Comparative Transcriptomic Analysis and Candidate Gene Identification for Wild Rice (GZW) and Cultivated Rice (R998) Under Low-Temperature Stress
<p>Phenotypic and physiological indices for cold tolerance in R998 and GZW rice. (<b>a</b>) Phenotypes of rice treated at 25 °C or 10 °C for 7 days followed by 25 °C for an additional 7 days. (<b>b</b>) Changes in the physiological indices of R998 and GZW under low-temperature stress; the results are presented as the means ± SDs (n = 3, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01).</p> "> Figure 2
<p>Correlation analysis and PCA of 26 RNA-seq samples. (<b>a</b>) Correlation cluster analysis of 36 RNA-seq samples. (<b>b</b>) PCA of 36 RNA-seq samples.</p> "> Figure 3
<p>Differential expression and enrichment analysis of GZW. (<b>a</b>) Number of genes whose expression was upregulated or downregulated at different time points under low-temperature stress in GZW. (<b>b</b>) Venn diagram of the number of common and specific DEGs at different time points of low-temperature stress in GZW. (<b>c</b>) GO enrichment analysis of all DEGs at different time points under low-temperature stress in GZW. (<b>d</b>) KEGG enrichment analysis of all DEGs at different time points under low-temperature stress in GZW. (<b>e</b>) Line graph of the cluster analysis of all DEGs at different time points under low-temperature stress in GZW. The red numbers represent the numbers of DEGs and TFs in each cluster.</p> "> Figure 4
<p>Differential expression and enrichment analysis of R998. (<b>a</b>) The number of genes whose expression increased or decreased at different time points under low-temperature stress in R998. (<b>b</b>) Venn diagram of the numbers of common and specific DEGs at different time points under low-temperature stress in R998. (<b>c</b>) GO enrichment analysis of all DEGs at different time points of low-temperature stress in R998. (<b>d</b>) KEGG enrichment analysis of all DEGs at different time points under low-temperature stress in R998. (<b>e</b>) Line graph of the cluster analysis of all DEGs at different time points under low-temperature stress in R998. The red numbers represent the numbers of DEGs and TFs in each cluster.</p> "> Figure 5
<p>Analysis of differential expression and enrichment between GZW and R998. (<b>a</b>) Number of genes whose expression differed between GZW and R998. (<b>b</b>) Venn diagram of the numbers of common and specific DEGs between GZW and R998. (<b>c</b>) GO enrichment analysis of all DEGs between GZW and R998. (<b>d</b>) KEGG enrichment analysis of all DEGs between GZW and R998.</p> "> Figure 6
<p>Heatmap of the numbers and expression patterns of common and unique DEGs between GZW and R998 and at different time points of low-temperature stress in the same material. (<b>a</b>) Venn diagram of common and specific DEGs between the GZW and R998 cultivars. (<b>b</b>) Heatmap of the expression patterns of DEGs uniquely expressed by R998. (<b>c</b>) Heatmap of the unique DEG expression patterns of GZW. (<b>d</b>) Heatmap of the unique DEG expression patterns between R998 and GZW. (<b>e</b>) Heatmap of DEG expression patterns common to R998 and GZW.</p> "> Figure 7
<p>Differential expression of TFs and expression profile analysis. (<b>a</b>) Heatmap of the proportions of the top 10 TFs; the area represents the number of TFs, and different colors represent different TFs. (<b>b</b>) Clustering heatmap of TFs, with identified and validated TFs on the right.</p> "> Figure 8
<p>WGCNA and candidate gene mining. (<b>a</b>) Cluster dendrogram of all DEGs via WGCNA. (<b>b</b>) Correlation heatmap of the module with GZW and R998 at different time points of low-temperature stress. (<b>c</b>) Gene coexpression networks of significantly related modules.</p> "> Figure 9
