH at different weight ratios: (<b>b</b>) 10:10, (<b>c</b>) 10:5, (<b>d</b>) 10:1, (<b>e</b>) 10:0.5, (<b>f</b>) 10:0.1. The limits for the calculation of thermotropic parameters are from 10 °C to 300 °C.</p> "> Figure 7
<p>Illustration of the RH systems based on the results obtained from the applied techniques.</p> "> Figure 8
<p>Permeation profiles of RH P407 ternary systems through regenerated cellulose membranes for colloidal dispersions at weight ratios of 10:1 and 10:5 in comparison to RH solution (0.5 mg/mL). Results are expressed as (<b>A</b>) quantity permeated per unit area (mean ± SD, <span class="html-italic">n</span> = 3) and (<b>B</b>) % loading dose permeated for the tested formulation (mean ± SD, <span class="html-italic">n</span> = 3).</p> "> Figure 9
<p>Permeation profiles for colloidal dispersions of RH P407 ternary systems through rabbit nasal mucosa for formulations at weight ratios of 10:1 and 10:5 in comparison to RH solution (0.5 mg/mL). Results are expressed as (<b>A</b>) quantity permeated per unit area (mean ± SEM, <span class="html-italic">n</span> = 4) and (<b>B</b>) % loading dose permeated for the tested formulation (mean ± SEM, <span class="html-italic">n</span> = 4).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Interactions between the Materials of Hybrid Systems in the Solid State
2.2. Physicochemical Characterization of Systems in Aqueous Solutions—Evaluation of Their Biological and Physical Stability
2.3. Study of the Internal Hydrophilic/Hydrophobic Environment of the Hybrid Systems
2.4. Thermal Characterization of Colloidal Dispersions in Aqueous Solutions and Surface Tensiometric Analysis
2.5. Morphological Characterization of Hybrid Systems
2.6. Cytotoxicity of Colloidal Dispersions
2.7. Preformulation Studies and Physicochemical Characterization of RH-Containing Systems
2.8. RH Content in the Prepared Systems
2.9. RH’s Release from the Hybrid Formulations by In Vitro Diffusion Experiments
2.10. RH’s Ex Vivo Mucosal Permeation from the Hybrid Formulations
2.11. Comparison of Polymer/Surfactant/Cyclodextrin System with other Hybrid Formulations for Nose-to-Brain Delivery of RH
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Differential Scanning Calorimetry
3.2.2. Preparation of Hybrid Systems
3.2.3. Physicochemical Characterization and Physical Stability Studies by Light Scattering Techniques
3.2.4. Biological Stability of Hybrid Systems
3.2.5. Fluorescence Spectroscopy
3.2.6. Microcalorimetry Analysis
3.2.7. High-Resolution Ultrasound Spectroscopy
3.2.8. Surface Tension Measurements
3.2.9. Cryo-TEM Images
3.2.10. In Vitro Cytotoxicity
3.2.11. Preformulation Studies, Preparation, and Physicochemical Characterization of RH Hybrid Systems
3.2.12. Quantitative Analysis of RH
3.2.13. RH’s Release from the Hybrid Formulations by In Vitro Diffusion Experiments
3.2.14. RH’s Ex Vivo Mucosal Permeation from the Hybrid Formulations
3.2.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APIs | active pharmaceutical ingredients |
BBB | blood–brain barrier |
CDs | cyclodextrins |
CI | confidence interval |
DLS | dynamic light scattering |
DSC | differential scanning calorimetry |
ELS | electrophoretic light scattering |
FBS | fetal bovine serum |
FTIR | Fourier-transform infrared spectroscopy |
GI | gastrointestinal |
HPLC | high-performance liquid chromatography |
HPβCD | hydroxy-propyl-β-CD |
HR-US | high-resolution ultrasound spectroscopy |
IQR | ιnterquartile range |
J | flux |
ΜβCD | methyl-β-CD |
mDSC | microcalorimetry |
PAD | Parkinson’s disease |
Papp | apparent permeability |
PBS | phosphate buffer solution |
P407 | poloxamer 407 |
PDI | polydispersity index |
PEO | polyethylene oxide |
PPO | poly(propylene oxide) |
RH | ropinirole hydrochloride |
Rh | hydrodynamic radius |
SD | standard deviation |
SEM | standard error of the mean |
Tm | main transition temperature |
Tw80 | Tween 80 |
z-potential | zeta potential |
ΔH | enthalpy |
ΔΤ1/2 | half width at half peak height of the transition |
References
