Investigation of N-Acetyllactosamine and N,N-Diacetyllactosamine Residues of Seminal Plasma Prolactin-Induced Protein as Ligands Recognized by Galectin-3
<p>Concentration of prolactin-induced protein (PIP) in seminal plasma. C—control group, N—normozoospermic group, A—asthenozoospermic group, OA—oligoasthenozoospermic group.</p> "> Figure 2
<p>Relative reactivity of PIP glycans with <span class="html-italic">Ricinus communis</span> agglutinin I (RCA I). C—control group, N—normozoospermic group, A—asthenozoospermic group, OA—oligoasthenozoospermic group.</p> "> Figure 3
<p>Relative reactivity of PIP with <span class="html-italic">Datura stramonium</span> lectin (DSL). C—control group, N—normozoospermic group, A—asthenozoospermic group, OA—oligoasthenozoospermic group.</p> "> Figure 4
<p>Relative reactivity of PIP glycans with <span class="html-italic">Wisteria floribunda</span> lectin (WFL). C—control group, N—normozoospermic group, A—asthenozoospermic group, OA—oligoasthenozoospermic group.</p> "> Figure 5
<p>Relative reactivity of PIP glycans with <span class="html-italic">Wisteria floribunda</span> lectin (WFL) for the control group (C) and the infertile group (IF), which contained all infertile subjects gathered together.</p> "> Figure 6
<p>Relative reactivity of prolactin-induced protein glycans with galectin-3. C—control group, N—normozoospermic group, A—asthenozoospermic group, OA—oligoasthenozoospermic group.</p> "> Figure 7
<p>Correlation scatter plots of PIP reactivity between the studied lectins: <span class="html-italic">Ricinus communis</span> agglutinin I (RCA I), <span class="html-italic">Datura stramonium</span> lectin (DSL), and <span class="html-italic">Wisteria floribunda</span> lectin (WFL), and galectin-3. The dark blue squares represent the set of points. The solid red line is the line of best fit - the trend line, while the dashed red line indicates the 95% confidence interval.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Concentration of Prolactin-Induced Protein in Seminal Plasma
2.2. PIP Reractivity with Galactose-Binding Lectins
2.2.1. Ricinus Communis Agglutinin I Reactivity
2.2.2. Datura Stramonium Lectin Reactivity
2.2.3. Wisteria Floribunda Lectin Reactivity
2.3. Galectin-3 Reactivity with SP-PIP
2.4. Spearman Rank Correlation Test
3. Discussion
4. Materials and Methods
4.1. Seminal Plasma Samples
4.2. Quantification of Prolactin-Induced Protein
4.3. Evaluation of LacNAc and LacdiNAc Residues of Seminal Plasma PIP
4.4. Evaluation of Prolactin-Induced Protein Interaction with Galectin-3
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szczykutowicz, J.; Tkaczuk-Włach, J.; Ferens-Sieczkowska, M. Glycoproteins Presenting Galactose and N-Acetylgalactosamine in Human Seminal Plasma as Potential Players Involved in Immune Modulation in the Fertilization Process. Int. J. Mol. Sci. 2021, 22, 7331. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.I.; Waheed, A.; Yadav, S.; Singh, T.P.; Ahmad, F. Prolactin inducible protein in cancer, fertility and immunoregulation: Structure, function and its clinical implications. Cell Mol. Life Sci. 2009, 66, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Caputo, E.; Camarca, A.; Moharram, R.; Tornatore, P.; Thatcher, B.; Guardiola, J.; Martin, B.M. Structural study of GCDFP-15/gp17 in disease versus physiological conditions using a proteomic approach. Biochemistry 2003, 42, 6169–6178. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tomar, A.K.; Singh, S.; Saraswat, M.; Singh, S.; Singh, T.P.; Yadav, S. Human serum albumin as a new interacting partner of prolactin inducible protein in human seminal plasma. Int. J. Biol. Macromol. 2012, 50, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.W.; Chamley, L.W. Human seminal plasma prolactin-inducible protein is an immunoglobulin G-binding protein. J. Reprod. Immunol. 2003, 60, 97–111. [Google Scholar] [CrossRef]