<p>Analysis of the expression patterns of 12 candidate genes after low-temperature stress. The error bars represent the means of triplicates ± SEs (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01).</p> "> Figure 10
<p>Scatter plot of the correlation between the qRT–PCR and RNA-seq data.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Phenotypic and Physiological Indices of R998 and GZW Were Determined at Low Temperature
2.2. RNA-Seq Analysis and Differential Expression Within Materials
2.3. Analysis of Differential Expression Between Cultivars
2.4. Transcription Factors (TF) Analysis
2.5. WGCNA
2.6. qRT–PCR
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Pro, POD, SOD, CAT and MDA Activities and Chlorophyll Content Determination
4.3. RNA-Seq Library Preparation and Sequencing
4.4. Differential Expression Analysis
4.5. WGCNA
4.6. qRT–PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Zhao, X. Understanding Global Rice Trade Flows: Network Evolution and Implications. Foods 2023, 12, 3298. [Google Scholar] [CrossRef] [PubMed]
- Zong, W.; Guo, X.; Zhang, K.; Chen, L.; Liu, Y.G.; Guo, J. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. J. Exp. Bot. 2024, 75, 3762–3777. [Google Scholar] [CrossRef]
- Li, K.; Hassan, M.A.; Guo, J.; Zhao, X.; Gan, Q.; Lin, C.; Ten, B.; Zhou, K.; Li, M.; Shi, Y.; et al. Analysis of genome-wide association studies of low-temperature germination in Xian and Geng rice. Front. Plant Sci. 2024, 15, 1404879. [Google Scholar] [CrossRef]
- El-Refaee, Y.Z.; Gharib, H.S.; Badawy, S.A.; Elrefaey, E.M.; El-Okkiah, S.A.F.; Okla, M.K.; Maridueña-Zavala, M.G.; AbdElgawad, H.; El-Tahan, A.M. Mitigating cold stress in rice: A study of genotype performance and sowing time. BMC Plant Biol. 2024, 24, 713. [Google Scholar] [CrossRef]
- Plieth, C.; Hansen, U.P.; Knight, H.; Knight, M.R. Temperature sensing by plants: The primary characteristics of signal perception and calcium response. Plant J. 1999, 18, 491–497. [Google Scholar] [CrossRef]
- Orvar, B.L.; Sangwan, V.; Omann, F.; Dhindsa, R.S. Early steps in cold sensing by plant cells: The role of actin cytoskeleton and membrane fluidity. Plant J. 2000, 23, 785–794. [Google Scholar] [CrossRef]
- Sharma, P.; Nandave, M.; Nandave, D.; Yadav, S.; Vargas-De-La-Cruz, C.; Singh, S.; Tandon, R.; Ramniwas, S.; Behl, T. Reactive oxygen species (ROS)-mediated oxidative stress in chronic liver diseases and its mitigation by medicinal plants. Am. J. Transl. Res. 2023, 15, 6321–6341. [Google Scholar]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef]
- Naldurtiker, A.; Batchu, P.; Kouakou, B.; Terrill, T.H.; McCommon, G.W.; Kannan, G. Differential gene expression analysis using RNA-seq in the blood of goats exposed to transportation stress. Sci. Rep. 2023, 13, 1984. [Google Scholar] [CrossRef]
- Byun, M.Y.; Cui, L.H.; Lee, J.; Park, H.; Lee, A.; Kim, W.T.; Lee, H. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis with Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated from Antarctic Flowering Plant Deschampsia antarctica. Front. Plant Sci. 2018, 9, 601. [Google Scholar] [CrossRef]