- Schneider, R.B.; Iourinets, J.; Richard, I.H. Parkinson’s disease psychosis: Presentation, diagnosis and management. Neurodegener. Dis. Manag. 2017, 7, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Aadil, K.R.; Mondal, K.; Mishra, Y.K.; Oupicky, D.; Ramakrishna, S.; Kaushik, A. Neurodegenerative disorders management: State-of-art and prospects of nano-biotechnology. Crit. Rev. Biotechnol. 2022, 42, 1180–1212. [Google Scholar] [CrossRef] [PubMed]
- Papakyriakopoulou, P.; Manta, K.; Kostantini, C.; Kikionis, S.; Banella, S.; Ioannou, E.; Christodoulou, E.; Rekkas, D.M.; Dallas, P.; Vertzoni, M.; et al. Nasal powders of quercetin-β-cyclodextrin derivatives complexes with mannitol/lecithin microparticles for Nose-to-Brain delivery: In vitro and ex vivo evaluation. Int. J. Pharm. 2021, 607, 121016. [Google Scholar] [CrossRef] [PubMed]
- Di Prima, G.; Campisi, G.; De Caro, V. Amorphous Ropinirole-Loaded Mucoadhesive Buccal Film: A Potential Patient-Friendly Tool to Improve Drug Pharmacokinetic Profile and Effectiveness. J. Pers. Med. 2020, 10, 242. [Google Scholar] [CrossRef]
- Lai, K.L.; Fang, Y.; Han, H.; Li, Q.; Zhang, S.; Li, H.Y.; Chow, S.F.; Lam, T.N.; Lee, W.Y.T. Orally-dissolving film for sublingual and buccal delivery of ropinirole. Colloids Surf. B Biointerfaces 2018, 163, 9–18. [Google Scholar] [CrossRef]
- Kontogiannidou, E.; Andreadis, D.A.; Zografos, A.L.; Nazar, H.; Klepetsanis, P.; van der Merwe, S.M.; Fatouros, D.G. Ex vivo buccal drug delivery of ropinirole hydrochloride in the presence of permeation enhancers: The effect of charge. Pharm. Dev. Technol. 2017, 22, 1017–1021. [Google Scholar] [CrossRef]
- De Caro, V.; Giandalia, G.; Siragusa, M.G.; Sutera, F.M.; Giannola, L.I. New prospective in treatment of Parkinson’s disease: Studies on permeation of ropinirole through buccal mucosa. Int. J. Pharm. 2012, 429, 78–83. [Google Scholar] [CrossRef]
- Hua, S. Advances in Nanoparticulate Drug Delivery Approaches for Sublingual and Buccal Administration. Front. Pharmacol. 2019, 10, 1328. [Google Scholar] [CrossRef]
- Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release 2020, 320, 125–141. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: A mini review. J. Drug Target. 2015, 23, 775–788. [Google Scholar] [CrossRef]
- Rao, M.; Agrawal, D.K.; Shirsath, C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev. Ind. Pharm. 2017, 43, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Almehmadi, M.; Alsaiari, A.A.; Kamal, M.; Alshammari, M.K.; Alzahrani, M.O.; Almaysari, F.K.; Alzahrani, A.O.; Elkerdasy, A.F.; Singh, S.K. Intranasal Delivery of a Silymarin Loaded Microemulsion for the Effective Treatment of Parkinson’s Disease in Rats: Formulation, Optimization, Characterization, and In Vivo Evaluation. Pharmaceutics 2023, 15, 618. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Xie, L.; Lv, L.; Chen, J.; Feng, F.; Liu, W.; Han, L.; Liu, F. Intranasally administered thermosensitive gel for brain-targeted delivery of rhynchophylline to treat Parkinson’s disease. Colloids Surf. B Biointerfaces 2023, 222, 113065. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H. Intranasal delivery of mitochondrial protein humanin rescues cell death and promotes mitochondrial function in Parkinson’s disease. Theranostics 2023, 13, 3330–3345. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, V.; Wairkar, S.; Gaud, R.; Bajaj, A.; Meshram, P. Brain targeted delivery of mucoadhesive thermosensitive nasal gel of selegiline hydrochloride for treatment of Parkinson’s disease. J. Drug Target. 2018, 26, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Chroni, A.; Mavromoustakos, T.; Pispas, S. Biocompatible PEO-b-PCL Nanosized Micelles as Drug Carriers: Structure and Drug-Polymer Interactions. Nanomaterials 2020, 10, 1872. [Google Scholar] [CrossRef]
- Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149–173. [Google Scholar] [CrossRef]
- Wang, H.; Williams, G.R.; Wu, J.; Wu, J.; Niu, S.; Xie, X.; Li, S.; Zhu, L.M. Pluronic F127-based micelles for tumor-targeted bufalin delivery. Int. J. Pharm. 2019, 559, 289–298. [Google Scholar] [CrossRef]
- Merkus, F.W.; Verhoef, J.C.; Marttin, E.; Romeijn, S.G.; van der Kuy, P.H.; Hermens, W.A.; Schipper, N.G. Cyclodextrins in nasal drug delivery. Adv. Drug Deliv. Rev. 1999, 36, 41–57. [Google Scholar] [CrossRef]
