Potential Serum HMGB1, HSP90, and S100A9 as Metastasis Predictive Biomarkers for Cancer Patients and Relevant Cytokines: A Pilot Study
<p>Serum candidate DAMP profiling according to TNM staging. Candidate DAMPs’ concentration levels in serum were determined with ELISA kit. All data are shown as individual mean values, M (mean values) ± SEM (standard error deviation). A significance threshold of <span class="html-italic">p</span>-value < 0.05 was considered as statistical significance. * <span class="html-italic">p</span>-value < 0.05; ** <span class="html-italic">p</span>-value < 0.01; *** <span class="html-italic">p</span>-value < 0.001; ns: <span class="html-italic">p</span> > 0.05.</p> "> Figure 2
<p>ROC analysis of candidate DAMPs for biomarkers of tumor metastatic status. ROC curve analysis of candidate DAMPs in predictive discrimination of M0 and M1 patients.</p> "> Figure 3
<p>Cytokine and chemokine profiling of cancer patients’ serum according to tumor metastatic status. (<b>A</b>) Cytokines and chemokines were clustered according to their main deduced functions, including Th1/2 cytokines. (<b>B</b>) Analysis of selected cytokines, including IL-15 and IFN-γ in different stages of tumor metastasis. A significance threshold of <span class="html-italic">p</span>-value < 0.05 was considered as statistical significance. * <span class="html-italic">p</span>-value < 0.05; ** <span class="html-italic">p</span>-value < 0.01.</p> ">
Abstract
:1. Background
2. Results
2.1. Cancer Patients’ Characteristics
2.2. Serum Candidate DAMPs in Cancer Patients with TNM Staging
2.3. Serum HMGB1, HSP90, and S100A9 as Biomarkers for Metastasis Differentiation
2.4. Decrease in Serum Interferon Gamma and Interleukin-15 Associated with Metastasis Status and Relevant Correlation with Candidate DAMPs
3. Discussion
4. Methods
4.1. Cancer Patient Enrollment and Sample Collection
4.2. HMGB1, HSP90, and S100A9 Determination
4.3. Adenosine Triphosphate (ATP) Measurement
4.4. Cytokine Profiling of Cancer Patients
4.5. Data Analysis and Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B 2015, 5, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Downey, K.; Rotili, A.; Cassano, E.; Koh, D.M. Imaging diagnosis of metastatic breast cancer. Insights Imaging 2020, 11, 79. [Google Scholar] [CrossRef]
- Sveen, A.; Kopetz, S.; Lothe, R.A. Biomarker-guided therapy for colorectal cancer: Strength in complexity. Nat. Rev. Clin. Oncol. 2020, 17, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Locke, W.J.; Guanzon, D.; Ma, C.; Liew, Y.J.; Duesing, K.R.; Fung, K.Y.C.; Ross, J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019, 10, 1150. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Takahashi, H.; Tokumaru, Y.; Yan, L.; Rashid, O.M.; Matsuyama, R.; Endo, I.; Takabe, K. G2M Cell Cycle Pathway Score as a Prognostic Biomarker of Metastasis in Estrogen Receptor (ER)-Positive Breast Cancer. Int. J. Mol. Sci. 2020, 21, 2921. [Google Scholar] [CrossRef]
