Using Urine Biomarkers to Differentiate Bladder Dysfunctions in Women with Sensory Bladder Disorders
<p>The ratio of each significant urine biomarker level in sensory bladder disorder groups to urodynamically normal control. The values at the top of each bar indicate the urine level for the individual biomarker. Abbreviations: DO—detrusor overactivity, NHIC—non-Hunner’s interstitial cystitis, and HSB—hypersensitive bladder.</p> "> Figure 2
<p>ROC curve analysis for urine cytokines. (<b>A</b>) HSB vs. total patients: ROC curves for 8-OHdG, TAC, and the combination of 8-OHdG + TAC. 8-OHdG shows an AUC of 0.754 with a cut-off value of ≤14.705, sensitivity of 87.5%, and specificity of 62.0%. TAC shows an AUC of 0.844 with a cut-off value of ≤528.720, sensitivity of 100%, and specificity of 59.5%. The combination of 8-OHdG and TAC shows an AUC of 0.853 with a cut-off value of ≤0.138, sensitivity of 100%, and specificity of 68.6%. The cut-off value for the combination was determined using a multiple regression model with the regression equation: y = 0.218 − 0.003 × 8-OHdG − 0.0000675 × TAC. Blue line: 8-OHdG; green line: TAC; orange line: 8-OHdG + TAC; red dash line: reference line. (<b>B</b>) NHIC vs. total patients: ROC curve for TNF-α with an AUC of 0.889, a cut-off value of ≥1.050, sensitivity of 98.8%, and specificity of 81.3%. Red dash line: reference line. (<b>C</b>) DO vs. total patients: ROC curve for IP-10 with an AUC of 0.695, a cut-off value of ≥6.310, sensitivity of 57.1%, and specificity of 72.3%. red dash line: reference line. Abbreviations: DO—detrusor overactivity, HSB—hypersensitive bladder, NHIC—non-Hunner type interstitial cystitis/bladder pain syndrome, TNF—tumor necrosis factor, TAC—total antioxidant capacity, and 8-OHdG—8-hydroxydeoxyguanosine.</p> "> Figure 3
<p>Correlations between biomarkers and VUDS parameters across four groups. Abbreviations: DO—detrusor overactivity, HSB—hypersensitive bladder, NHIC—non-Hunner type interstitial cystitis/bladder pain syndrome, Pdet—detrusor pressure, Qmax—maximum flow rate, PVR—post-void residual, FS—full sensation, Vol—bladder volume, BCI—bladder contractility index, cQmax—calculated as the product of Qmax and the square root of CBC, VE—voiding efficacy, AG—Abrams−Griffith number, calculated as Pdet at Qmax—2Qmax, IL—interleukin, TNF—tumor necrosis factor, NGF—nerve growth factor, and PGE2—prostaglandin E2.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Different Levels of Urinary Biomarkers across Groups
2.2. Different VUDS Parameters across Groups
2.3. The Diagnostic Value of Urine Biomarkers
2.4. Correlation Analysis between Biomarkers and VUDS Parameters
3. Discussion
4. Materials and Methods
4.1. Videourodynamic Study in the Diagnosis of Sensory Bladder Disorders
4.2. Cystoscopic Diagnosis of NHIC
4.3. Urine Biomarkers Measurement
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordling, J. Sensory bladder disorders. Int. J. Clin. Pract. Suppl. 2006, 60, 38–42. [Google Scholar] [CrossRef] [PubMed]
- EAU Guidelines. Edn. Presented at the EAU Annual Congress Milan 2023. Available online: https://uroweb.org/guideline/non-neurogenic-female-luts/ (accessed on 1 March 2023).