- Khodaverdi, E.; Heidari, Z.; Tabassi, S.A.; Tafaghodi, M.; Alibolandi, M.; Tekie, F.S.; Khameneh, B.; Hadizadeh, F. Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property. AAPS PharmSciTech 2015, 16, 140–149. [Google Scholar] [CrossRef]
- Xia, Y.; Li, L.; Huang, X.; Wang, Z.; Zhang, H.; Gao, J.; Du, Y.; Chen, W.; Zheng, A. Performance and toxicity of different absorption enhancers used in the preparation of Poloxamer thermosensitive in situ gels for ketamine nasal administration. Drug Dev. Ind. Pharm. 2020, 46, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Manta, K.; Papakyriakopoulou, P.; Nikolidaki, A.; Balafas, E.; Kostomitsopoulos, N.; Banella, S.; Colombo, G.; Valsami, G. Comparative Serum and Brain Pharmacokinetics of Quercetin after Oral and Nasal Administration to Rats as Lyophilized Complexes with β-Cyclodextrin Derivatives and Their Blends with Mannitol/Lecithin Microparticles. Pharmaceutics 2023, 15, 2036. [Google Scholar] [CrossRef] [PubMed]
- Papakyriakopoulou, P.; Balafas, E.; Colombo, G.; Rekkas, D.M.; Kostomitsopoulos, N.; Valsami, G. Nose-to-Brain delivery of donepezil hydrochloride following administration of an HPMC-Me-β-CD-PEG400 nasal film in mice. J. Drug Deliv. Sci. Technol. 2023, 84, 104463. [Google Scholar] [CrossRef]
- Lewis, A.L.; Jordan, F.; Illum, L. CriticalSorb™: Enabling systemic delivery of macromolecules via the nasal route. Drug Deliv. Transl. Res. 2013, 3, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.; Castiglione, F.; Mele, A.; da Silva, M.A.; Grillo, I.; González-Gaitano, G.; Dreiss, C.A. Competitive and Synergistic Interactions between Polymer Micelles, Drugs, and Cyclodextrins: The Importance of Drug Solubilization Locus. Langmuir 2016, 32, 13174–13186. [Google Scholar] [CrossRef] [PubMed]
- Haley, R.M.; Gottardi, R.; Langer, R.; Mitchell, M.J. Cyclodextrins in drug delivery: Applications in gene and combination therapy. Drug Deliv. Transl. Res. 2020, 10, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Kerwin, B.A. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: Structure and degradation pathways. J. Pharm. Sci. 2008, 97, 2924–2935. [Google Scholar] [CrossRef]
- Cirpanli, Y.; Bilensoy, E.; Lale Doğan, A.; Caliş, S. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Eur. J. Pharm. Biopharm. 2009, 73, 82–89. [Google Scholar] [CrossRef]
- Kuplennik, N.; Sosnik, A. Enhanced Nanoencapsulation of Sepiapterin within PEG-PCL Nanoparticles by Complexation with Triacetyl-Beta Cyclodextrin. Molecules 2019, 24, 2715. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Ji, Q.; Qiu, L. Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomedicine 2015, 11, 175–184. [Google Scholar] [CrossRef]
- Gao, Y.; Li, G.; Zhou, Z.; Guo, L.; Liu, X. Supramolecular assembly of poly(β-cyclodextrin) block copolymer and benzimidazole-poly(ε-caprolactone) based on host-guest recognition for drug delivery. Colloids Surf. B Biointerfaces 2017, 160, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, N.; Wang, H.; Li, G.; Tao, Q. pH sensitive supramolecular vesicles from cyclodextrin graft copolymer and benzimidazole ended block copolymer as dual drug carriers. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 733–740. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, J.; Jin, Y.; Qiu, L. Folate-conjugated beta-cyclodextrin-based polymeric micelles with enhanced doxorubicin antitumor efficacy. Colloids Surf. B Biointerfaces 2014, 122, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.J.; He, F.; Huang, L.; Xiao, L.; Yang, G. Supramolecular hydrogels based on poly (ethylene glycol)-poly (lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system. Carbohydr. Polym. 2018, 194, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, H.; Li, J.; Deng, Z.; Li, L.; Liu, J.; Yuan, J.; Gao, P.; Yang, Y.; Zhong, S. Micelles via self-assembly of amphiphilic beta-cyclodextrin block copolymers as drug carrier for cancer therapy. Colloids Surf. B Biointerfaces 2019, 183, 110425. [Google Scholar] [CrossRef]