- Masuda, K.; Ono, A.; Aikata, H.; Kawaoka, T.; Hayes, C.; Teraoka, Y.; Daijo, K.; Nakamura-Inagaki, Y.; Morio, K.; Fujino, H.; et al. Serum HMGB1 concentrations at 4 weeks is a useful predictor of extreme poor prognosis for advanced hepatocellular carcinoma treated with sorafenib and hepatic arterial infusion chemotherapy. J Gastroenterol. 2018, 53, 107–118. [Google Scholar] [CrossRef]
- Rothammer, A.; Sage, E.K.; Werner, C.; Combs, S.E.; Multhoff, G. Increased heat shock protein 70 (Hsp70) serum levels and low NK cell counts after radiotherapy-potential markers for predicting breast cancer recurrence? Radiat. Oncol. 2019, 14, 78. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, S.; Li, Z.; Li, D.; Zhan, Q. High expression of HSP90 is associated with poor prognosis in patients with colorectal cancer. PeerJ 2019, 7, e7946. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.M.; Lee, H.J.; Kim, D.C. High expression of S100A8 and S100A9 is associated with poor disease-free survival in patients with cancer: A systematic review and meta-analysis. Transl. Cancer Res. 2021, 10, 3225–3235. [Google Scholar] [CrossRef]
- Hernandez, C.; Huebener, P.; Schwabe, R.F. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene 2016, 35, 5931–5941. [Google Scholar] [CrossRef]
- Kang, N.; Liu, X.; Haneef, K.; Liu, W. Old and new damage-associated molecular patterns (DAMPs) in autoimmune diseases. Rheumatol. Autoimmun. 2022, 2, 185–197. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Kang, R.; Zeh, H.J., 3rd; Lotze, M.T.; Tang, D. DAMPs and autophagy: Cellular adaptation to injury and unscheduled cell death. Autophagy 2013, 9, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Murao, A.; Aziz, M.; Wang, H.; Brenner, M.; Wang, P. Release mechanisms of major DAMPs. Apoptosis 2021, 26, 152–162. [Google Scholar] [CrossRef]
- Ruan, K.; Song, G.; Ouyang, G. Role of hypoxia in the hallmarks of human cancer. J. Cell Biochem. 2009, 107, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Nikolos, F.; Lee, Y.C.; Jain, A.; Tsouko, E.; Gao, H.; Kasabyan, A.; Leung, H.E.; Osipov, A.; Jung, S.Y.; et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat. Commun. 2020, 11, 6299. [Google Scholar] [CrossRef]
- Songjang, W.; Nensat, C.; Nernpermpisooth, N.; Seenak, P.; Pankhong, P.; Jumroon, N.; Kumphune, S.; Jiraviriyakul, A. Tumor-Promoting Activity and Proteomic Profiling of Cisplatin/Oxaliplatin-Derived DAMPs in Cholangiocarcinoma Cells. Int. J. Mol. Sci. 2022, 23, 10540. [Google Scholar] [CrossRef]
- Napolitano, A.; Antoine, D.J.; Pellegrini, L.; Baumann, F.; Pagano, I.; Pastorino, S.; Goparaju, C.M.; Prokrym, K.; Canino, C.; Pass, H.I.; et al. HMGB1 and Its Hyperacetylated Isoform are Sensitive and Specific Serum Biomarkers to Detect Asbestos Exposure and to Identify Mesothelioma Patients. Clin. Cancer Res. 2016, 22, 3087–3096. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Hong, S.; Shi, C.; Yuan, B. Diagnostic value of HSP90α and related markers in lung cancer. J. Clin. Lab. Anal. 2022, 36, e24462. [Google Scholar] [CrossRef]
