EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms
<p>Structure of <span class="html-italic">EWSR1</span>. <span class="html-italic">EWSR1</span> spans about 40 kb within the 12.2 locus of chromosome 22. It is most closely surrounded by genes in both forward and reverse orientations encoding nuclear proteins involved in interactions between chromosomes and the cytoskeleton (<span class="html-italic">GAS2L1</span>), and inhibition of cellular proliferation (<span class="html-italic">RASL10A</span>), as well as <span class="html-italic">RHBDD3</span> that encodes an integral membrane protein predicted to be involved in protein metabolism. Its 17 exons generate a primary transcript that can give rise to various mature mRNAs by alternative splicing. Many of them, apparently, dictate translation of the corresponding polypeptides. The most well-documented alternative transcripts are depicted in the figure. Different colors of transcript variants represent spliced neighboring exons. The figure was created with <a href="http://Biorender.com" target="_blank">Biorender.com</a>.</p> "> Figure 2
<p>Structure and functions of EWSR1. Wild-type EWSR1 has an N-terminal low complexity domain (LCD) that is mainly composed of serine–tyrosine–glycine–glutamine (SYGQ) repeats. The LCD is the subject of extensive post-translational glycosylations and phosphorylations. The C-terminal half consists of multiple domains that affect EWSR1 affinity to distinct nucleic acid species. These include three arginine–glycine–glycine-rich domains (RGG) flanking a conserved RNA recognition motif (RRM) and a zinc finger domain (ZF). The RRM consists of four anti-parallel β-strands and two α-helices arranged in a β-α-β-β-α-β fold with side chains that stack with RNA bases. Specificity of RNA binding is determined by multiple contacts with surrounding amino acids in the RGG and ZF domains [<a href="#B47-ijms-25-13693" class="html-bibr">47</a>]. These interactions are affected by multiple post-translation modifications of the RGG and ZF motifs including arginine methylations and lysine acetylations, respectively. The figure was created with <a href="http://Biorender.com" target="_blank">Biorender.com</a>.</p> "> Figure 3
<p>Structure of <span class="html-italic">ATF1</span>. <span class="html-italic">ATF1</span> spans about 57 kb along the plus strand of the q13.12 locus of chromosome 12. It is most closely surrounded by genes in similar forward orientations encoding a transmembrane serine protease (<span class="html-italic">TMPRSS12</span>) involved in the regulation of chromosomal synapsis formation and double-strand break repair, and <span class="html-italic">DIP2B</span> encoding a polypeptide that is predicted to participate in DNA methylation, up- and downstream, respectively. The seven exons of <span class="html-italic">ATF1</span> generate a primary transcript that, via alternative splicing, can give rise to three protein-coding mature mRNAs (<span class="html-italic">ATF1-201</span>, <span class="html-italic">-204</span> and <span class="html-italic">205</span>) and a minimum of two additional transcripts (<span class="html-italic">ATF1-202</span> and -<span class="html-italic">203</span>) that undergo nonsense mRNA-mediated decay. Different colors of transcript variants represent spliced neighboring exons. The figure was created with <a href="http://Biorender.com" target="_blank">Biorender.com</a>.</p> "> Figure 4
<p>Variants of known <span class="html-italic">EWSR1::ATF1</span> fusion transcripts found in clear cell carcinomas. Numbers indicate exons of <span class="html-italic">EWSR1</span> and <span class="html-italic">ATF1</span>. Different colors of transcript variants represent spliced neighboring exons. The figure was created with <a href="http://Biorender.com" target="_blank">Biorender.com</a>.</p> "> Figure 5
<p>Structure of the most common EWSR1::ATF1 in CCS. EWSR1::ATF1 contains the N- and C-terminal regions of EWSR1 and ATF1, respectively. Black numbers represent amino acids of the full-length chimera, color-coded numbers refer to the portions of EWSR1 (red) and ATF1 (blue) fused in the chimeric proteins. The figure was created with <a href="http://Biorender.com" target="_blank">Biorender.com</a>.</p> ">
Abstract
:1. Introduction
2. The EWSR1 Gene
3. The t(12;22)(q13;q12) Translocation
4. The ATF1
5. The EWSR1::ATF1 Fusion Gene
6. Clinical Presentation of the EWSR1::ATF1 Fusion
7. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kuzminov, A. Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc. Natl. Acad. Sci. USA 2001, 98, 8241–8246. [Google Scholar] [CrossRef] [PubMed]
- Nassour, J.; Martien, S.; Martin, N.; Deruy, E.; Tomellini, E.; Malaquin, N.; Bouali, F.; Sabatier, L.; Wernert, N.; Pinte, S.; et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat. Commun. 2016, 7, 10399. [Google Scholar] [CrossRef] [PubMed]