- Simões, S.M.; Veiga, F.; Torres-Labandeira, J.J.; Ribeiro, A.C.; Sandez-Macho, M.I.; Concheiro, A.; Alvarez-Lorenzo, C. Syringeable Pluronic-α-cyclodextrin supramolecular gels for sustained delivery of vancomycin. Eur. J. Pharm. Biopharm. 2012, 80, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, T.; Prezotti, F.; Araújo, F.; Lopes, C.; Loureiro, A.; Marques, S.; Sarmento, B. Third-generation solid dispersion combining Soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol. Int. J. Pharm. 2021, 595, 120245. [Google Scholar] [CrossRef]
- Prasad Kushwaha, J.; Baidya, D.; Patil, S. Harmine-loaded galactosylated pluronic F68-gelucire 44/14 mixed micelles for liver targeting. Drug Dev. Ind. Pharm. 2019, 45, 1361–1368. [Google Scholar] [CrossRef]
- Patil, S.; Choudhary, B.; Rathore, A.; Roy, K.; Mahadik, K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine 2015, 22, 1103–1111. [Google Scholar] [CrossRef]
- Kanade, R.; Boche, M.; Pokharkar, V. Self-Assembling Raloxifene Loaded Mixed Micelles: Formulation Optimization, In Vitro Cytotoxicity and In Vivo Pharmacokinetics. AAPS PharmSciTech 2018, 19, 1105–1115. [Google Scholar] [CrossRef]
- Hou, J.; Wang, J.; Sun, E.; Yang, L.; Yan, H.M.; Jia, X.B.; Zhang, Z.H. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers. Drug Deliv. 2016, 23, 3248–3256. [Google Scholar] [CrossRef]
- Barcia, E.; Boeva, L.; García-García, L.; Slowing, K.; Fernández-Carballido, A.; Casanova, Y.; Negro, S. Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv. 2017, 24, 1112–1123. [Google Scholar] [CrossRef] [PubMed]
- Dudhipala, N.; Gorre, T. Neuroprotective Effect of Ropinirole Lipid Nanoparticles Enriched Hydrogel for Parkinson’s Disease: In Vitro, Ex Vivo, Pharmacokinetic and Pharmacodynamic Evaluation. Pharmaceutics 2020, 12, 448. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.H.; Prenner, E.J. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J. Pharm. Bioallied Sci. 2011, 3, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Knopp, M.M.; Löbmann, K.; Elder, D.P.; Rades, T.; Holm, R. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2016, 87, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Pérez-González, M.L.L.; González-de la Rosa, C.H.; Pérez-Hernández, G.; Beltrán, H.I. Nanostructured oleic acid/polysorbate 80 emulsions with diminished toxicity in NL-20 cell line: Insights of potential drug carriers. Colloids Surf. B Biointerfaces 2020, 187, 110758. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Nasser, N.M.; Migahed, M.A.; Kandil, N.G. Effect of chemical structure on the cloud point of some new non-ionic surfactants based on bisphenol in relation to their surface active properties. Egypt. J. Pet. 2011, 20, 59–66. [Google Scholar] [CrossRef]
- De Melo, C.M.; Da Silva, A.L.; De Melo, K.R.; Da Silva, P.C.D.; de Souza, M.L.; de Sousa, A.L.M.D.; Rabello, M.M.; Véras, L.M.C.; Rolim, L.A.; Rolim Neto, P.J. In silico and in vitro study of epiisopiloturine/hydroxypropyl-β-cyclodextrin inclusion complexes obtained by different methods. J. Drug Deliv. Sci. Technol. 2021, 65, 102658. [Google Scholar] [CrossRef]
- Palli, V.; Leonis, G.; Zoupanou, N.; Georgiou, N.; Chountoulesi, M.; Naziris, N.; Tzeli, D.; Demetzos, C.; Valsami, G.; Marousis, K.D.; et al. Losartan Interactions with 2-Hydroxypropyl-β-CD. Molecules 2022, 27, 2421. [Google Scholar] [CrossRef]
- Figueiras, A.; Cardoso, O.; Veiga, F.; Carvalho, R.; Ballarò, G. Pharmaceutica Analytica Acta Preparation and characterization of Trimethoprim inclusion complex with Methyl-β-Cyclodextrin and determination of its antimicrobial activity. Pharm. Anal. Acta 2015, 6, 405–409. [Google Scholar]
- Danciu, C.; Soica, C.; Csanyi, E.; Ambrus, R.; Feflea, S.; Peev, C.; Dehelean, C. Changes in the anti-inflammatory activity of soy isoflavonoid genistein versus genistein incorporated in two types of cyclodextrin derivatives. Chem. Cent. J. 2012, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Figueiras, A.; Santos, D.; Veiga, F. Preparation and solid-state characterization of inclusion complexes formed between miconazole and methyl-beta-cyclodextrin. AAPS PharmSciTech 2008, 9, 1102–1109. [Google Scholar] [CrossRef]