- Seidu, A.R. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS Mol. Sci. 2018, 5, 183–241. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, C.; Zhao, Q. S100A9 as a novel diagnostic and prognostic biomarker in human gastric cancer. Scand. J. Gastroenterol. 2020, 55, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Handke, N.A.; Rupp, A.B.A.; Trimpop, N.; von Pawel, J.; Holdenrieder, S. Soluble High Mobility Group Box 1 (HMGB1) Is a Promising Biomarker for Prediction of Therapy Response and Prognosis in Advanced Lung Cancer Patients. Diagnostics 2021, 11, 356. [Google Scholar] [CrossRef]
- Fahmueller, Y.N.; Nagel, D.; Hoffmann, R.T.; Tatsch, K.; Jakobs, T.; Stieber, P.; Holdenrieder, S. Immunogenic cell death biomarkers HMGB1, RAGE, and DNAse indicate response to radioembolization therapy and prognosis in colorectal cancer patients. Int. J. Cancer 2013, 132, 2349–2358. [Google Scholar] [CrossRef]
- Liikanen, I.; Koski, A.; Merisalo-Soikkeli, M.; Hemminki, O.; Oksanen, M.; Kairemo, K.; Joensuu, T.; Kanerva, A.; Hemminki, A. Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. Oncoimmunology 2015, 4, e989771. [Google Scholar] [CrossRef] [PubMed]
- Ghweil, A.A.; Osman, H.A.; Hassan, M.H.; Sabry, A.M.; Mahdy, R.E.; Ahmed, A.R.; Okasha, A.; Khodeary, A.; Ameen, H.H. Validity of serum amyloid A and HMGB1 as biomarkers for early diagnosis of gastric cancer. Cancer Manag. Res. 2020, 12, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Xu, X.; Huang, D.; Cui, D.; Liu, L.; Liu, J.; He, Z.; Liu, J.; Zheng, S.; Luo, Y. Plasma Heat Shock Protein 90alpha as a Biomarker for the Diagnosis of Liver Cancer: An Official, Large-scale, and Multicenter Clinical Trial. eBioMedicine 2017, 24, 56–63. [Google Scholar] [CrossRef]
- Zhou, M.; Li, M.; Liang, X.; Zhang, Y.; Huang, H.; Feng, Y.; Wang, G.; Liu, T.; Chen, Z.; Pei, H.; et al. The Significance of Serum S100A9 and TNC Levels as Biomarkers in Colorectal Cancer. J. Cancer 2019, 10, 5315–5323. [Google Scholar] [CrossRef]
- Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark. Res. 2020, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Glasner, A.; Levi, A.; Enk, J.; Isaacson, B.; Viukov, S.; Orlanski, S.; Scope, A.; Neuman, T.; Enk, C.D.; Hanna, J.H.; et al. NKp46 Receptor-Mediated Interferon-γ Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis. Immunity 2018, 48, 107–119. [Google Scholar] [CrossRef]
- Gillgrass, A.; Gill, N.; Babian, A.; Ashkar, A.A. The Absence or Overexpression of IL-15 Drastically Alters Breast Cancer Metastasis via Effects on NK Cells, CD4 T Cells, and Macrophages. J. Immunol. 2014, 193, 6184–6191. [Google Scholar] [CrossRef]
- Cai, M.; Huang, X.; Huang, X.; Ju, D.; Zhu, Y.Z.; Ye, L. Research progress of interleukin-15 in cancer immunotherapy. Front. Pharmacol. 2023, 14, 1184703. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Cases (n = 40) |
---|---|
Sex | |
Male | 22 (55%) |
Female | 18 (45%) |
Age, years | 63.5 (42–86 years) |
NA | 2 (5%) |
<50 | 2 (5%) |
50–59 | 5 (12.5%) |
60–69 | 21 (52.5%) |
70–79 | 7 (17.5%) |
≥80 | 3 (7.5%) |
Type of cancer | |
Bladder | 1 (2.5%) |
Breast | 3 (7.5%) |
CCA/gall bladder | 15 (37.5%) |
Colorectal | 14 (35%) |
Hepatocellular carcinoma | 2 (5%) |
Small-cell lung carcinoma | 3 (7.5%) |
Nasopharynx | 1 (2.5%) |
Periampullary | 1 (2.5%) |
T staging | |
NA | 1 (2.5%) |
Tx | 7 (17.5%) |
T0 | 0 (0%) |
T1 | 0 (0%) |
T2 | 4 (10%) |
T3 | 20 (50%) |
T4 | 8 (20%) |