- Rothkamm, K.; Kruger, I.; Thompson, L.H.; Lobrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell Biol. 2003, 23, 5706–5715. [Google Scholar] [CrossRef]
- Burssed, B.; Zamariolli, M.; Bellucco, F.T.; Melaragno, M.I. Mechanisms of structural chromosomal rearrangement formation. Mol. Cytogenet. 2022, 15, 23. [Google Scholar] [CrossRef]
- Kaplan, J.C.; Aurias, A.; Julier, C.; Prieur, M.; Szajnert, M.F. Human chromosome 22. J. Med. Genet. 1987, 24, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.A.; Yavor, A.M.; Viggiano, L.; Misceo, D.; Horvath, J.E.; Archidiacono, N.; Schwartz, S.; Rocchi, M.; Eichler, E.E. Human-specific duplication and mosaic transcripts: The recent paralogous structure of chromosome 22. Am. J. Hum. Genet. 2002, 70, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Stanyon, R.; O’Brien, P.C.; Ferguson-Smith, M.A.; Plesker, R.; Wienberg, J. Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 1999, 108, 393–400. [Google Scholar] [CrossRef]
- Dunham, I.; Shimizu, N.; Roe, B.A.; Chissoe, S.; Hunt, A.R.; Collins, J.E.; Bruskiewich, R.; Beare, D.M.; Clamp, M.; Smink, L.J.; et al. The DNA sequence of human chromosome 22. Nature 1999, 402, 489–495. [Google Scholar] [CrossRef]
- Rowley, J.D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973, 243, 290–293. [Google Scholar] [CrossRef]
- Nowell, P.C. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut 1962, 8, 65–66. [Google Scholar] [CrossRef] [PubMed]
- Verrma, S.P.; Dutta, T.K.; Vinod, K.V.; Dubashi, B.; Ariga, K.K. Philadelphia chromosome positive pre-T cell acute lymphoblastic leukemia: A rare case report and short review. Indian. J. Hematol. Blood Transfus. 2014, 30, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Gorthi, A.; Romero, J.C.; Loranc, E.; Cao, L.; Lawrence, L.A.; Goodale, E.; Iniguez, A.B.; Bernard, X.; Masamsetti, V.P.; Roston, S.; et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 2018, 555, 387–391. [Google Scholar] [CrossRef]
- Anderson, P.M.; Tu, Z.J.; Kilpatrick, S.E.; Trucco, M.; Hanna, R.; Chan, T. Routine EWS Fusion Analysis in the Oncology Clinic to Identify Cancer-Specific Peptide Sequence Patterns That Span Breakpoints in Ewing Sarcoma and DSRCT. Cancers 2023, 15, 1623. [Google Scholar] [CrossRef] [PubMed]
- Zucman, J.; Delattre, O.; Desmaze, C.; Epstein, A.L.; Stenman, G.; Speleman, F.; Fletchers, C.D.; Aurias, A.; Thomas, G. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat. Genet. 1993, 4, 341–345. [Google Scholar] [CrossRef]
- Mae, H.; Outani, H.; Imura, Y.; Chijimatsu, R.; Inoue, A.; Kotani, Y.; Yasuda, N.; Nakai, S.; Nakai, T.; Takenaka, S.; et al. Targeting the Clear Cell Sarcoma Oncogenic Driver Fusion Gene EWSR1::ATF1 by HDAC Inhibition. Cancer Res. Commun. 2023, 3, 1152–1165. [Google Scholar] [CrossRef]
- Ren, H.; Rassekh, S.R.; Lacson, A.; Lee, C.H.; Dickson, B.C.; Chung, C.T.; Lee, A.F. Malignant Mesothelioma With EWSR1-ATF1 Fusion in Two Adolescent Male Patients. Pediatr. Dev. Pathol. 2021, 24, 570–574. [Google Scholar] [CrossRef]
- Garnier, L.; Fenouil, T.; Pissaloux, D.; Ameli, R.; Ducray, F.; Meyronet, D.; Honnorat, J. Intracranial non-myxoid angiomatoid fibrous histiocytoma with EWSR1-CREB1 transcript fusion treated with doxorubicin: A case report. Mol. Clin. Oncol. 2021, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Aghajan, Y.; Malicki, D.M.; Levy, M.L.; Crawford, J.R. Atypical central neurocytoma with novel EWSR1-ATF1 fusion and MUTYH mutation detected by next-generation sequencing. BMJ Case Rep. 2019, 12, bcr-2018-226455. [Google Scholar] [CrossRef] [PubMed]
- Acosta, A.M.; Bridge, J.A.; Dal Cin, P.S.; Sholl, L.M.; Cornejo, K.M.; Fletcher, C.D.M.; Ulbright, T.M. Inflammatory and Nested Testicular Sex Cord Tumor: A Novel Neoplasm With Aggressive Clinical Behavior and Frequent EWSR1::ATF1 Gene Fusions. Am. J. Surg. Pathol. 2023, 47, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Ii, T.; Inamori, O.; Konishi, E.; Yoshida, A. Primary Pulmonary Myxoid Sarcoma with EWSR1::ATF1 Fusion: A Case Report. Int. J. Surg. Pathol. 2023, 31, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.T.; Hajra, D.; Singh, S.; Nagaraju, S.; El-Maghraby, H. Intracranial Myxoid Mesenchymal Tumour with EWSR1-ATF1 Fusion Sans Myxoid Stroma—Report of A Newer Entity with Brief Review of Literature. Neurol. India 2022, 70, 1639–1642. [Google Scholar] [CrossRef]
- Riggi, N.; Cironi, L.; Suva, M.L.; Stamenkovic, I. Sarcomas: Genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J. Pathol. 2007, 213, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Plougastel, B.; Zucman, J.; Peter, M.; Thomas, G.; Delattre, O. Genomic structure of the EWS gene and its relationship to EWSR1, a site of tumor-associated chromosome translocation. Genomics 1993, 18, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Zucman, J.; Delattre, O.; Desmaze, C.; Plougastel, B.; Joubert, I.; Melot, T.; Peter, M.; De Jong, P.; Rouleau, G.; Aurias, A.; et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992, 5, 271–277. [Google Scholar] [CrossRef]