- Soares da Silva, L.F.; do Carmo, F.A.; de Almeida Borges, V.R.; Monteiro, L.M.; Rodrigues, C.R.; Cabral, L.M.; de Sousa, V.P. Preparation and evaluation of lidocaine hydrochloride in cyclodextrin inclusion complexes for development of stable gel in association with chlorhexidine gluconate for urogenital use. Int. J. Nanomed. 2011, 6, 1143–1154. [Google Scholar] [CrossRef]
- Talegaonkar, S.; Khan, A.; Khar, R.; Ahmad, F.; Iqbal, Z. Development and characterization of paracetamol complexes with Hydroxypropyl-β-Cyclodextrin. Iran. J. Pharm. Res. 2007, 6, 95–99. [Google Scholar]
- Alghaith, A.F.; Mahrous, G.M.; Zidan, D.E.; Alhakamy, N.A.; Alamoudi, A.J.; Radwan, A.A. Preparation, characterization, dissolution, and permeation of flibanserin—2-HP-β-cyclodextrin inclusion complexes. Saudi Pharm. J. 2021, 29, 963–975. [Google Scholar] [CrossRef]
- Gavini, E.; Spada, G.; Rassu, G.; Cerri, G.; Brundu, A.; Cossu, M.; Sorrenti, M.; Giunchedi, P. Development of solid nanoparticles based on hydroxypropyl-β-cyclodextrin aimed for the colonic transmucosal delivery of diclofenac sodium. J. Pharm. Pharmacol. 2011, 63, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Li, T.; Wang, X.; Chu, W.; Cai, M.; Xie, J.; Ni, H. The mechanism of bensulfuron-methyl complexation with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin and effect on soil adsorption and bio-activity. Sci. Rep. 2019, 9, 1882. [Google Scholar] [CrossRef]
- Mazyed, E.A.; Badria, F.A.; ElNaggar, M.H.; El-Masry, S.M.; Helmy, S.A. Development of Cyclodextrin-Functionalized Transethoniosomes of 6-Gingerol: Statistical Optimization, In Vitro Characterization and Assessment of Cytotoxic and Anti-Inflammatory Effects. Pharmaceutics 2022, 14, 1170. [Google Scholar] [CrossRef]
- Dubey, P.; Barker, S.A.; Craig, D.Q.M. Design and Characterization of Cyclosporine A-Loaded Nanofibers for Enhanced Drug Dissolution. ACS Omega 2020, 5, 1003–1013. [Google Scholar] [CrossRef]
- Palacio, J.; Agudelo, N.; Lopez, B. PLA/Pluronic (R) nanoparticles as potential oral delivery systems: Preparation, colloidal and chemical stability, and loading capacity. J. Appl. Polym. Sci. 2016, 133, 33. [Google Scholar] [CrossRef]
- Saher, O.; Ghorab, D.M.; Mursi, N.M. Preparation and in vitro/in vivo evaluation of antimicrobial ocular in situ gels containing a disappearing preservative for topical treatment of bacterial conjunctivitis. Pharm. Dev. Technol. 2016, 21, 600–610. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, M.C.O.; da Silva, P.B.; Radicchi, M.A.; Andrade, B.Y.G.; de Oliveira, J.V.; Venus, T.; Merker, C.; Estrela-Lopis, I.; Longo, J.P.F.; Báo, S.N. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J. Nanobiotechnol. 2020, 18, 43. [Google Scholar] [CrossRef]
- Sayed, S.; Elsharkawy, F.M.; Amin, M.M.; Shamsel-Din, H.A.; Ibrahim, A.B. Brain targeting efficiency of intranasal clozapine-loaded mixed micelles following radio labeling with Technetium-99m. Drug Deliv. 2021, 28, 1524–1538. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Pande, V. Oleic Acid Coated Gelatin Nanoparticles Impregnated Gel for Sustained Delivery of Zaltoprofen: Formulation and Textural Characterization. Adv. Pharm. Bull. 2015, 5, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Lazaratos, M.; Karathanou, K.; Mainas, E.; Chatzigoulas, A.; Pippa, N.; Demetzos, C.; Cournia, Z. Coating of magnetic nanoparticles affects their interactions with model cell membranes. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129671. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, P.X. Polymeric core-shell assemblies mediated by host-guest interactions: Versatile nanocarriers for drug delivery. Angew. Chem. Int. Ed. 2009, 48, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Santos Akkari, A.C.; Ramos Campos, E.V.; Keppler, A.F.; Fraceto, L.F.; de Paula, E.; Tófoli, G.R.; de Araujo, D.R. Budesonide-hydroxypropyl-β-cyclodextrin inclusion complex in binary poloxamer 407/403 system for ulcerative colitis treatment: A physico-chemical study from micelles to hydrogels. Colloids Surf. B Biointerfaces 2016, 138, 138–147. [Google Scholar] [CrossRef]
- Lin, H.R.; Chang, P.C. Novel pluronic-chitosan micelle as an ocular delivery system. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 689–699. [Google Scholar] [CrossRef]