N staging | |
NA | 1 (2.5%) |
Nx | 7 (17.5%) |
N0 | 4 (10%) |
N1 | 21 (52.5%) |
N2 | 7 (17.5%) |
N3 | 0 (0%) |
M Staging | |
NA | 1 (2.5%) |
M0 | 16 (40%) |
M1 | 23 (57.5%) |
Site of metastasis | |
Liver | 7 (30%) |
Nonregional lymph node | 5 (22%) |
Lung | 4 (17%) |
Peritoneal metastasis | 1 (4%) |
Multiorgan metastasis (Liver, Nonregional lymph node, bone, Pericardium, Soft tissue, Lung) | 6 (26%) |
Biomarkers | Area Under Curve (AUC) | 95% CI | Cutoff (ng/mL) | Sensitivity(%) | Specificity(%) |
---|---|---|---|---|---|
HMGB1 | 0.7418 | 0.5831–0.9006 | 3.245 | 82.61 | 68.75 |
HSP90 | 0.8207 | 0.6860–0.9553 | 25.46 | 82.61 | 75.00 |
S100A9 | 0.6793 | 0.5114–0.8473 | 4.779 | 65.22 | 56.25 |
HMGB1 + HSP90 | 0.8315 | 0.7013–0.9617 | NA | 73.91 | 75.00 |
HMGB1 + S100A9 | 0.7554 | 0.6008–0.9101 | 78.26 | 68.75 | |
HSP90 + S100A9 | 0.8027 | 0.6914–0.9499 | 73.91 | 68.75 | |
HMGB1 + HSP90 + S100A9 | 0.8315 | 0.7004–0.9626 | 73.91 | 75.00 |
Slope | R Squared | p-Value | |
---|---|---|---|
HMGB1 | |||
Beta-NGF | −4.285 | 0.6078 | <0.0001 |
IFN-γ | −2.235 | 0.3052 | 0.0013 |
IL-2 | −3.074 | 0.3351 | 0.0005 |
IL-6 | −0.8601 | 0.1393 | 0.0461 |
IL-7 | −5.661 | 0.1733 | 0.0199 |
IL-10 | −6.649 | 0.2926 | 0.0012 |
IL-12(p70) | −1.681 | 0.3906 | 0.0001 |
IL-15 | −88.05 | 0.3297 | 0.0005 |
RANTES | −324.2 | 0.1490 | 0.0320 |
SCF | 48.87 | 0.1694 | 0.0193 |
VEGF | −155.8 | 0.4178 | <0.0001 |
HSP90 | |||
Beta-NGF | −0.0854 | 0.2254 | 0.0060 |
IFN-γ | −0.0614 | 0.2187 | 0.0080 |
IL-2 | −0.0699 | 0.1650 | 0.0211 |
IL-12(p70) | −0.0306 | 0.1283 | 0.0407 |
VEGF | −3.159 | 0.1707 | 0.0169 |
S100 | |||
LIF | 13.43 | 0.1384 | 0.0360 |
SCF | −16.40 | 0.1444 | 0.0319 |
ATP | |||
HGF | −92.19 | 0.1461 | 0.0338 |
IL-2Ra | −17.93 | 0.1746 | 0.0173 |
IL-8 | −6.033 | 0.1776 | 0.0228 |
IL-16 | −9.499 | 0.1814 | 0.0151 |
IP-10 | −24.35 | 0.1672 | 0.0224 |
MIF | −61.32 | 0.1940 | 0.0132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Songjang, W.; Nensat, C.; Jitpewngarm, W.; Jiraviriyakul, A. Potential Serum HMGB1, HSP90, and S100A9 as Metastasis Predictive Biomarkers for Cancer Patients and Relevant Cytokines: A Pilot Study. Int. J. Mol. Sci. 2024, 25, 13232. https://doi.org/10.3390/ijms252413232
Songjang W, Nensat C, Jitpewngarm W, Jiraviriyakul A. Potential Serum HMGB1, HSP90, and S100A9 as Metastasis Predictive Biomarkers for Cancer Patients and Relevant Cytokines: A Pilot Study. International Journal of Molecular Sciences. 2024; 25(24):13232. https://doi.org/10.3390/ijms252413232
Chicago/Turabian StyleSongjang, Worawat, Chatchai Nensat, Wittawat Jitpewngarm, and Arunya Jiraviriyakul. 2024. "Potential Serum HMGB1, HSP90, and S100A9 as Metastasis Predictive Biomarkers for Cancer Patients and Relevant Cytokines: A Pilot Study" International Journal of Molecular Sciences 25, no. 24: 13232. https://doi.org/10.3390/ijms252413232
APA StyleSongjang, W., Nensat, C., Jitpewngarm, W., & Jiraviriyakul, A. (2024). Potential Serum HMGB1, HSP90, and S100A9 as Metastasis Predictive Biomarkers for Cancer Patients and Relevant Cytokines: A Pilot Study. International Journal of Molecular Sciences, 25(24), 13232. https://doi.org/10.3390/ijms252413232