- Pedersen, E.A.; Menon, R.; Bailey, K.M.; Thomas, D.G.; Van Noord, R.A.; Tran, J.; Wang, H.; Qu, P.P.; Hoering, A.; Fearon, E.R.; et al. Activation of Wnt/beta-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States. Cancer Res. 2016, 76, 5040–5053. [Google Scholar] [CrossRef]
- Hayashi, M.; Baker, A.; Goldstein, S.D.; Albert, C.M.; Jackson, K.W.; McCarty, G.; Kahlert, U.D.; Loeb, D.M. Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft model of Ewing sarcoma. Oncotarget 2017, 8, 78265–78276. [Google Scholar] [CrossRef]
- Silveira, D.A.; Gupta, S.; da Cunha Jaeger, M.; Brunetto de Farias, C.; Mombach, J.C.M.; Sinigaglia, M. A logical model of Ewing sarcoma cell epithelial-to-mesenchymal transition supports the existence of hybrid cellular phenotypes. FEBS Lett. 2023, 597, 2446–2460. [Google Scholar] [CrossRef]
- Bertolotti, A.; Melot, T.; Acker, J.; Vigneron, M.; Delattre, O.; Tora, L. EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: Interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol. Cell Biol. 1998, 18, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, N.; Vacik, T.; Machon, O.; Vlcek, C.; Scalabrin, S.; Speth, M.; Diep, D.; Krauss, S.; Kozmik, Z. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J. Biol. Chem. 2007, 282, 1225–1237. [Google Scholar] [CrossRef]
- Kurahashi, T.; Nomura, T.; Kanei-Ishii, C.; Shinkai, Y.; Ishii, S. The Wnt-NLK signaling pathway inhibits A-Myb activity by inhibiting the association with coactivator CBP and methylating histone H3. Mol. Biol. Cell 2005, 16, 4705–4713. [Google Scholar] [CrossRef] [PubMed]
- Amabis, J.M.; Reinach, F.C.; Andrews, N. Spermatogenesis in Trichosia pubescens (Diptera:Sciaridae). J. Cell Sci. 1979, 36, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Howe, L.R.; Crawford, H.C.; Subbaramaiah, K.; Hassell, J.A.; Dannenberg, A.J.; Brown, A.M. PEA3 is up-regulated in response to Wnt1 and activates the expression of cyclooxygenase-2. J. Biol. Chem. 2001, 276, 20108–20115. [Google Scholar] [CrossRef]
- Zucman-Rossi, J.; Batzer, M.A.; Stoneking, M.; Delattre, O.; Thomas, G. Interethnic polymorphism of EWS intron 6: Genome plasticity mediated by Alu retroposition and recombination. Hum. Genet. 1997, 99, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Ouchida, M.; Lee, L.; Gatalica, Z.; Rao, V.N.; Reddy, E.S. The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene 1994, 9, 3087–3097. [Google Scholar]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2024. Nucleic Acids Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef]
- Klevernic, I.V.; Morton, S.; Davis, R.J.; Cohen, P. Phosphorylation of Ewing’s sarcoma protein (EWS) and EWS-Fli1 in response to DNA damage. Biochem. J. 2009, 418, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Kakuo, M.; Horii, T.; Tonomura, N.; Sato, R.; Ogawa, M.; Okajima, T.; Kamemura, K. Evidence that only EWS among the FET proteins acquires a low partitioning property for the hyperosmotic stress response by O-GlcNAc glycosylation on its low-complexity domain. Exp. Cell Res. 2023, 424, 113504. [Google Scholar] [CrossRef]
- Luo, Y.; Blechingberg, J.; Fernandes, A.M.; Li, S.; Fryland, T.; Borglum, A.D.; Bolund, L.; Nielsen, A.L. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions. BMC Genomics 2015, 16, 929. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.N.; Sojitra, K.A.; Sohn, E.J.; Moreno-Romero, A.K.; Baudin, A.; Xu, X.; Mittal, J.; Libich, D.S. Insights into Molecular Diversity within the FUS/EWS/TAF15 Protein Family: Unraveling Phase Separation of the N-Terminal Low-Complexity Domain from RNA-Binding Protein EWS. J. Am. Chem. Soc. 2024, 146, 8071–8085. [Google Scholar] [CrossRef]
- Johnson, C.N.; Sojitra, K.A.; Sohn, E.J.; Moreno-Romero, A.K.; Baudin, A.; Xu, X.; Mittal, J.; Libich, D.S. Insights into Molecular Diversity within the FET Family: Unraveling Phase Separation of the N-Terminal Low Complexity Domain from RNA-Binding Protein EWS. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ng, K.P.; Potikyan, G.; Savene, R.O.; Denny, C.T.; Uversky, V.N.; Lee, K.A. Multiple aromatic side chains within a disordered structure are critical for transcription and transforming activity of EWS family oncoproteins. Proc. Natl. Acad. Sci. USA 2007, 104, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Boulay, G.; Sandoval, G.J.; Riggi, N.; Iyer, S.; Buisson, R.; Naigles, B.; Awad, M.E.; Rengarajan, S.; Volorio, A.; McBride, M.J.; et al. Cancer-Specific Retargeting of BAF Complexes by a Prion-like Domain. Cell 2017, 171, 163–178.e19. [Google Scholar] [CrossRef] [PubMed]