- Bin Jardan, Y.A.; Ahad, A.; Raish, M.; Al-Mohizea, A.M.; Al-Jenoobi, F.I. Microwave-Assisted Formation of Ternary Inclusion Complex of Pterostilbene. Pharmaceuticals 2023, 16, 1641. [Google Scholar] [CrossRef]
- Di Donato, C.; Iacovino, R.; Isernia, C.; Malgieri, G.; Varela-Garcia, A.; Concheiro, A.; Alvarez-Lorenzo, C. Polypseudorotaxanes of Pluronic® F127 with Combinations of α- and β-Cyclodextrins for Topical Formulation of Acyclovir. Nanomaterials 2020, 10, 613. [Google Scholar] [CrossRef]
- Kalogeropoulou, F.; Papailiou, D.; Protopapa, C.; Siamidi, A.; Tziveleka, L.A.; Pippa, N.; Vlachou, M. Design and Development of Low- and Medium-Viscosity Alginate Beads Loaded with Pluronic(®) F-127 Nanomicelles. Materials 2023, 16, 4715. [Google Scholar] [CrossRef] [PubMed]
- Kontogiannis, O.; Selianitis, D.; Perinelli, D.R.; Bonacucina, G.; Pippa, N.; Gazouli, M.; Pispas, S. Non-Ionic Surfactant Effects on Innate Pluronic 188 Behavior: Interactions, and Physicochemical and Biocompatibility Studies. Int. J. Mol. Sci. 2022, 23, 13814. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wen, Y.; Zhang, Y.; Zheng, K.; Ban, J.; Xie, Q.; Wen, Y.; Liu, Q.; Chen, F.; Mo, Z.; et al. Characterisation of 2-HP-β-cyclodextrin-PLGA nanoparticle complexes for potential use as ocular drug delivery vehicles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 4097–4108. [Google Scholar] [CrossRef] [PubMed]
- Chountoulesi, M.; Pippa, N.; Pispas, S.; Chrysina, E.D.; Forys, A.; Trzebicka, B.; Demetzos, C. Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. Int. J. Pharm. 2018, 550, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chountoulesi, M.; Antoniadi, L.; Angelis, A.; Lei, J.; Halabalaki, M.; Demetzos, C.; Mitakou, S.; Skaltsounis, L.A.; Wang, C. Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol. Food Chem. 2022, 384, 132470. [Google Scholar] [CrossRef]
- Bonechi, C.; Donati, A.; Tamasi, G.; Pardini, A.; Rostom, H.; Leone, G.; Lamponi, S.; Consumi, M.; Magnani, A.; Rossi, C. Chemical characterization of liposomes containing nutraceutical compounds: Tyrosol, hydroxytyrosol and oleuropein. Biophys. Chem. 2019, 246, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Martinez, J.; Zhao, J.; Al-Salami, H.; Dass, C.R. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: Statistical optimization and physicochemical characterization. Drug Dev. Ind. Pharm. 2020, 46, 1238–1252. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S.; Anwar, A.; Ayish, A.; Elliott, J.M.; Squires, A.M. Phytantriol based smart nano-carriers for drug delivery applications. Eur. J. Pharm. Sci. 2017, 101, 31–42. [Google Scholar] [CrossRef]
- Pippa, N.; Skouras, A.; Naziris, N.; Biondo, F.; Tiboni, M.; Katifelis, H.; Gazouli, M.; Demetzos, C.; Casettari, L. Incorporation of PEGylated δ-decalactone into lipid bilayers: Thermodynamic study and chimeric liposomes development. J. Liposome Res. 2020, 30, 209–217. [Google Scholar] [CrossRef]
- Selianitis, D.; Pispas, S. Multi-responsive poly(oligo(ethylene glycol)methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate) hyperbranched copolymers via reversible addition fragmentation chain transfer polymerization. Polym. Chem. 2021, 12, 6582–6593. [Google Scholar] [CrossRef]
- Kushan, E.; Senses, E. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127. ACS Appl. Bio Mater. 2021, 4, 3507–3517. [Google Scholar] [CrossRef] [PubMed]
- Pippa, N.; Psarommati, F.; Pispas, S.; Demetzos, C. The shape/morphology balance: A study of stealth liposomes via fractal analysis and drug encapsulation. Pharm. Res. 2013, 30, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Perinelli, D.R.; Casettari, L.; Cespi, M.; Fini, F.; Man, D.K.W.; Giorgioni, G.; Canala, S.; Lam, J.K.W.; Bonacucina, G.; Palmieri, G.F. Chemical–physical properties and cytotoxicity of N-decanoyl amino acid-based surfactants: Effect of polar heads. Colloids Surf. A Physicochem. Eng. Asp. 2016, 492, 38–46. [Google Scholar] [CrossRef]
- Mulet, X.; Boyd, B.J.; Drummond, C.J. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. J. Colloid. Interface Sci. 2013, 393, 1–20. [Google Scholar] [CrossRef]
