Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado (Persea americana Mill.)
<p>Color changes of leaves at different heat stress times. The horizontal axis represents different heat stress times from 0 to 11 days, and the vertical axis represents the color parameters of L value, a value, b value, c value, and h value, respectively. The L value represents the brightness of the sample, with higher values indicating a brighter color. The a value represents the red-green color degree of the sample, with positive values indicating a red bias and negative values indicating a green bias. The b value represents the yellow-blue color degree of the sample, with positive values indicating a yellow bias and negative values indicating a blue bias. The c value represents the chroma of the sample, with higher values indicating a more saturated color. The h value represents the color phase of the sample, with numerical values indicating color angles.</p> "> Figure 2
<p>Results of gene expression patterns and KEGG enrichment analyses: (<b>a</b>) KEGG enrichment analysis plot for H0 vs. H1 comparison group. According to the KEGG enrichment results, the degree of enrichment is measured by the Rich factor, FDR value, and the number of genes enriched on this pathway. Among them, the Rich factor refers to the ratio of the number of enriched differentially expressed genes in the pathway to the number of annotated differentially expressed genes. The larger the Rich factor, the greater the degree of enrichment becomes. The general range of FDR values is 0–1, and the closer it is to zero, the more significant the enrichment; (<b>b</b>) Venn diagram of differentially expressed genes between H0 vs. H1 and H1 vs. H2 groups; (<b>c</b>) Bar graph of differential transcription factors. The left graph represents the H0 vs. H1 group and the right graph represents the H1 vs. H2 group. The horizontal axis represents different transcription factor families, and the vertical axis represents the number of genes belonging to each transcription factor family.</p> "> Figure 3
<p>Quality control of metabolomics data and content of metabolites: (<b>a</b>) Heatmap of the dem cluster analysis results. In the matrix, columns represent samples and rows represent metabolites. The clustering tree on the left displays the clustering of different metabolites, while the clustering tree at the top represents the clustering of samples. The gradient colors indicate the magnitude of the quantitative values; the deeper the red, the higher the expression level, while the deeper the blue, the lower the expression level. Metabolite names are not displayed when the number of metabolites exceeds 150; (<b>b</b>) DEM principal component analysis; (<b>c</b>) DEM analysis based on PLS-DA score. The x-axis (PC1) represents the scores of the first principal component, and the y-axis (PC2) represents the scores of the second principal component. Each point symbolizes a sample, the shaded area denotes the 95% confidence interval, and the colors indicate different groups.</p> "> Figure 4