- Lessnick, S.L.; Braun, B.S.; Denny, C.T.; May, W.A. Multiple domains mediate transformation by the Ewing’s sarcoma EWS/FLI-1 fusion gene. Oncogene 1995, 10, 423–431. [Google Scholar] [PubMed]
- Lee, J.; Nguyen, P.T.; Shim, H.S.; Hyeon, S.J.; Im, H.; Choi, M.H.; Chung, S.; Kowall, N.W.; Lee, S.B.; Ryu, H. EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1938–1945. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Currie, S.L.; Rosen, M.K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem. 2017, 292, 19110–19120. [Google Scholar] [CrossRef] [PubMed]
- Maris, C.; Dominguez, C.; Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005, 272, 2118–2131. [Google Scholar] [CrossRef] [PubMed]
- Kamemura, K. O-GlcNAc glycosylation stoichiometry of the FET protein family: Only EWS is glycosylated with a high stoichiometry. Biosci. Biotechnol. Biochem. 2017, 81, 541–546. [Google Scholar] [CrossRef]
- Li, Q.; Kamemura, K. Adipogenesis stimulates the nuclear localization of EWS with an increase in its O-GlcNAc glycosylation in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2014, 450, 588–592. [Google Scholar] [CrossRef]
- Kamemura, K.; Abe, H. The glycosylation stoichiometry of EWS species in neuronal cells. Biosci. Biotechnol. Biochem. 2017, 81, 165–167. [Google Scholar] [CrossRef]
- Yoon, Y.; Park, H.; Kim, S.; Nguyen, P.T.; Hyeon, S.J.; Chung, S.; Im, H.; Lee, J.; Lee, S.B.; Ryu, H. Genetic Ablation of EWS RNA Binding Protein 1 (EWSR1) Leads to Neuroanatomical Changes and Motor Dysfunction in Mice. Exp. Neurobiol. 2018, 27, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Verdile, V.; Svetoni, F.; La Rosa, P.; Ferrante, G.; Cesari, E.; Sette, C.; Paronetto, M.P. EWS splicing regulation contributes to balancing Foxp1 isoforms required for neuronal differentiation. Nucleic Acids Res. 2022, 50, 3362–3378. [Google Scholar] [CrossRef]
- Selig, E.E.; Bhura, R.; White, M.R.; Akula, S.; Hoffman, R.D.; Tovar, C.N.; Xu, X.; Booth, R.E.; Libich, D.S. Biochemical and biophysical characterization of the nucleic acid binding properties of the RNA/DNA binding protein EWS. Biopolymers 2023, 114, e23536. [Google Scholar] [CrossRef]
- Duggimpudi, S.; Larsson, E.; Nabhani, S.; Borkhardt, A.; Hoell, J.I. The cell cycle regulator CCDC6 is a key target of RNA-binding protein EWS. PLoS ONE 2015, 10, e0119066. [Google Scholar] [CrossRef]
- Huang, L.; Kuwahara, I.; Matsumoto, K. EWS represses cofilin 1 expression by inducing nuclear retention of cofilin 1 mRNA. Oncogene 2014, 33, 2995–3003. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Nakai, Y.; Kuwahara, I.; Matsumoto, K. PRAS40 is a functionally critical target for EWS repression in Ewing sarcoma. Cancer Res. 2012, 72, 1260–1269. [Google Scholar] [CrossRef]
- Li, K.K.; Lee, K.A. Transcriptional activation by the Ewing’s sarcoma (EWS) oncogene can be cis-repressed by the EWS RNA-binding domain. J. Biol. Chem. 2000, 275, 23053–23058. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Hwang, Y.J.; Jung, M.K.; Choe, J.; Kim, Y.; Kim, S.; Lee, C.J.; Ahn, H.; Lee, J.; Kowall, N.W.; et al. A multifunctional protein EWS regulates the expression of Drosha and microRNAs. Cell Death Differ. 2014, 21, 136–145. [Google Scholar] [CrossRef]
- Sohn, E.J.; Park, J.; Kang, S.I.; Wu, Y.P. Accumulation of pre-let-7g and downregulation of mature let-7g with the depletion of EWS. Biochem. Biophys. Res. Commun. 2012, 426, 89–93. [Google Scholar] [CrossRef]
- Svetoni, F.; De Paola, E.; La Rosa, P.; Mercatelli, N.; Caporossi, D.; Sette, C.; Paronetto, M.P. Post-transcriptional regulation of FUS and EWS protein expression by miR-141 during neural differentiation. Hum. Mol. Genet. 2017, 26, 2732–2746. [Google Scholar] [CrossRef] [PubMed]
- Alex, D.; Lee, K.A. RGG-boxes of the EWS oncoprotein repress a range of transcriptional activation domains. Nucleic Acids Res. 2005, 33, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.D.; Kako, K.; Kakiuchi, M.; Park, G.G.; Fukamizu, A. EWS is a substrate of type I protein arginine methyltransferase, PRMT8. Int. J. Mol. Med. 2008, 22, 309–315. [Google Scholar] [CrossRef]
- Araya, N.; Hiraga, H.; Kako, K.; Arao, Y.; Kato, S.; Fukamizu, A. Transcriptional down-regulation through nuclear exclusion of EWS methylated by PRMT1. Biochem. Biophys. Res. Commun. 2005, 329, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Belyanskaya, L.L.; Gehrig, P.M.; Gehring, H. Exposure on cell surface and extensive arginine methylation of ewing sarcoma (EWS) protein. J. Biol. Chem. 2001, 276, 18681–18687. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.K.; Stahlberg, A.; Arvidsson, Y.; Olofsson, A.; Semb, H.; Stenman, G.; Nilsson, O.; Aman, P. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 2008, 9, 37. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Liu, M.; Liu, L.; Yang, X.; Zhang, Y.; Bie, J.; Li, Y.; Ren, M.; Song, C.; et al. Acetylation dependent translocation of EWSR1 regulates CHK2 alternative splicing in response to DNA damage. Oncogene 2022, 41, 3694–3704. [Google Scholar] [CrossRef]