- Pippa, N.; Naziris, N.; Stellas, D.; Massala, C.; Zouliati, K.; Pispas, S.; Demetzos, C.; Forys, A.; Marcinkowski, A.; Trzebicka, B. PEO-b-PCL grafted niosomes: The cooperativilty of amphiphilic components and their properties in vitro and in vivo. Colloids Surf. B Biointerfaces 2019, 177, 338–345. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, F.; Wang, N.; Meng, M.; Li, G. Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release. Int. J. Biol. Macromol. 2018, 116, 911–919. [Google Scholar] [CrossRef]
- Salatin, S.; Maleki Dizaj, S.; Yari Khosroushahi, A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int. 2015, 39, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Avachat, A.M.; Bornare, P.N.; Dash, R.R. Sustained release microspheres of ropinirole hydrochloride: Effect of process parameters. Acta Pharm. 2011, 61, 363–376. [Google Scholar] [CrossRef]
- Keck, T.; Leiacker, R.; Riechelmann, H.; Rettinger, G. Temperature profile in the nasal cavity. Laryngoscope 2000, 110, 651–654. [Google Scholar] [CrossRef]
- Hussein, N.; Omer, H.; Ismael, A.; Albed Alhnan, M.; Elhissi, A.; Ahmed, W. Spray-dried alginate microparticles for potential intranasal delivery of ropinirole hydrochloride: Development, characterization and histopathological evaluation. Pharm. Dev. Technol. 2020, 25, 290–299. [Google Scholar] [CrossRef]
- Marttin, E.; Verhoef, J.C.; Romeijn, S.G.; Merkus, F.W. Effects of absorption enhancers on rat nasal epithelium in vivo: Release of marker compounds in the nasal cavity. Pharm. Res. 1995, 12, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Pailla, S.R.; Talluri, S.; Rangaraj, N.; Ramavath, R.; Challa, V.S.; Doijad, N.; Sampathi, S. Intranasal Zotepine Nanosuspension: Intended for improved brain distribution in rats. DARU J. Pharm. Sci. 2019, 27, 541–556. [Google Scholar] [CrossRef]
- Saha, P.; Kathuria, H.; Pandey, M.M. Nose-to-brain delivery of rotigotine redispersible nanosuspension: In vitro and in vivo characterization. J. Drug Deliv. Sci. Technol. 2023, 79, 104049. [Google Scholar] [CrossRef]
- Chatzitaki, A.T.; Jesus, S.; Karavasili, C.; Andreadis, D.; Fatouros, D.G.; Borges, O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int. J. Pharm. 2020, 589, 119776. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, C.V.; Belgamwar, V.S. Ropinirole-dextran sulfate nanoplex for nasal administration against Parkinson’s disease: In silico molecular modeling and in vitro-ex vivo evaluation. Artif. Cells Nanomed. Biotechnol. 2017, 45, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Jafarieh, O.; Md, S.; Ali, M.; Baboota, S.; Sahni, J.K.; Kumari, B.; Bhatnagar, A.; Ali, J. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev. Ind. Pharm. 2015, 41, 1674–1681. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Belgamwar, V.S.; Tekade, A.R.; Surana, S.J. Novel surface modified polymer-lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: In vitro, ex vivo and in vivo pharmacodynamic evaluation. J. Mater. Sci. Mater. Med. 2013, 24, 2101–2115. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Zhang, L.; Wang, Q.; Zhang, D. Stability of nanosuspensions in drug delivery. J. Control. Release Off. J. Control. Release Soc. 2013, 172, 1126–1141. [Google Scholar] [CrossRef]
- Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. [Google Scholar] [CrossRef]
- de Souza Teixeira, L.; Vila Chagas, T.; Alonso, A.; Gonzalez-Alvarez, I.; Bermejo, M.; Polli, J.; Rezende, K.R. Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs. Pharmaceutics 2020, 12, 988. [Google Scholar] [CrossRef]
- Colombo, G.; Bortolotti, F.; Chiapponi, V.; Buttini, F.; Sonvico, F.; Invernizzi, R.; Quaglia, F.; Danesino, C.; Pagella, F.; Russo, P.; et al. Nasal powders of thalidomide for local treatment of nose bleeding in persons affected by hereditary hemorrhagic telangiectasia. Int. J. Pharm. 2016, 514, 229–237. [Google Scholar] [CrossRef] [PubMed]
Colloidal Dispersions | w/w | Rh (Cumulant) (nm) 1 | PDI 2 | Number of Peaks | Rh (Contin) (nm) 3 | Weight of Peak (%) | z-Potential (mV) |
---|---|---|---|---|---|---|---|
P407 | - | 97 | 0.49 | 3 |
|