- Hassan, M.I.; Kumar, V.; Singh, T.P.; Yadav, S. Purification and characterization of zinc alpha2-glycoprotein-prolactin inducible protein complex from human seminal plasma. J. Sep. Sci. 2008, 31, 2318–2324. [Google Scholar] [CrossRef]
- Urbaniak, A.; Jablonska, K.; Podhorska-Okolow, M.; Ugorski, M.; Dziegiel, P. Prolactin-induced protein (PIP)-characterization and role in breast cancer progression. Am. J. Cancer Res. 2018, 8, 2150–2164. [Google Scholar]
- Tomar, A.K.; Sooch, B.S.; Raj, I.; Singh, S.; Singh, T.P.; Yadav, S. Isolation and identification of Concanavalin A binding glycoproteins from human seminal plasma: A step towards identification of male infertility marker proteins. Dis. Markers 2011, 31, 379–386. [Google Scholar] [CrossRef]
- Tomar, A.K.; Sooch, B.S.; Singh, S.; Yadav, S. Quantification studies in human seminal plasma samples identify prolactin inducible protein as a plausible marker of azoospermia. Biomarkers 2012, 17, 545–551. [Google Scholar] [CrossRef]
- Umadat, V.; Ihedioha, O.; Shiu, R.; Uzonna, J.; Myal, Y. The prolactin-inducible-protein (PIP): A regulatory molecule in adaptive and innate immunity. Open J. Immunol. 2013, 3, 210–217. [Google Scholar] [CrossRef]
- Block, A.S.; Saraswati, S.; Lichti, C.F.; Mahadevan, M.; Diekman, A.B. Co-purification of Mac-2 binding protein with galectin-3 and association with prostasomes in human semen. Prostate 2011, 71, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Saraswati, S.; Block, A.S.; Lichti, C.F.; Mahadevan, M.; Diekman, A.B. Galectin-3 is associated with prostasomes in human semen. Glycoconj. J. 2010, 27, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Chen, P.; Lee, C.L.; Zhao, W.; Wang, Y.; Lam, K.K.W.; Ho, P.C.; Yeung, W.S.B.; Fang, C.; Chiu, P.C.N. The role of galectin-3 in spermatozoa-zona pellucida binding and its association with fertilization in vitro. Mol. Hum. Reprod. 2019, 25, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Böcker, S.; Laaf, D.; Elling, L. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3. Biomolecules 2015, 5, 1671–1696. [Google Scholar] [CrossRef]
- Liu, F.T.; Stowell, S.R. The role of galectins in immunity and infection. Nat. Rev. Immunol. 2023, 23, 479–494. [Google Scholar] [CrossRef]
- Dam, T.K.; Gabius, H.J.; André, S.; Kaltner, H.; Lensch, M.; Brewer, C.F. Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry 2005, 44, 12564–12571. [Google Scholar] [CrossRef]
- Lepur, A.; Salomonsson, E.; Nilsson, U.J.; Leffler, H. Ligand induced galectin-3 protein self-association. J. Biol. Chem. 2012, 287, 21751–21756. [Google Scholar] [CrossRef]
- Lima, C.D.L.; Coelho, H.; Gimeno, A.; Trovão, F.; Diniz, A.; Dias, J.S.; Jiménez-Barbero, J.; Corzana, F.; Carvalho, A.L.; Cabrita, E.J.; et al. Structural Insights into the Molecular Recognition Mechanism of the Cancer and Pathogenic Epitope, LacdiNAc by Immune-Related Lectins. Chemistry 2021, 27, 7951–7958. [Google Scholar] [CrossRef]
- van den Berg, T.K.; Honing, H.; Franke, N.; van Remoortere, A.; Schiphorst, W.E.; Liu, F.T.; Deelder, A.M.; Cummings, R.D.; Hokke, C.H.; van Die, I. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J. Immunol. 2004, 173, 1902–1907. [Google Scholar] [CrossRef]