- Deloulme, J.C.; Prichard, L.; Delattre, O.; Storm, D.R. The prooncoprotein EWS binds calmodulin and is phosphorylated by protein kinase C through an IQ domain. J. Biol. Chem. 1997, 272, 27369–27377. [Google Scholar] [CrossRef]
- Bahler, M.; Rhoads, A. Calmodulin signaling via the IQ motif. FEBS Lett. 2002, 513, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.J.; Hinrichs, S.H. Phosphorylation of the EWS IQ domain regulates transcriptional activity of the EWS/ATF1 and EWS/FLI1 fusion proteins. Oncogene 2001, 20, 1756–1764. [Google Scholar] [CrossRef]
- Hume, D.A.; Sasmono, T.; Himes, S.R.; Sharma, S.M.; Bronisz, A.; Constantin, M.; Ostrowski, M.C.; Ross, I.L. The Ewing sarcoma protein (EWS) binds directly to the proximal elements of the macrophage-specific promoter of the CSF-1 receptor (csf1r) gene. J. Immunol. 2008, 180, 6733–6742. [Google Scholar] [CrossRef]
- Cho, J.; Shen, H.; Yu, H.; Li, H.; Cheng, T.; Lee, S.B.; Lee, B.C. Ewing sarcoma gene Ews regulates hematopoietic stem cell senescence. Blood 2011, 117, 1156–1166. [Google Scholar] [CrossRef]
- Guipaud, O.; Guillonneau, F.; Labas, V.; Praseuth, D.; Rossier, J.; Lopez, B.; Bertrand, P. An in vitro enzymatic assay coupled to proteomics analysis reveals a new DNA processing activity for Ewing sarcoma and TAF(II)68 proteins. Proteomics 2006, 6, 5962–5972. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Watford, W.; Li, C.; Parmelee, A.; Bryant, M.A.; Deng, C.; O’Shea, J.; Lee, S.B. Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J. Clin. Investig. 2007, 117, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Zakaryan, R.P.; Gehring, H. Identification and characterization of the nuclear localization/retention signal in the EWS proto-oncoprotein. J. Mol. Biol. 2006, 363, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Leemann-Zakaryan, R.P.; Pahlich, S.; Grossenbacher, D.; Gehring, H. Tyrosine Phosphorylation in the C-Terminal Nuclear Localization and Retention Signal (C-NLS) of the EWS Protein. Sarcoma 2011, 2011, 218483. [Google Scholar] [CrossRef]
- Flucke, U.; van Noesel, M.M.; Siozopoulou, V.; Creytens, D.; Tops, B.B.J.; van Gorp, J.M.; Hiemcke-Jiwa, L.S. EWSR1-The Most Common Rearranged Gene in Soft Tissue Lesions, Which Also Occurs in Different Bone Lesions: An Updated Review. Diagnostics 2021, 11, 1093. [Google Scholar] [CrossRef] [PubMed]
- Arvand, A.; Denny, C.T. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 2001, 20, 5747–5754. [Google Scholar] [CrossRef] [PubMed]
- Riggi, N.; Knoechel, B.; Gillespie, S.M.; Rheinbay, E.; Boulay, G.; Suva, M.L.; Rossetti, N.E.; Boonseng, W.E.; Oksuz, O.; Cook, E.B.; et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 2014, 26, 668–681. [Google Scholar] [CrossRef]
- Thway, K.; Fisher, C. Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: The current status. Am. J. Surg. Pathol. 2012, 36, e1–e11. [Google Scholar] [CrossRef]
- Komatsu, M.; Yoshida, A.; Tanaka, K.; Matsuo, K.; Sasayama, T.; Kojita, Y.; Kanda, T.; Kodama, Y.; Itoh, T.; Hirose, T. Intracranial myxoid mesenchymal tumor with EWSR1-CREB1 gene fusion: A case report and literature review. Brain Tumor Pathol. 2020, 37, 76–80. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Chen, R.; Ng, C.S.; Shi, H. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: A case report and review of the literature. Diagn. Pathol. 2020, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Wakai, S.; Ryo, E.; Miyata, K.; Miyazawa, M.; Yoshida, K.I.; Motoi, T.; Ogawa, C.; Iwata, S.; Kobayashi, E.; et al. Expanding the Phenotypic Spectrum of Mesenchymal Tumors Harboring the EWSR1-CREM Fusion. Am. J. Surg. Pathol. 2019, 43, 1622–1630. [Google Scholar] [CrossRef]
- Papavassiliou, A.G. The CREB/ATF family of transcription factors: Modulation by reversible phosphorylation. Anticancer. Res. 1994, 14, 1801–1805. [Google Scholar]
- Raney, B.J.; Barber, G.P.; Benet-Pages, A.; Casper, J.; Clawson, H.; Cline, M.S.; Diekhans, M.; Fischer, C.; Navarro Gonzalez, J.; Hickey, G.; et al. The UCSC Genome Browser database: 2024 update. Nucleic Acids Res. 2024, 52, D1082–D1088. [Google Scholar] [CrossRef]
- Breathnach, R.; Chambon, P. Organization and expression of eucaryotic split genes coding for proteins. Annu. Rev. Biochem. 1981, 50, 349–383. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, I.; Mertens, F.; Debiec-Rychter, M.; Isaksson, M.; Limon, J.; Kardas, I.; Domanski, H.A.; Sciot, R.; Perek, D.; Crnalic, S.; et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int. J. Cancer 2002, 99, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhou, D.; Wei, C.; Luo, H.; Liu, J.; Fu, R.; Cui, S. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS ONE 2012, 7, e33861. [Google Scholar] [CrossRef] [PubMed]