| −20.5 ± 6.0 |
P407/Tw80 | 70:30 | 18 | 0.52 | 1 | 29 | 100% | −6.1 ± 2.0 |
(P407/Tw80)/MβCD | 80:20 | 106 | 0.32 | 2 |
|
| −12.9 ± 12.0 |
(P407/Tw80)/HPβCD | 80:20 | 100 | 0.30 | 2 |
|
| −6.9 ± 8.4 |
System | w/w | Temperature | I1/I3 |
---|---|---|---|
P407 | - | 25 °C | 1.28 |
P407 | - | 37 °C | 1.30 |
P407 | - | 50 °C | 1.19 |
P407/Tw80 | 70:30 | 25 °C | 1.19 |
P407/Tw80 | 70:30 | 37 °C | 1.31 |
P407/Tw80 | 70:30 | 50 °C | 1.24 |
(P407/Tw80)/MβCD | 80:20 | 25 °C | 1.29 |
(P407/Tw80)/MβCD | 80:20 | 37 °C | 1.35 |
(P407/Tw80)/MβCD | 80:20 | 50 °C | 1.20 |
(P407/Tw80)/HPβCD | 80:20 | 25 °C | 1.24 |
(P407/Tw80)/HPβCD | 80:20 | 37 °C | 1.37 |
(P407/Tw80)/HPβCD | 80:20 | 50 °C | 1.41 |
Sample | mDSC | HR-US (Sound Speed) | Surface Tension Measurements | |
---|---|---|---|---|
Temperature (°C) | Enthalpy (J/g) | Temperature (°C) | Surface Tension (mN/m) | |
P407 | 28.05 ± 0.11 | 0.175 ± 0.007 | 30.07 ± 1.11 | 38.61 ± 0.28 |
P407/Tw80 | 24.35 ± 0.36 | 0.220 ± 0.016 | 27.92 ± 1.34 | 37.41 ± 0.31 |
P407/Tw80/MβCD | 27.06 ± 0.23 | 0.116 ± 0.009 | 27.18 ± 1.43 | 38.26 ± 0.28 |
P407/Tw80/HPβCD | 25.53 ± 0.16 | 0.101 ± 0.008 | 27.57 ± 1.36 | 37.23 ± 0.87 |
Colloidal Dispersions | w/w | Rh (Cumulant) (nm) 1 | PDI 2 | Number of Peaks | Rh (Contin) (nm) 3 | Weight of Peak (%) |
---|---|---|---|---|---|---|
(P407/Tw80/MβCD)/RH | 10:1 | 80 | 0.51 | 2 |
|
|
(P407/Tw80/MβCD)/RH | 10:5 | 68 | 0.48 | 2 |
|
|
(P407/Tw80/HPβCD)/RH | 10:1 | 53 | 0.51 | 2 |
|
|
(P407/Tw80/HPβCD)/RH | 10:5 | 29 | 0.53 | 2 |
|
|
System | w/w | Permeated RH (% Loading Dose) | Mass Balance (%) | % of RH Dose Retained by Cellulose Membrane | |
---|---|---|---|---|---|
F1 | (P407/Tw80/MβCD)/RH | 10:1 | 93.56 ± 0.19 | 96.45 ± 0.85 | 0.50 ± 0.07 |
F2 | (P407/Tw80/MβCD)/RH | 10:5 | 92.09 ± 0.76 | 95.90 ± 2.52 | 0.40 ± 0.13 |
F3 | (P407/Tw80/HPβCD)/RH | 10:1 | 90.47 ± 4.46 | 93.60 ± 4.99 | 0.51 ± 0.01 |
F4 | (P407/Tw80/HPβCD)/RH | 10:5 | 95.81 ± 1.48 | 99.97 ± 1.43 | 0.37 ± 0.02 |
Control | RH solution (0.5 mg/mL) | - | 96.93 ± 2.11 | 99.52 ± 2.33 | 0.37 ± 0.04 |
System | Weight Ratio | Permeated RH (% Loading Dose) | Mass Balance (%) | % of RH Dose Retained by Nasal Mucosa Barrier | |
---|---|---|---|---|---|
F1 | (P407/Tw80/MβCD)/RH | 10:1 | 29.24 ± 1.60 | 87.85 ± 0.61 | 13.47 ± 0.86 |
F2 | (P407/Tw80/MβCD)/RH | 10:5 | 28.58 ± 1.03 | 96.29 ± 3.69 | 14.73 ± 2.02 |
F3 | (P407/Tw80/HPβCD)/RH | 10:1 | 22.26 ± 3.37 | 86.82 ± 1.24 | 25.80 ± 3.79 |
F4 | (P407/Tw80/HPβCD)/RH | 10:5 | 28.26 ± 0.76 | 90.53 ± 2.03 | 15.76 ± 1.80 |
Control | RH solution (0.5 mg/mL) | - | 19.62 ± 0.53 | 81.78 ± 2.36 | 18.10 ± 0.34 |
P407 | Tw80 | MβCD | HPβCD | RH | |
---|---|---|---|---|---|
Molecular formula | C572H1146O259 | C64H124O26 | C54H94O35 | C63H112O42 | C16H25ClN2O |
MW (g/mol) | 12600 | 1310 | 1303.3 | 1541.54 | 296.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saitani, E.-M.; Pippa, N.; Perinelli, D.R.; Forys, A.; Papakyriakopoulou, P.; Lagopati, N.; Bonacucina, G.; Trzebicka, B.; Gazouli, M.; Pispas, S.; et al. Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation. Int. J. Mol. Sci. 2024, 25, 1162. https://doi.org/10.3390/ijms25021162
Saitani E-M, Pippa N, Perinelli DR, Forys A, Papakyriakopoulou P, Lagopati N, Bonacucina G, Trzebicka B, Gazouli M, Pispas S, et al. Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation. International Journal of Molecular Sciences. 2024; 25(2):1162. https://doi.org/10.3390/ijms25021162
Chicago/Turabian StyleSaitani, Elmina-Marina, Natassa Pippa, Diego Romano Perinelli, Aleksander Forys, Paraskevi Papakyriakopoulou, Nefeli Lagopati, Giulia Bonacucina, Barbara Trzebicka, Maria Gazouli, Stergios Pispas, and et al. 2024. "Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation" International Journal of Molecular Sciences 25, no. 2: 1162. https://doi.org/10.3390/ijms25021162
APA StyleSaitani, E. -M., Pippa, N., Perinelli, D. R., Forys, A., Papakyriakopoulou, P., Lagopati, N., Bonacucina, G., Trzebicka, B., Gazouli, M., Pispas, S., & Valsami, G. (2024). Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation. International Journal of Molecular Sciences, 25(2), 1162. https://doi.org/10.3390/ijms25021162