- Lightner, D.J.; Gomelsky, A.; Souter, L.; Vasavada, S.P. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU Guideline Amendment 2019. J. Urol. 2019, 202, 558–563. [Google Scholar] [CrossRef]
- Rosier, P.F.W.M.; Schaefer, W.; Lose, G.; Goldman, H.B.; Guralnick, M.; Eustice, S.; Dickinson, T.; Hashim, H. International Continence Society Good Urodynamic Practices and Terms 2016: Urodynamics, uroflowmetry, cystometry, and pressure-flow study. Neurourol. Urodyn. 2017, 36, 1243–1260. [Google Scholar] [CrossRef] [PubMed]
- Hanno, P.M.; Erickson, D.; Moldwin, R.; Faraday, M.M. American Urological Association. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J. Urol. 2015, 193, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Birder, L. Role of the urothelium in bladder function. Scand. J. Urol. Nephrol. Suppl. 2004, 215, 48–53. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, H.W.; Huang, T.C.; Chu, T.Y.; Juan, Y.S.; Long, C.Y.; Lee, H.Y.; Huang, S.P.; Liu, Y.P.; Chen, C.J.; et al. Skin sympathetic nerve activity as a potential biomarker for overactive bladder. World J. Urol. 2023, 41, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Sinsomboon, O.; Kuendee, N.; Naladta, A.; Sriyakul, K.; Sukprasert, S. Thai traditional massage modulates urinary MCP-1 and relevant inflammatory biomarkers in lower urinary tract symptom patients. J. Tradit. Complement. Med. 2023, 13, 521–529. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Ho, H.C.; Chiou, D.Y.; Kuo, H.C. Urine Oxidative Stress Biomarkers as Novel Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2022, 10, 1701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antunes-Lopes, T.; Cruz, F. Urinary Biomarkers in Overactive Bladder: Revisiting the Evidence in 2019. Eur. Urol. Focus 2019, 5, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, C.; Aveta, A.; Pandolfo, S.D.; Tripodi, L.; Russo, F.; Imbimbo, C.; Castaldo, G.; Pastore, L. Microbiome Profiling in Bladder Cancer Patients Using the First-morning Urine Sample. Eur. Urol. Open Sci. 2023, 59, 18–26. [Google Scholar] [CrossRef]
- Grundy, L.; Wyndaele, J.J.; Hashitani, H.; Vahabi, B.; Wein, A.; Abrams, P.; Chakrabarty, B.; Fry, C.H. How does the lower urinary tract contribute to bladder sensation? ICI-RS 2023. Neurourol. Urodyn. 2024, 43, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Tsiapakidou, S.; Apostolidis, A.; Pantazis, K.; Grimbizis, G.F.; Mikos, T. The use of urinary biomarkers in the diagnosis of overactive bladder in female patients. A systematic review and meta-analysis. Int. Urogynecol. J. 2021, 32, 3143–3155. [Google Scholar] [CrossRef]
- Ochodnicky, P.; Cruz, C.D.; Yoshimura, N.; Cruz, F. Neurotrophins as regulators of urinary bladder function. Nat. Rev. Urol. 2012, 9, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, W.T.; Kim, W.J. Advances in urinary biomarker discovery in urological research. Investig. Clin. Urol. 2020, 61 (Suppl. S1), S8–S22. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Zheng, S.; Wang, Z.; Zheng, S.; Luo, Z. Potential Urine and Serum Biomarkers in Patients with Bladder Pain Syndrome/Interstitial Cystitis. Arch. Esp. Urol. 2024, 77, 353–358. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine cytokines as biomarkers for diagnosing interstitial cystitis/bladder pain syndrome and mapping its clinical characteristics. Am. J. Physiol. Renal Physiol. 2020, 318, F1391–F1399. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-H.; Jhang, J.-F.; Ho, H.-C.; Hsu, Y.-H.; Kuo, H.-C. Diagnostic and prognostic value of urine biomarkers among women with dysfunctional voiding. Sci. Rep. 2022, 12, 6608. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.R.; Jiang, Y.H.; Jhang, J.F.; Kuo, H.C. Use of Urinary Biomarkers in Discriminating Interstitial Cystitis/Bladder Pain Syndrome from Male Lower Urinary Tract Dysfunctions. Int. J. Mol. Sci. 2023, 24, 12055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, H.Y.; Lu, J.H.; Chuang, S.M.; Chueh, K.S.; Juan, T.J.; Liu, Y.C.; Juan, Y.S. Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome. Diagnostics 2021, 12, 75. [Google Scholar] [CrossRef]
- Zwaans, B.M.; Mota, S.; Bartolone, S.N.; Ward, E.P.; Peters, K.M.; Chancellor, M.B. Evaluating symptom severity and urinary cytokine levels in interstitial cystitis/bladder pain syndrome patients, with and without Hunner’s lesions. Am. J. Clin. Exp. Urol. 2024, 12, 110–118. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Kuo, H.C. Can We Use Urinary Cytokine/Chemokine Analysis in Discriminating Ulcer-Type Interstitial Cystitis/Bladder Pain Syndrome? Diagnostics 2022, 12, 1093. [Google Scholar] [CrossRef]