- Hai, T.W.; Liu, F.; Coukos, W.J.; Green, M.R. Transcription factor ATF cDNA clones: An extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes. Dev. 1989, 3, 2083–2090. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, Y.; Yang, Y.; Qiu, Y.; Wang, Z.; Li, X.; Zhang, W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes. Dis. 2022, 9, 981–999. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, T.; Fujisawa, J.; Yoshida, M. Multiple cDNA clones encoding nuclear proteins that bind to the tax-dependent enhancer of HTLV-1: All contain a leucine zipper structure and basic amino acid domain. EMBO J. 1990, 9, 2537–2542. [Google Scholar] [CrossRef] [PubMed]
- Masson, N.; John, J.; Lee, K.A. In vitro phosphorylation studies of a conserved region of the transcription factor ATF1. Nucleic Acids Res. 1993, 21, 4166–4173. [Google Scholar] [CrossRef] [PubMed]
- Hai, T.; Hartman, M.G. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: Activating transcription factor proteins and homeostasis. Gene 2001, 273, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Houvras, Y.; Benezra, M.; Zhang, H.; Manfredi, J.J.; Weber, B.L.; Licht, J.D. BRCA1 physically and functionally interacts with ATF1. J. Biol. Chem. 2000, 275, 36230–36237. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Wada, T.; Suzuki, F.; Takagi, T.; Hasegawa, J.; Handa, H. Casein kinase II interacts with the bZIP domains of several transcription factors. Nucleic Acids Res. 1998, 26, 3854–3861. [Google Scholar] [CrossRef]
- Sun, P.; Lou, L.; Maurer, R.A. Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV. J. Biol. Chem. 1996, 271, 3066–3073. [Google Scholar] [CrossRef]
- Huang, G.L.; Liao, D.; Chen, H.; Lu, Y.; Chen, L.; Li, H.; Li, B.; Liu, W.; Ye, C.; Li, T.; et al. The protein level and transcription activity of activating transcription factor 1 is regulated by prolyl isomerase Pin1 in nasopharyngeal carcinoma progression. Cell Death Dis. 2016, 7, e2571. [Google Scholar] [CrossRef]
- Li, T.; Cao, H.; Wu, S.; Zhong, P.; Ding, J.; Wang, J.; Wang, F.; He, Z.; Huang, G.L. Phosphorylated ATF1 at Thr184 promotes metastasis and regulates MMP2 expression in gastric cancer. J. Transl. Med. 2022, 20, 169. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.A.; Menzel, P.; Leonard, J.; Fischer, W.H.; Montminy, M.R. Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB. Mol. Cell Biol. 1991, 11, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.K.; Gonzalez, G.A.; Menzel, P.; Rivier, J.; Montminy, M.R. Characterization of a bipartite activator domain in transcription factor CREB. Cell 1990, 60, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Hurst, H.C.; Totty, N.F.; Jones, N.C. Identification and functional characterisation of the cellular activating transcription factor 43 (ATF-43) protein. Nucleic Acids Res. 1991, 19, 4601–4609. [Google Scholar] [CrossRef]
- Shanware, N.P.; Zhan, L.; Hutchinson, J.A.; Kim, S.H.; Williams, L.M.; Tibbetts, R.S. Conserved and distinct modes of CREB/ATF transcription factor regulation by PP2A/B56gamma and genotoxic stress. PLoS ONE 2010, 5, e12173. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Cho, Y.Y.; Lau, A.T.; Zhang, J.; Ma, W.Y.; Bode, A.M.; Dong, Z. Cyclin-dependent kinase 3-mediated activating transcription factor 1 phosphorylation enhances cell transformation. Cancer Res. 2008, 68, 7650–7660. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Prywes, R. ATF1 phosphorylation by the ERK MAPK pathway is required for epidermal growth factor-induced c-jun expression. J. Biol. Chem. 2002, 277, 50550–50556. [Google Scholar] [CrossRef]
- Liu, F.; Thompson, M.A.; Wagner, S.; Greenberg, M.E.; Green, M.R. Activating transcription factor-1 can mediate Ca(2+)- and cAMP-inducible transcriptional activation. J. Biol. Chem. 1993, 268, 6714–6720. [Google Scholar] [CrossRef] [PubMed]
- Aktar, S.; Arii, J.; Nguyen, T.T.H.; Huang, J.R.; Nishimura, M.; Mori, Y. ATF1 Restricts Human Herpesvirus 6A Replication via Beta Interferon Induction. J. Virol. 2022, 96, e0126422. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, Y.; Chen, H.; Yang, N.; Wang, X.; Li, B.; Ying, P.; He, H.; Cai, Y.; Zhang, M.; et al. Colorectal cancer risk variant rs7017386 modulates two oncogenic lncRNAs expression via ATF1-mediated long-range chromatin loop. Cancer Lett. 2021, 518, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Haakenson, J.K.; Kester, M.; Liu, D.X. The ATF/CREB Family of Transcription Factors in Breast Cancer. In Targeting New Pathways and Cell Death in Breast Cancer; IntechOpen: London, UK, 2012. [Google Scholar]
- Endo, S.; Yoshino, Y.; Shirota, M.; Watanabe, G.; Chiba, N. BRCA1/ATF1-Mediated Transactivation is Involved in Resistance to PARP Inhibitors and Cisplatin. Cancer Res. Commun. 2021, 1, 90–105. [Google Scholar] [CrossRef]