<p>Common metabolites: (<b>a</b>) Venn diagram of high-temperature metabolites in H0 vs. H1 and H1 vs. H2 groups; (<b>b</b>) changes in the content of common metabolites of H0 vs. H1 and H1 vs. H2 comparison groups over time under heat stress. The abscissa represents the change time of metabolite content from 0 to 2d, and the ordinate represents the relative content of metabolites. “*” indicates statistical significance, <span class="html-italic">p</span> ≤ 0.05. “**” indicates stronger statistical significance, <span class="html-italic">p</span> ≤ 0.01. While “ns” denotes non-significance, <span class="html-italic">p</span> > 0.05.</p> "> Figure 5
<p>Z-score plot of the H0 vs. H1 and H1 vs. H2 comparison groups. The key metabolites, Trehalose and Sinapoyl Aldehyde, are highlighted in red boxes. The coordinates are then converted Z-score values of the relative content of the metabolite in the sample, the ordinate is the metabolite name, and the colors of the points represent different groups. The closer to the <b>right side</b> indicates the higher relative abundance of the current metabolite in this sample, and the closer to the <b>left side</b> indicates the lower abundance of the current metabolite.</p> "> Figure 6
<p>The correlation between Trehalose and Sinapoyl aldehyde and their common genes. The abscissa represents different genes, and the ordinate represents the correlation coefficient of different genes. A positive value represents a positive correlation, and a negative value represents a negative correlation. The greater the absolute value, the stronger the correlation.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Phenotype of Leaves under Heat Stress
2.2. Transcriptome Sequencing and Analysis
2.3. Metabolomic Analysis of Heat Stress
2.4. Analysis of Trehalose and Sinapoyl Aldehyde Metabolite Content Change and Gene Regulation in Response to Heat Stress
3. Discussion
3.1. The Physiological Response and Transport Response of Avocado to Heat Stress
3.2. The Key Role and Mechanism of Trehalose and Sinapoyl Aldehyde in Heat Stress Response in Avocado
3.3. Transcriptome Response of Avocado to Heat Stress
3.4. Analysis of Gene Regulation of Avocado in Response to Heat Stress
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Total RNA Extraction and Transcriptome Sequencing
4.3. RNA-Seq and the Annotation
4.4. Transcriptome Data Analysis
4.5. Metabolite Extraction and Detection
4.6. Metabolomics Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, K. The Effect of High Temperature on Pollen Germination and Tube Growth of Pera. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2015. [Google Scholar]
- Tian, J.; Li, J.; Meng, Q.B.; Li, Z.Y.; Xu, X.Z. Heat Tolerance Threshold and Physiological and Biochemical Responses of Leaves of Different Apple Varieties. Henan Agric. Sci. 2021, 50, 121–128. [Google Scholar]
- Shi, Z.Q.; Zheng, D.L.; Yu, S.Z. Development prospect of avocado in China. Fujian Sci. Technol. Trop. Crops 2007, 32, 37–38+34. [Google Scholar]
- Zheng, S.J.; Bai, J. Development of Avocado Production and Marketing and Prospects in the World. World Trop. Agric. Inf. 2011, 11, 6–9. [Google Scholar]
- Schaffer, B.; Wolstenholme, B.N.; Whiley, A.W. The Avocado: Botany, Production and Uses; Tropical Research and Education Center, University of Florida: Homestead, FL, USA, 2013; pp. 154–196. [Google Scholar]
- Chen, H. Overview of Production and Sales of Mexican Hass Avocados. World Trop. Agric. Inf. 2005, 1–3. [Google Scholar]