- Hirano, K.; Matsuda, A.; Shirai, T.; Furukawa, K. Expression of LacdiNAc groups on N-glycans among human tumors is complex. Biomed. Res. Int. 2014, 2014, 981627. [Google Scholar] [CrossRef]
- Hirano, K.; Furukawa, K. Biosynthesis and Biological Significances of LacdiNAc Group on N- and O-Glycans in Human Cancer Cells. Biomolecules 2022, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Šimonová, A.; Kupper, C.E.; Böcker, S.; Müller, A.; Hofbauerová, K.; Pelantová, H.; Elling, L.; Kren, V.; Bojarová, P. Chemo-enzymatic synthesis of lacdinac dimers of varying length as novel galectin ligands. J. Mol. Catal. B Enzym. 2014, 101, 47–55. [Google Scholar] [CrossRef]
- Laaf, D.; Bojarová, P.; Mikulová, B.; Pelantová, H.; Křen, V.; Elling, L. Two-step enzymatic synthesis of β-d-N-acetylgalactosamine-(1→4)-d-N-acetylglucosamine (LacdiNAc) chitooligomers for deciphering galectin binding behavior. Adv. Synth. Catal. 2017, 359, 2101–2108. [Google Scholar] [CrossRef]
- Bumba, L.; Laaf, D.; Spiwok, V.; Elling, L.; Křen, V.; Bojarová, P. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int. J. Mol. Sci. 2018, 19, 372. [Google Scholar] [CrossRef]
- Fichorova, R.N.; Yamamoto, H.S.; Fashemi, T.; Foley, E.; Ryan, S.; Beatty, N.; Dawood, H.; Hayes, G.R.; St-Pierre, G.; Sato, S.; et al. Trichomonas vaginalis Lipophosphoglycan Exploits Binding to Galectin-1 and -3 to Modulate Epithelial Immunity. J. Biol. Chem. 2016, 291, 998–1013. [Google Scholar] [CrossRef]
- Bojar, D.; Meche, L.; Meng, G.; Eng, W.; Smith, D.F.; Cummings, R.D.; Mahal, L.K. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem. Biol. 2022, 17, 2993–3012. [Google Scholar] [CrossRef]
- Vasta, G.R.; Ahmed, H.; Nita-Lazar, M.; Banerjee, A.; Pasek, M.; Shridhar, S.; Guha, P.; Fernández-Robledo, J.A. Galectins as self/non-self recognition receptors in innate and adaptive immunity: An unresolved paradox. Front. Immunol. 2012, 3, 199. [Google Scholar] [CrossRef]
- Blois, S.M.; Dveksler, G.; Vasta, G.R.; Freitag, N.; Blanchard, V.; Barrientos, G. Pregnancy Galectinology: Insights Into a Complex Network of Glycan Binding Proteins. Front. Immunol. 2019, 10, 1166. [Google Scholar] [CrossRef]
- Blois, S.M.; Verlohren, S.; Wu, G.; Clark, G.; Dell, A.; Haslam, S.M.; Barrientos, G. Role of galectin-glycan circuits in reproduction: From healthy pregnancy to preterm birth (PTB). Semin. Immunopathol. 2020, 42, 469–486. [Google Scholar] [CrossRef]
- Teckle, E.; Gagneux, P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol. Reprod. Dev. 2015, 82, 635–650. [Google Scholar] [CrossRef]
- Saraswat, M.; Joenväärä, S.; Tomar, A.K.; Singh, S.; Yadav, S.; Renkonen, R. N-Glycoproteomics of Human Seminal Plasma Glycoproteins. J. Proteome Res. 2016, 15, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Szczykutowicz, J.; Kałuża, A.; Kaźmierowska-Niemczuk, M.; Ferens-Sieczkowska, M. The Potential Role of Seminal Plasma in the Fertilization Outcomes. Biomed. Res. Int. 2019, 2019, 5397804. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; You, S.; Xu, Y.; Shi, W.; Zhu, B.; Shen, J.; Wu, J.; Li, C.; Chen, Z.; Su, Y.; et al. Precision Glycoproteomics Reveals Distinctive N-Glycosylation in Human Spermatozoa. Mol. Cell Proteom. 2022, 21, 100214. [Google Scholar] [CrossRef] [PubMed]
- Kovak, M.R.; Saraswati, S.; Goddard, S.D.; Diekman, A.B. Proteomic identification of galectin-3 binding ligands and characterization of galectin-3 proteolytic cleavage in human prostasomes. Andrology 2013, 1, 682–691. [Google Scholar] [CrossRef]