- Sperotto, R.A.; de Araújo Junior, A.T.; Adamski, J.M.; Cargnelutti, D.; Ricachenevsky, F.K.; de Oliveira, B.N.; da Cruz, R.P.; Dos Santos, R.P.; da Silva, L.P.; Fett, J.P. Deep RNAseq indicates protective mechanisms of cold-tolerant indica rice plants during early vegetative stage. Plant Cell Rep. 2018, 37, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xi, X.; Chen, X.; Wang, Y.; Zhou, M. Comparing time-series transcriptomes between chilling-resistant and-susceptible rice reveals potential transcription factors responding to chilling stress. Front. Plant Sci. 2024, 15, 1451403. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, X.; Chen, Y.; Wu, C.; Long, W.; Zhu, S. Transcriptomic profiling of the cold stress and recovery responsiveness of two contrasting Guizhou HE rice genotypes. Genes Genom. 2023, 45, 401–412. [Google Scholar] [CrossRef]
- Wu, G.; Deng, H.; Yu, M.; Cai, Y.; Zhou, D.; Tan, J.; Yu, J.; Luo, X.; Tong, S.; Wang, P.; et al. Genetic analysis of rice seed recovery under low-temperature conditions using a new CSSL population with a high-density genetic map in rice. Mol. Breed. 2020, 40, 109. [Google Scholar] [CrossRef]
- Zhong, Y.; Luo, Y.; Sun, J.; Qin, X.; Gan, P.; Zhou, Z.; Qian, Y.; Zhao, R.; Zhao, Z.; Cai, W.; et al. Pan-transcriptomic analysis reveals alternative splicing control of cold tolerance in rice. Plant Cell 2024, 36, 2117–2139. [Google Scholar] [CrossRef]
- Guo, X.; Liu, D.; Chong, K. Cold signaling in plants: Insights into mechanisms and regulation. J. Integr. Plant Biol. 2018, 60, 745–756. [Google Scholar] [CrossRef]
- Xia, C.; Gong, Y.; Chong, K.; Xu, Y. Phosphatase OsPP2C27 directly dephosphorylates OsMAPK3 and OsbHLH002 to negatively regulate cold tolerance in rice. Plant Cell Environ. 2021, 44, 491–505. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Li, F.; Liu, H.; Yang, W.; Chong, K.; Xu, Y. OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance. Dev. Cell 2017, 43, 731–743.e5. [Google Scholar] [CrossRef]
- Shen, X.; Dai, S.; Chen, M.; Huang, Y. Spermidine augments salt stress resilience in rice roots potentially by enhancing OsbZIP73’s RNA binding capacity. BMC Plant Biol. 2024, 24, 786. [Google Scholar] [CrossRef]
- Huang, L.; Hong, Y.; Zhang, H.; Li, D.; Song, F. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol. 2016, 16, 203. [Google Scholar] [CrossRef]
- Liu, C.; Schläppi, M.R.; Mao, B.; Wang, W.; Wang, A.; Chu, C. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol. J. 2019, 17, 1834–1849. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Tian, X.; Mei, E.; He, M.; Gao, J.; Yu, J.; Xu, M.; Liu, J.; Song, L.; Li, X.; et al. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. Plant Cell 2022, 34, 4495–4515. [Google Scholar] [CrossRef]
- Qin, W.; Wang, N.; Yin, Q.; Li, H.; Wu, A.M.; Qin, G. Activation tagging identifies WRKY14 as a repressor of plant thermomorphogenesis in Arabidopsis. Mol. Plant. 2022, 15, 1725–1743. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Dai, X.; Xu, Y.; Guo, J.; Liu, Y.; Chen, N.; Xiao, J.; Zhang, D.; Xu, Z.; Zhang, X.; et al. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol. 2009, 150, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Tran, L.S.; Van Nguyen, D.; Fujita, M.; Maruyama, K.; Todaka, D.; Ito, Y.; Hayashi, N.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007, 51, 617–630. [Google Scholar] [CrossRef]
- Cai, X.; Chen, Y.; Wang, Y.; Shen, Y.; Yang, J.; Jia, B.; Sun, X.; Sun, M. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. Plant Cell Rep. 2023, 42, 2011–2022. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.; Li, A.; Guo, J.; Wang, H.; Qi, H.; Li, M.; Yang, P.; Song, S. An AP2/ERF transcription factor confers chilling tolerance in rice. Sci. Adv. 2024, 10, eado4788. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Xing, Y. Genes Contributing to Domestication of Rice Seed Traits and Its Global Expansion. Genes 2018, 9, 489. [Google Scholar] [CrossRef]