- Shapira, O.; Chernoivanov, S.; Neuberger, I.; Levy, S.; Rubinovich, L. Physiological Characterization of Young ‘Hass’ Avocado Plant Leaves Following Exposure to High Temperatures and Low Light Intensity. Plants 2021, 10, 1562. [Google Scholar] [CrossRef]
- Ramírez-Gil, J.G.; Henao-Rojas, J.C.; Diaz-Diez, C.A.; Peña-Quiñones, A.J.; Leόn, N.; Parra-Coronado, A.; Bernal-Estrada, J.A. Phenological Variations of Avocado Cv. Hass and Their Relationship with Thermal Time under Tropical Conditions. Heliyon 2023, 9, 19642. [Google Scholar] [CrossRef]
- Almeselmani, M.; Deshmukh, P.S.; Sairam, R.K.; Kushwaha, S.R.; Singh, T.P. Protective Role of Antioxidant Enzymes under High Temperature Stress. Plant Sci. 2006, 171, 382–388. [Google Scholar] [CrossRef]
- Soliman, W.S.; Fujimori, M.; Tase, K.; Sugiyama, S.-I. Heat Tolerance and Suppression of Oxidative Stress: Comparative Analysis of 25 Cultivars of the C3 Grass Lolium perenne. Environ. Exp. Bot. 2012, 78, 10–17. [Google Scholar] [CrossRef]
- Liu, K.L.; Chen, W.G. Recent Advances in Plant Heat-related Genes. J. Plant Genet. Resour. 2015, 16, 127–132+141. [Google Scholar]
- Posch, B.C.; Kariyawasam, B.C.; Bramley, H.; Coast, O.; Richards, R.A.; Reynolds, M.P.; Trethowan, R.; Atkin, O.K. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J. Exp. Bot. 2019, 70, 5051–5069. [Google Scholar] [CrossRef]
- Singer, S.D.; Jitao, Z.; Randall, J.W. Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 2016, 243, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Howell, S.H. Heat Stress Responses and Thermotolerance in Maize. Int. J. Mol. Sci. 2021, 22, 948. [Google Scholar] [CrossRef] [PubMed]
- Mitra, R.; Bhatia, C.R. Bioenergetic cost of heat tolerance in wheat crop. Curr. Sci. 2008, 94, 1049–1053. [Google Scholar]
- Tu, X.J.; Wang, Q.M.; Rao, L.Q. Effects of High Temperature Stress on Physiology and Biochemistry of Plant. Hunan Agric. Sci. 2013, 13, 28–30. [Google Scholar]
- Dong, M.C.; Li, J.X.; Yue, J.Q.; Guo, J.; Liu, P.F.; Gao, J.Y. Research progress of avocado variety breeding. South China Fruits 2016, 45, 161–165+170. [Google Scholar]
- Luo, X.Y.; Shen, Z.L.; Li, J.; Chen, J.Z.; Zhao, C.X. Research Progress on Tissue Culture of Avocado. J. Trop. Crops 2016, 37, 1644–1650. [Google Scholar]
- Arshad, R.; Saccon, F.; Bag, P.; Biswas, A.; Calvaruso, C.; Bhatti, A.F.; Grebe, S.; Mascoli, V.; Mahbub, M.; Muzzopappa, F.; et al. A Kaleidoscope of Photosynthetic Antenna Proteins and Their Emerging Roles. Plant Physiol. 2022, 189, 1204–1219. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Xia, S.L.; Xu, X.; Lu, Y.; Ji, B.H.; Liang, J.S. Regulation of Xanthophyll Cycle of Photosystem by Antenna Proteins and Thylakoid Membrane Lipids. Northwest J. Bot. 2013, 33, 197–209. [Google Scholar]
- Dai, J.J.; Li, M.F.; Zhao, J.; Mu, Y.; Pu, T.L.; Yuan, J.M.; Jin, J. Analysis of Fruit Quality Differences of Avocado in Different Cultivation Areas in Yunnan. Acta Bot. Boreali-Occident. Sin. 2023, 43, 656–666. [Google Scholar]
- Luo, Y.; Yang, X.H.; Wan, W. Trehalose-mediated signal transduction and stress tolerance in plants. Acta Ecol. Sin. 2007, 27, 5382–5389. [Google Scholar]
- Garg, A.K.; Kim, J.K.; Owens, T.G.; Ranwala, A.P.; Choi, Y.D.; Kochian, L.V.; Wu, R.J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA 2003, 99, 15898–15903. [Google Scholar] [CrossRef]