- Kovak, M.R.; Saraswati, S.; Schoen, D.J.; Diekman, A.B. Investigation of galectin-3 function in the reproductive tract by identification of binding ligands in human seminal plasma. Am. J. Reprod. Immunol. 2014, 72, 403–412. [Google Scholar] [CrossRef]
- Martínez-Heredia, J.; de Mateo, S.; Vidal-Taboada, J.M.; Ballescà, J.L.; Oliva, R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum. Reprod. 2008, 23, 783–791. [Google Scholar] [CrossRef]
- Cao, X.; Cui, Y.; Zhang, X.; Lou, J.; Zhou, J.; Bei, H.; Wei, R. Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals. Reprod. Biol. Endocrinol. 2018, 16, 16. [Google Scholar] [CrossRef]
PIP Concentration (mg/mL) | Group | ||||
C | N | A | OA | ||
n = 21 | n = 28 | n = 27 | n = 28 | ||
Mean ± SD | 4.71 ± 2.49 | 4.15 ± 2.59 | 3.74 ± 2.34 | 4.53 ± 2.59 | |
Range | 1.78–10.05 | 0.09–9.79 | 0.74–12.60 | 0.45–10.94 |
Lectins Reactivity (AU) | Group | ||||
---|---|---|---|---|---|
C | N | A | OA | ||
n = 21 | n = 28 | n = 27 | n = 28 | ||
RCA I reactivity | Mean ± SD | 0.16 ± 0.06 | 0.20 ± 0.09 | 0.27 ± 0.11 | 0.22 ± 0.11 |
pC = 0.002140 | |||||
Range | 0.05–0.28 | 0.07–0.42 | 0.07–0.52 | 0.04–0.46 | |
DSL reactivity | Mean ± SD | 0.24 ± 0.07 | 0.25 ± 0.11 | 0.25 ± 0.08 | 0.20 ± 0.08 |
Range | 0.12–0.41 | 0.08–0.50 | 0.06–0.40 | 0.08–0.45 | |
WFL reactivity | Mean ± SD | 0.26 ± 0.12 | 0.37 ± 0.11 | 0.36 ± 0.12 | 0.38 ± 0.11 |
pC = 0.025316 | pC = 0.002515 | ||||
Range | 0.08–0.50 | 0.23–0.58 | 0.18–0.71 | 0.07–0.64 |
Lectins Reactivity (AU) | Group | ||||
---|---|---|---|---|---|
C | N | A | OA | ||
n = 21 | n = 28 | n = 27 | n = 28 | ||
Gal-3 reactivity | Mean ± SD | 0.096 ± 0.04 | 0.099 ± 0.05 | 0.085 ± 0.03 | 0.11 ± 0.05 |
Range | 0.03–0.23 | 0.03–0.26 | 0.02–0.16 | 0.03–0.26 |
Spearman Rank Correlation Test | ||
---|---|---|
Lectin Relative Reactivity | r | p |
RCA I vs. DSL | 0.43 | 0.000005 |
RCA I vs. WFL | 0.31 | 0.001 |
DSL vs. WFL | 0.19 | p > 0.05 (NS) |
Galectin-3 relative reactivity | r | p |
GAL-3 vs. WFL | 0.33 | 0.0006 |
GAL-3 vs. RCA I | 0.01 | p > 0.05 (NS) |
GAL-3 vs. DSL | −0.1 | p > 0.05 (NS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kałuża, A.; Trzęsicka, K.; Drzyzga, D.; Ferens-Sieczkowska, M. Investigation of N-Acetyllactosamine and N,N-Diacetyllactosamine Residues of Seminal Plasma Prolactin-Induced Protein as Ligands Recognized by Galectin-3. Int. J. Mol. Sci. 2024, 25, 13432. https://doi.org/10.3390/ijms252413432
Kałuża A, Trzęsicka K, Drzyzga D, Ferens-Sieczkowska M. Investigation of N-Acetyllactosamine and N,N-Diacetyllactosamine Residues of Seminal Plasma Prolactin-Induced Protein as Ligands Recognized by Galectin-3. International Journal of Molecular Sciences. 2024; 25(24):13432. https://doi.org/10.3390/ijms252413432
Chicago/Turabian StyleKałuża, Anna, Katarzyna Trzęsicka, Damian Drzyzga, and Mirosława Ferens-Sieczkowska. 2024. "Investigation of N-Acetyllactosamine and N,N-Diacetyllactosamine Residues of Seminal Plasma Prolactin-Induced Protein as Ligands Recognized by Galectin-3" International Journal of Molecular Sciences 25, no. 24: 13432. https://doi.org/10.3390/ijms252413432
APA StyleKałuża, A., Trzęsicka, K., Drzyzga, D., & Ferens-Sieczkowska, M. (2024). Investigation of N-Acetyllactosamine and N,N-Diacetyllactosamine Residues of Seminal Plasma Prolactin-Induced Protein as Ligands Recognized by Galectin-3. International Journal of Molecular Sciences, 25(24), 13432. https://doi.org/10.3390/ijms252413432