- Moraes de Freitas, G.P.; Basu, S.; Ramegowda, V.; Thomas, J.; Benitez, L.C.; Braga, E.B.; Pereira, A. Physiological and transcriptional responses to low-temperature stress in rice genotypes at the reproductive stage. Plant Signal. Behav. 2019, 14, e1581557. [Google Scholar] [CrossRef]
- Bhattacharya, A. Effect of low temperature stress on photosynthesis and allied traits: A review. In Physiological Processes in Plants Under Low Temperature Stress; Springer: Singapore, 2022; pp. 199–297. [Google Scholar]
- Fu, X.; Zhong, L.; Wang, H.; He, H.; Chen, X. Elucidation of the Mechanism of Rapid Growth Recovery in Rice Seedlings after Exposure to Low-Temperature Low-Light Stress: Analysis of Rice Root Transcriptome, Metabolome, and Physiology. Int. J. Mol. Sci. 2023, 24, 17359. [Google Scholar] [CrossRef]
- Sacco Botto, C.; Matić, S.; Moine, A.; Chitarra, W.; Nerva, L.; D’Errico, C.; Pagliarani, C.; Noris, E. Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato. Int. J. Mol. Sci. 2023, 24, 2893. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Z.; Feng, L.; Yu, F.; Ran, C.; Xu, N.; Jia, Z.; Li, C.; Zheng, Y.; Shi, W.; et al. Plants transpiration-inspired antibacterial evaporator with multiscale structure and low vaporization enthalpy for solar steam generation. Nano Energy 2023, 114, 108631. [Google Scholar] [CrossRef]
- Robinson, S.J.; Parkin, I.A. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genom. 2008, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gai, Z.; Qiu, X.; Liu, T.; Li, S.; Ye, F.; Jian, S.; Shen, Y.; Li, X. Salt stress improves the low-temperature tolerance in sugar beet in which carbohydrate metabolism and signal transduction are involved. Environ. Exp. Bot. 2023, 208, 105239. [Google Scholar] [CrossRef]
- Bai, C.; Wu, C.; Ma, L.; Fu, A.; Zheng, Y.; Han, J.; Li, C.; Yuan, S.; Zheng, S.; Gao, L.; et al. Transcriptomics and metabolomics analyses provide insights into postharvest ripening and senescence of tomato fruit under low temperature. Hortic. Plant J. 2023, 9, 109–121. [Google Scholar] [CrossRef]
- Iñiguez, C.; Aguiló-Nicolau, P.; Galmés, J. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity. Biochem. Soc. Trans. 2021, 49, 2007–2019. [Google Scholar] [CrossRef]
- Zu, X.; Luo, L.; Wang, Z.; Gong, J.; Yang, C.; Wang, Y.; Xu, C.; Qiao, X.; Deng, X.; Song, X.; et al. A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice. Nat. Commun. 2023, 14, 6789. [Google Scholar] [CrossRef]
- Sarma, B.; Kashtoh, H.; Lama Tamang, T.; Bhattacharyya, P.N.; Mohanta, Y.K.; Baek, K.H. Abiotic Stress in Rice: Visiting the Physiological Response and Its Tolerance Mechanisms. Plants 2023, 12, 3948. [Google Scholar] [CrossRef]
- Jahed, K.R.; Saini, A.K.; Sherif, S.M. Coping with the cold: Unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front. Plant Sci. 2023, 14, 1246093. [Google Scholar] [CrossRef]
- Ramírez, C.F.; Cavieres, L.A.; Sanhueza, C.; Vallejos, V.; Gómez-Espinoza, O.; Bravo, L.A.; Sáez, P.L. Ecophysiology of Antarctic Vascular Plants: An Update on the Extreme Environment Resistance Mechanisms and Their Importance in Facing Climate Change. Plants 2024, 13, 449. [Google Scholar] [CrossRef]
- Xiang, N.; Zhang, B.; Hu, J.; Li, K.; Guo, X. Modulation of carotenoid biosynthesis in maize (Zea mays L.) seedlings by exogenous abscisic acid and salicylic acid under low temperature. Plant Cell Rep. 2023, 43, 1. [Google Scholar] [CrossRef] [PubMed]
- Gnanapragasam, N.; Prasanth, V.V.; Sundaram, K.T.; Kumar, A.; Pahi, B.; Gurjar, A.; Venkateshwarlu, C.; Kalia, S.; Kumar, A.; Dixit, S.; et al. Extreme trait GWAS (Et-GWAS): Unraveling rare variants in the 3,000 rice genome. Life Sci. Alliance 2023, 7, e202302352. [Google Scholar] [CrossRef] [PubMed]