- Hao, Q.; Zhao, X.; Zhang, Y.; Dong, Z.; Hu, T.; Chen, P. Targeting Overexpressed Activating Transcription Factor 1 (ATF1) Inhibits Proliferation and Migration and Enhances Sensitivity to Paclitaxel In Esophageal Cancer Cells. Med. Sci. Monit. Basic. Res. 2017, 23, 304–312. [Google Scholar] [CrossRef]
- Barton, K.; Muthusamy, N.; Chanyangam, M.; Fischer, C.; Clendenin, C.; Leiden, J.M. Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 1996, 379, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Davidson, M.K.; Wahls, W.P. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6-M26 and the osmotic stress response. Nucleic Acids Res. 2008, 36, 2838–2851. [Google Scholar] [CrossRef]
- Antonescu, C.R.; Tschernyavsky, S.J.; Woodruff, J.M.; Jungbluth, A.A.; Brennan, M.F.; Ladanyi, M. Molecular diagnosis of clear cell sarcoma: Detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J. Mol. Diagn. 2002, 4, 44–52. [Google Scholar] [CrossRef]
- Pellin, A.; Monteagudo, C.; Lopez-Gines, C.; Carda, C.; Boix, J.; Llombart-Bosch, A. New type of chimeric fusion product between the EWS and ATFI genes in clear cell sarcoma (malignant melanoma of soft parts). Genes Chromosomes Cancer 1998, 23, 358–360. [Google Scholar] [CrossRef]
- Ohba, Y.; Suzuki, H.; Hiraga, H.; Ito, T.; Sawa, H.; Nagai, M.; Satoh, S.I.; Iwaki, H.; Nagashima, K. Melanotic peritoneal sarcomatosis originating from clear cell sarcoma. Pathol. Int. 1999, 49, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Speleman, F.; Delattre, O.; Peter, M.; Hauben, E.; Van Roy, N.; Van Marck, E. Malignant melanoma of the soft parts (clear-cell sarcoma): Confirmation of EWS and ATF-1 gene fusion caused by a t(12;22) translocation. Mod. Pathol. 1997, 10, 496–499. [Google Scholar]
- Antonescu, C.R.; Katabi, N.; Zhang, L.; Sung, Y.S.; Seethala, R.R.; Jordan, R.C.; Perez-Ordonez, B.; Have, C.; Asa, S.L.; Leong, I.T.; et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 2011, 50, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Hallor, K.H.; Micci, F.; Meis-Kindblom, J.M.; Kindblom, L.G.; Bacchini, P.; Mandahl, N.; Mertens, F.; Panagopoulos, I. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett. 2007, 251, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Lee, K.A. A repetitive element containing a critical tyrosine residue is required for transcriptional activation by the EWS/ATF1 oncogene. Oncogene 2001, 20, 4161–4168. [Google Scholar] [CrossRef]
- Moller, E.; Praz, V.; Rajendran, S.; Dong, R.; Cauderay, A.; Xing, Y.H.; Lee, L.; Fusco, C.; Broye, L.C.; Cironi, L.; et al. EWSR1-ATF1 dependent 3D connectivity regulates oncogenic and differentiation programs in Clear Cell Sarcoma. Nat. Commun. 2022, 13, 2267. [Google Scholar] [CrossRef]
- Ozenberger, B.B.; Li, L.; Wilson, E.R.; Lazar, A.J.; Barrott, J.J.; Jones, K.B. EWSR1::ATF1 Orchestrates the Clear Cell Sarcoma Transcriptome in Human Tumors and a Mouse Genetic Model. Cancers 2023, 15, 5750. [Google Scholar] [CrossRef]
- Fujimura, Y.; Ohno, T.; Siddique, H.; Lee, L.; Rao, V.N.; Reddy, E.S. The EWS-ATF-1 gene involved in malignant melanoma of soft parts with t(12;22) chromosome translocation, encodes a constitutive transcriptional activator. Oncogene 1996, 12, 159–167. [Google Scholar] [PubMed]
- Li, K.K.; Goodall, J.; Goding, C.R.; Liao, S.K.; Wang, C.H.; Lin, Y.C.; Hiraga, H.; Nojima, T.; Nagashima, K.; Schaefer, K.L.; et al. The melanocyte inducing factor MITF is stably expressed in cell lines from human clear cell sarcoma. Br. J. Cancer 2003, 89, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.J.; Kim, J.J.; Ozsolak, F.; Widlund, H.R.; Rozenblatt-Rosen, O.; Granter, S.R.; Du, J.; Fletcher, J.A.; Denny, C.T.; Lessnick, S.L.; et al. Oncogenic MITF dysregulation in clear cell sarcoma: Defining the MiT family of human cancers. Cancer Cell 2006, 9, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Hallor, K.H.; Mertens, F.; Jin, Y.; Meis-Kindblom, J.M.; Kindblom, L.G.; Behrendtz, M.; Kalen, A.; Mandahl, N.; Panagopoulos, I. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2005, 44, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Borkar, A.; Moiyadi, A.; Shetty, P. Tetraventricular Atypical Central Neurocytoma. World Neurosurg. 2019, 122, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Malicki, D.M.; Levy, M.L.; Crawford, J.R. Atypical central neurocytoma with aggressive features in a child. BMJ Case Rep. 2020, 13, e236262. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, V.; Chitoran, E.; Mitroiu, M.N.; Ionescu, S.O.; Neicu, A.; Cirimbei, C.; Alecu, M.; Gelal, A.; Prie, A.D.; Simion, L. Intestinal Clear Cell Sarcoma-A Case Presentation of an Extremely Rare Tumor and Literature Review. Medicina 2024, 60, 847. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Wang, W.; Thomas, A.M.; Li, S.; Qin, H. Maxillary clear cell odontogenic carcinoma with EWSR1-ATF1 fusion gene mimicking sclerosing odontogenic carcinoma: A case report and literature review. Pathol. Res. Pract. 2023, 241, 154257. [Google Scholar] [CrossRef] [PubMed]