- Ribeiro, M.J.S.; Reinders, A.; Boller, T.; Wiemken, A.; Virgilio, C.D. Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol. Microbiol. 2010, 25, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, A.M.; Meline, V.; Gorman, Z.; Augustine, S.; Dye, C.J.; Hamilton, C.D.; Iyer-Pascuzzi, A.S.; Kolomiets, M.V.; McCulloh, K.A.; Allen, C. Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease. PLoS ONE 2022, 17, 266254. [Google Scholar] [CrossRef] [PubMed]
- Tadera, K.; Yagi, F.; Kobayashi, A. Specificity of a Particulate Glucosyltransferase in Seedlings of Pisum sativum L. Catalyzing the Formation of 5′-O-(β-D-Glucopyranosyl)pyridoxine. J. Nutr. Sci. Vitaminol. 1982, 28, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Sara, I.Z.; Carlos, S.; Joaquim, B.; Aurelio, G.C.; Vicent, A. Activation of Secondary Metabolism in Citrus Plants Is Associated to Sensitivity to Combined Drought and High Temperatures. Front. Plant Sci. 2017, 7, 71954. [Google Scholar]
- Wu, S.H.; Cai, M.J.; Shi, X.G. Inhibition mechanism of high temperature on photosynthesis of plant leaves. Mod. Agric. Sci. Technol. 2010, 15, 16–18. [Google Scholar]
- Zhang, X.Q.; Luo, Z.Q.; Tang, J.G.; Lu, W.Y.; Yi, Y. Effects of high temperature stress on proline, soluble sugar and malondialdehyde contents in leaves of Zingiber officinale. Hubei Agric. Sci. 2004, 98–100. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Zhu, Q.J.; Jiang, Y.Z.; Yan, Z.S.; Wang, W.J.; Ma, Z.Z. Effects of high temperature on the contents of soluble sugar and soluble protein in soybean seedlings. New Agric. 2018, 9, 12–14. [Google Scholar]
- Newman, Y.M.; Ring, S.G.; Colaco, C. The role of trehalose and other carbohydrates in biopreservation. Biotechnol. Genet. Eng. Rev. 1993, 11, 263–294. [Google Scholar] [CrossRef]
- Dahuja, A.; Kumar, R.R.; Sakhare, A.S.; Watts, A. Role of ABC transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol. Plant. 2021, 171, 785–801. [Google Scholar] [CrossRef]
- Sun, Y.J.; Wang, Q.; Shao, Q.W.; Xin, Z.M.; Xiao, H.J.; Cheng, J. Research Advances on the Effect of High Temperature Stress on Plant Photosynthesis. Acta Bot. Sin. 2023, 58, 486–498. [Google Scholar]
- Xia, Y.H.; Cui, S.M.; Liu, J.C.; Fu, C.Y.; Ma, B.; Ren, J. The effects of elevated Co, on the content of Carbohydrate and Starch to high temperature in Cucumber. J. Inn. Mong. Agric. Univ. (Nat. Sci. Ed.) 2013, 34, 16–20. [Google Scholar]
- Tang, T.; Zheng, G.W.; Li, W.Q. Defense Mechanisms of Plants Photosystem to Heat Stress. Chin. J. Biochem. Mol. Biol. 2012, 28, 127–132. [Google Scholar]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Zhang, P.Y.; Guo, M.R.; Chen, K.S. Secondary Metabolites and Plant Defence Against Pathogenic Disease. Plant Physiol. J. 2012, 48, 429–434. [Google Scholar]
- Wang, L.; Shi, L.L.; Zhang, Y.X.; Liu, Y.J. Biosynthesis and Regulation of Secondary Metabolites in Plants. J. Wuhan Bot. Res. 2007, 25, 500–508. [Google Scholar]
- Lai, X.J.; Yan, X.J.; Yang, R.; Luo, Q.J.; Chen, H.M. Digital gene expression profiling analysis of Pyropia haitanensis(Rhodoph-yta)under high temperature stress. Acta Oceanol. Sin. 2014, 36, 104–111. [Google Scholar]
- Jiang, H.Y.; Du, J.H.; Mao, L.; Li, Y.; Yue, Y.Z.; Lu, J.G. Summary of Transcription Factors in Response to High Temperature Stress in Plants. Mol. Plant Breed. 2020, 10, 3251–3258. [Google Scholar]