- Piao, W.; Kim, S.H.; Lee, B.D.; An, G.; Sakuraba, Y.; Paek, N.C. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. J. Exp. Bot. 2019, 70, 2699–2715. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, X.; Zhou, W.; Ren, Y.; Wang, Z.; Liu, Z.; Tang, J.; Tong, H.; Fang, J.; Bu, Q. Transcription Factor OsWRKY53 Positively Regulates Brassinosteroid Signaling and Plant Architecture. Plant Physiol. 2017, 175, 1337–1349. [Google Scholar] [CrossRef]
- Ovens, K.; Eames, B.F.; McQuillan, I. Comparative Analyses of Gene Co-expression Networks: Implementations and Applications in the Study of Evolution. Front Genet. 2021, 12, 695399. [Google Scholar] [CrossRef]
- Arshad, M.N.; Naegele, J.R. Correction notice: Measurements of Proline and Malondialdehyde Contents and Antioxidant Enzyme Activities in Leaves of Drought Stressed Cotton. Bio Protoc. 2023, 5, e4752. [Google Scholar] [CrossRef]
- Zhang, J.; Kirkham, M.B. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 1996, 132, 361–373. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Prognon, P. Raw material enzymatic activity determination: A specific case for validation and comparison of analytical methods–the example of superoxide dismutase (SOD). J. Pharm. Biomed. Anal. 2006, 40, 1143–1148. [Google Scholar] [CrossRef]
- Gajewska, E.; Skłodowska, M. Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 2007, 20, 27–36. [Google Scholar] [CrossRef]
- Ji, X.; Tang, J.; Zhang, J. Effects of Salt Stress on the Morphology, Growth and Physiological Parameters of Juglans microcarpa L. Seedlings. Plants 2022, 11, 2381. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V. RNA-Seq Data Analysis for Differential Gene Expression Using HISAT2-StringTie-Ballgown Pipeline. Methods Mol. Biol. 2024, 2812, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Vera Alvarez, R.; Pongor, L.S.; Mariño-Ramírez, L.; Landsman, D. TPMCalculator: One-step software to quantify mRNA abundance of genomic features. Bioinformatics 2019, 35, 1960–1962. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Z.; Zhu, R.; Wang, F.; Cheng, Y.; Liu, Y. Three Differential Expression Analysis Methods for RNA Sequencing: Limma, EdgeR, DESeq2. J. Vis. Exp. 2021. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Liu, D.; Wang, F.; Kong, L.; Lin, Y.; Chen, L.; Jiang, W.; Hou, X.; Xiao, Y.; Fu, G.; et al. Comparative Transcriptomic Analysis and Candidate Gene Identification for Wild Rice (GZW) and Cultivated Rice (R998) Under Low-Temperature Stress. Int. J. Mol. Sci. 2024, 25, 13380. https://doi.org/10.3390/ijms252413380
Yu Y, Liu D, Wang F, Kong L, Lin Y, Chen L, Jiang W, Hou X, Xiao Y, Fu G, et al. Comparative Transcriptomic Analysis and Candidate Gene Identification for Wild Rice (GZW) and Cultivated Rice (R998) Under Low-Temperature Stress. International Journal of Molecular Sciences. 2024; 25(24):13380. https://doi.org/10.3390/ijms252413380
Chicago/Turabian StyleYu, Yongmei, Dilin Liu, Feng Wang, Le Kong, Yanhui Lin, Leiqing Chen, Wenjing Jiang, Xueru Hou, Yanxia Xiao, Gongzhen Fu, and et al. 2024. "Comparative Transcriptomic Analysis and Candidate Gene Identification for Wild Rice (GZW) and Cultivated Rice (R998) Under Low-Temperature Stress" International Journal of Molecular Sciences 25, no. 24: 13380. https://doi.org/10.3390/ijms252413380
APA StyleYu, Y., Liu, D., Wang, F., Kong, L., Lin, Y., Chen, L., Jiang, W., Hou, X., Xiao, Y., Fu, G., Liu, W., & Huo, X. (2024). Comparative Transcriptomic Analysis and Candidate Gene Identification for Wild Rice (GZW) and Cultivated Rice (R998) Under Low-Temperature Stress. International Journal of Molecular Sciences, 25(24), 13380. https://doi.org/10.3390/ijms252413380