- Kosemehmetoglu, K.; Folpe, A.L. Clear cell sarcoma of tendons and aponeuroses, and osteoclast-rich tumour of the gastrointestinal tract with features resembling clear cell sarcoma of soft parts: A review and update. J. Clin. Pathol. 2010, 63, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Stockman, D.L.; Miettinen, M.; Suster, S.; Spagnolo, D.; Dominguez-Malagon, H.; Hornick, J.L.; Adsay, V.; Chou, P.M.; Amanuel, B.; Vantuinen, P.; et al. Malignant gastrointestinal neuroectodermal tumor: Clinicopathologic, immunohistochemical, ultrastructural, and molecular analysis of 16 cases with a reappraisal of clear cell sarcoma-like tumors of the gastrointestinal tract. Am. J. Surg. Pathol. 2012, 36, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Kandler, T.; Cortez, E.; Clinton, L.; Hemmerich, A.; Ahmed, O.; Wong, R.; Forns, T.; MacNeill, A.J.; Hamilton, T.D.; Khorasani, M.; et al. A Case Series of Metastatic Malignant Gastrointestinal Neuroectodermal Tumors and Comprehensive Genomic Profiling Analysis of 20 Cases. Curr. Oncol. 2022, 29, 1279–1297. [Google Scholar] [CrossRef]
- Mremi, A.; Sadiq, A.; Goodluck, G.; Lodhia, J. Sclerosing epithelioid fibrosarcoma of the foot: A case report. Clin. Case Rep. 2023, 11, e7214. [Google Scholar] [CrossRef] [PubMed]
- Youssef, B.; Mohamed, R.M.; Vahhabaghai, P.; Asberry, D. An Incidental Malignant Gastrointestinal Neuroectodermal Tumor of the Stomach: A Rare Case Report and a Literature Review. Cureus 2022, 14, e28042. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Ng, H.; Arvanitis, L.; Manoukian, S.; Arias-Stella, J.A. Metastatic Testicular Sex Cord Tumor Harboring a EWSR1::ATF1 Gene Fusion-A Case Report of a Novel Neoplasm: “Inflammatory and Nested Testicular Sex Cord Tumor”. Int. J. Surg. Pathol. 2024, 32, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Hagmar, L.; Stromberg, U.; Montagud, A.H.; Tinnerberg, H.; Forni, A.; Heikkila, P.; Wanders, S.; Wilhardt, P.; Hansteen, I.L.; et al. Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. European Study Group on Cytogenetic Biomarkers and Health. Cancer Res. 2000, 60, 1619–1625. [Google Scholar]
- Sheltzer, J.M.; Ko, J.H.; Replogle, J.M.; Habibe Burgos, N.C.; Chung, E.S.; Meehl, C.M.; Sayles, N.M.; Passerini, V.; Storchova, Z.; Amon, A. Single-chromosome Gains Commonly Function as Tumor Suppressors. Cancer Cell 2017, 31, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Davoli, T.; Uno, H.; Wooten, E.C.; Elledge, S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 2017, 355, eaaf8399. [Google Scholar] [CrossRef] [PubMed]
- Ly, P.; Brunner, S.F.; Shoshani, O.; Kim, D.H.; Lan, W.; Pyntikova, T.; Flanagan, A.M.; Behjati, S.; Page, D.C.; Campbell, P.J.; et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 2019, 51, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.; van der Burg, M.; Szuhai, K.; Kops, G.J.; Medema, R.H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011, 333, 1895–1898. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Pelletier, J. Molecular genetics of chromosome translocations involving EWS and related family members. Physiol. Genomics 1999, 1, 127–138. [Google Scholar] [CrossRef]
- Deng, Q.; Holler, C.J.; Taylor, G.; Hudson, K.F.; Watkins, W.; Gearing, M.; Ito, D.; Murray, M.E.; Dickson, D.W.; Seyfried, N.T.; et al. FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage. J. Neurosci. 2014, 34, 7802–7813. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, T.; Shi, X.; Xu, J. Overexpression of EWSR1 (Ewing sarcoma breakpoint region 1/EWS RNA binding protein 1) predicts poor survival in patients with hepatocellular carcinoma. Bioengineered 2021, 12, 7941–7949. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, J.R.; Li, Y.; Petranyi, A.; Fabian, Z. EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms. Int. J. Mol. Sci. 2024, 25, 13693. https://doi.org/10.3390/ijms252413693
Bianco JR, Li Y, Petranyi A, Fabian Z. EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms. International Journal of Molecular Sciences. 2024; 25(24):13693. https://doi.org/10.3390/ijms252413693
Chicago/Turabian StyleBianco, Julia Raffaella, YiJing Li, Agota Petranyi, and Zsolt Fabian. 2024. "EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms" International Journal of Molecular Sciences 25, no. 24: 13693. https://doi.org/10.3390/ijms252413693
APA StyleBianco, J. R., Li, Y., Petranyi, A., & Fabian, Z. (2024). EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms. International Journal of Molecular Sciences, 25(24), 13693. https://doi.org/10.3390/ijms252413693