- Wang, G.N.; Bai, W.P.; Wan, S.M. Advances in Research of Signal Transduction and Transcriptional Regulatory Mechanism of Plants in Response to Heat Stress. Mol. Plant Breed. 2020, 18, 8109–8118. [Google Scholar]
- Liu, J.M.; Zhao, Q.; Yin, Z.P.; Xu, C.X.; Wang, Q.H.; Dai, S.J. Heat-responsive mechanisms in plants revealed by proteomic analysis: A review. J. Appl. Ecol. 2015, 26, 2561–2570. [Google Scholar]
- Li, C.; Qiao, J.F.; Huang, L.; Zhang, M.W.; Zhang, P.P.; Niu, J.; Liu, J.B. Transcriptome and Metabolome Analysis to Reveal the Mechanisms Responding to High Temperature Stress in the Anthesis Stage of Maize. Acta Agric. Boreali-Sin. 2020, 35, 8–21. [Google Scholar]
- Nambara, E.; Marion-Poll, A. Abscisic Acid Biosynthesis and Catabolism. Annu. Rev. Plant Biol. 2005, 56, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Cao, J.; He, J.H.; Chen, Q.Q.; Li, X.F.; Yang, Y. Molecular Mechanism for the Regulation of ABA Homeostasis During Plant Development and Stress Responses. Int. J. Mol. Sci. 2018, 19, 3643. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Liu, Y.Y.; Pan, Q.H.; Yang, H.R.; Zhan, J.C.; Huang, W.D. Novel Interrelationship Between Salicylic Acid, Abscisic Acid, and PIP2-Specific Phospholipase C in Heat Acclimation-Induced Thermotolerance in Pea Leaves. J. Exp. Bot. 2006, 57, 3337–3347. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Han, L.H.; Chu, H.L.; Wang, H.B.; Gao, Y.; Tang, L.Z. Research Advances in Molecular Mechanism between Plant and Pathogen Interaction. Microbiol. China 2018, 45, 2271–2279. [Google Scholar]
- Close, T.J. Dehydrins: A Commonality in the Response of Plants to Dehydration and Low Temperature. Physiol. Plant. 2010, 100, 291–296. [Google Scholar] [CrossRef]
- Feng, Z.J.; Xu, S.C.; Liu, N.; Zhang, G.W.; Hu, Q.Z.; Gong, Y.M. Molecular Mechanisms and Applications of TCP Transcription Factors in Plants. J. Plant Genet. Resour. 2018, 19, 112–121. [Google Scholar]
- Li, L.; Liu, S.Q.; Yang, Y.H.; Dai, L.Y.; Li, W. Progress on the Function of Heat Shock Transcription Factors in Plant Abiotic Stress Tolerance. Biotechnol. Adv. 2018, 8, 214–220. [Google Scholar]
- Ji, X.; Nie, X.; Liu, Y.; Zheng, L.; Zhao, H.; Zhang, B.; Huo, L.; Wang, Y. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiol. 2016, 36, 193–207. [Google Scholar]
- Yuchen, Q.; Tongyao, Z.; Yan, Y.; Gou, L.; Yang, J.; Xu, J.; Pi, E. Regulatory Mechanisms of bHLH Transcription Factors in Plant Adaptive Responses to Various Abiotic Stresses. Front. Plant Sci. 2021, 12, 611–677. [Google Scholar]
- Schoffl, F.; Baumann, G.; Raschke, E.; Bevan, M.W. The Expression of Heat-Shock Genes in Higher Plants. Philos. Trans. R. Soc. B Biol. Sci. 1986, 314, 453–468. [Google Scholar]
- Fowler, S.; Thomashow, M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 2002, 14, 1675–1690. [Google Scholar] [CrossRef] [PubMed]
- Li, B.J.; Gao, K.; Ren, H.M.; Tang, W.Q. Molecular mechanisms governing plant responses to high temperatures. J. Integr. Plant Biol. 2018, 60, 757–779. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Liu, J.H.; Zheng, J.R.; Hu, J.G. Gene Expression Profile of Sweet Corn Ears under Heat Stress. Acta Agron. Sin. 2013, 39, 269–279. [Google Scholar] [CrossRef]
- Yang, S.H.; Zeevaart, J.A.D. Expression of ABA 8′-hydroxylase in relation to leaf water relations and seed development in bean. Plant J. 2006, 47, 675–686. [Google Scholar] [CrossRef]
- Liu, S.; Lv, Y.; Wan, X.R.; Li, L.M.; Hu, B.; Li, L. Cloning and Expression Analysis of cDNAs Encoding ABA 8′-Hydroxylase in Peanut Plants in Response to Osmotic Stress. PLoS ONE 2014, 9, e97025. [Google Scholar] [CrossRef]
- Ren, S.; Lyle, C.; Jiang, G.L.; Penumala, A. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana. Plant Sci. 2016, 7, 445. [Google Scholar] [CrossRef]
- Wei, L.X. Expression and Salt Tolerance Analysis of Gene GmABA 8′OH in Soybeans. Master’s Thesis, Northeast Normal University, Changchun, China, 2012. [Google Scholar]
- Bots, M.; Feron, R.; Uehlein, N.; Weterings, K.; Kaldenhoff, R.; Mariani, T. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J. Exp. Bot. 2005, 56, 113–121. [Google Scholar] [CrossRef]
- Claudio, L.; Francesca, S.; Andrea, N.; Sebastiano, S.; Rosalia, B.; Andrea, S. Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiol. Plant. 2007, 130, 543–551. [Google Scholar]
- Zhang, J.; Wen, W.W.; Li, H.; Lu, Q.Y.; Xu, B.; Huang, B.R. Overexpression of an aquaporin gene PvPIP2;9 improved biomass yield, protein content, drought tolerance and water use efficiency in switchgrass (Panicum virgatum L.). GCB Bioenergy 2020, 12, 979–991. [Google Scholar] [CrossRef]
- Li, S.X. Cloning and Salt Tolerance Analysis of an Aquaporin Gene (MsPIP2;2) from Alfalfa (Medicago sativa L.). Ph.D. Thesis, Northwest A&F University, Xi’an, China, 2020. [Google Scholar]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.N.; Gao, J.; Liu, Z.Y. HISAT2 Parallelization Method Based on Spark Cluster. J. Phys. Conf. Ser. 2022, 2179, 282–292. [Google Scholar] [CrossRef]
- Isabelle, G.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
Gene_Id | H0 vs. H1 | H1 vs. H2 | NR | Pathway |
---|---|---|---|---|
Hass.g03.10206 | up | down | class I heat shock-like protein | Protein processing in endoplasmic reticulum |
Hass.g03.10205 | up | down | class I heat shock-like protein | Protein processing in endoplasmic reticulum |
Hass.g02.08726 | down | up | 8-hydroxylase-like protein | |
Hass.g04.14976 | up | down | putative aquaporin PIP2-8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Zhu, Q.; Liu, Y.; Chen, J.; Wang, L.; Xiu, Y.; Zheng, H.; Lin, S.; Ling, P.; Tang, M. Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado (Persea americana Mill.). Int. J. Mol. Sci. 2024, 25, 10312. https://doi.org/10.3390/ijms251910312
Zheng X, Zhu Q, Liu Y, Chen J, Wang L, Xiu Y, Zheng H, Lin S, Ling P, Tang M. Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado (Persea americana Mill.). International Journal of Molecular Sciences. 2024; 25(19):10312. https://doi.org/10.3390/ijms251910312
Chicago/Turabian StyleZheng, Xinyi, Qing Zhu, Yi Liu, Junxiang Chen, Lingxia Wang, Yu Xiu, Haoyue Zheng, Shanzhi Lin, Peng Ling, and Minqiang Tang. 2024. "Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado (Persea americana Mill.)" International Journal of Molecular Sciences 25, no. 19: 10312. https://doi.org/10.3390/ijms251910312
APA StyleZheng, X., Zhu, Q., Liu, Y., Chen, J., Wang, L., Xiu, Y., Zheng, H., Lin, S., Ling, P., & Tang, M. (2024). Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado (Persea americana Mill.). International Journal of Molecular Sciences, 25(19), 10312. https://doi.org/10.3390/ijms251910312