- Wróbel, A.F.; Kluz, T.; Surkont, G.; Wlaźlak, E.; Skorupski, P.; Filipczak, A.; Rechberger, T. Novel biomarkers of overactive bladder syndrome. Ginekol. Pol. 2017, 88, 568–573. [Google Scholar] [CrossRef]
- Trama, F.; Illiano, E.; Marchesi, A.; Brancorsini, S.; Crocetto, F.; Pandolfo, S.D.; Zucchi, A.; Costantini, E. Use of Intravesical Injections of Platelet-Rich Plasma for the Treatment of Bladder Pain Syndrome: A Comprehensive Literature Review. Antibiotics 2021, 10, 1194. [Google Scholar] [CrossRef] [PubMed]
- Clemens, J.Q.; Erickson, D.R.; Varela, N.P.; Lai, H.H. Diagnosis and Treatment of Interstitial Cystitis/Bladder Pain Syndrome. J. Urol. 2022, 208, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Jhang, J.F.; Kuo, H.C. Urinary Oxidative Stress Biomarker Levels Might Be Useful in Identifying Functional Bladder Disorders in Women with Frequency and Urgency Syndrome. J. Clin. Med. 2023, 12, 2336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Brown, D.I.; Griendling, K.K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ. Res. 2015, 116, 531–549. [Google Scholar] [CrossRef]
- Birder, L.A.; de Groat, W.C. Mechanisms of disease: Involvement of the urothelium in bladder dysfunction. Nat. Clin. Pract. Urol. 2007, 4, 46–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, P.C.; Hsiao, S.M.; Lin, H.H. Age-specific prevalence, clinical and urodynamic findings of detrusor underactivity and bladder outlet obstruction in female voiding dysfunction. Int. J. Gynaecol. Obstet. 2024; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Abrams, P.; Cardozo, L.; Fall, M.; Griffiths, D.; Rosier, P.; Ulmsten, U.; Van Kerrebroeck, P.; Victor, A.; Wein, A. Standardisation Sub-Committee of the International Continence Society. The standardisation of terminology in lower urinary tract function: Report from the standardisation sub-committee of the International Continence Society. Urology 2003, 61, 37–49. [Google Scholar] [CrossRef]
- Ueda, T.; Nakagawa, M.; Okamura, M.; Tanoue, H.; Yoshida, H.; Yoshimura, N. New cystoscopic diagnosis for interstitial cystitis/painful bladder syndrome using narrow-band imaging system. Int. J. Urol. 2008, 15, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Priyadarshi, S.; Bansal, S.; Nandwani, S. Role of cystoscopy as primary initial investigation in interstitial cystitis/bladder pain syndrome. Urologia 2024, 91, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T. Editorial Comment from Dr Ueda to Decreased urothelial cytoskeleton and cell proliferation protein expression suggest interstitial cystitis/bladder pain syndrome patients with Hunner’s lesion and grade 3 glomerulation might be different from other types of patients. Int. J. Urol. 2021, 28, 831–832. [Google Scholar] [PubMed]
Urine Biomarkers | (1) DO N = 51 | (2) HSB N = 29 | (3) NHIC N = 81 | (4) Control N = 30 | p-Value a | Post Hoc b |
---|---|---|---|---|---|---|
Age (years) | 63.8 ± 11.1 | 61.7 ± 12.6 | 54.4 ± 12.7 | 58.9 ± 10.8 | <0.001 | 12 vs. 3 |
Eotaxin | 2.88 (1.64, 4.94) | 2.57 (1.27, 5.5) | 2.95 (2.64, 5.27) | 3.84 (2.5, 7.3) | 0.196 | |
IL-2 | 0.64 (0.59, 0.74) | 0.65 (0.57, 0.77) | 0.2 (0.18, 0.25) | 0.89 (0.64, 0.98) | <0.001 | 124 vs. 3 12 vs. 4 |
IL-6 | 0.99 (0.81, 1.74) | 0.78 (0.59, 1.32) | 0.51 (0.28, 1.43) | 0.87 (0.65, 1.23) | 0.008 | 1 vs. 3 |
IL-8 | 9.72 (3.84, 32.35) | 10.01 (2.09, 25.48) | 9.2 (1.6, 26.15) | 6.47 (1.43, 18.13) | 0.701 | |
IP-10 | 10.3 (2.79, 42.13) | 5.2 (2.21, 22.75) | 2.02 (1.3, 4.96) | 4.29 (1.98, 34.06) | 0.001 | 1 vs. 3 |
MCP-1 | 218.75 (61.43, 348.33) | 102.87 (28.65, 257.62) | 157.75 (66.3, 303.34) | 162.82 (65.42, 252) | 0.715 | |
MIP-1β | 1.91 (0.96, 3.29) | 1.31 (0.93, 2.5) | 0.28 (0.18, 1.31) | 1.88 (1.15, 3.81) | <0.001 | 124 vs. 3 |
RANTES | 3.92 (2.42, 8.15) | 4.7 (2.63, 8.64) | 1.63 (0.64, 4.4) | 4.91 (2.7, 8.64) | 0.001 | 124 vs. 3 |
TNF-α | 0.77 (0.64, 1.04) | 0.91 (0.7, 1.08) | 1.65 (1.41, 1.78) | 0.73 (0.63, 1) | <0.001 | 124 vs. 3 |
NGF | 0.23 (0.18, 0.28) | 0.19 (0.17, 0.2) | 0.16 (0.14, 0.18) | 0.25 (0.21, 0.3) | <0.001 | 124 vs. 3 2 vs. 4 |
BDNF | 0.53 (0.42, 0.69) | 0.5 (0.45, 0.57) | 0.55 (0.48, 0.68) | 0.51 (0.46, 0.7) | 0.149 | |
PGE2 | 211.05 (139.68, 358.36) | n.s. | 172.7 (115.43, 282.79) | 145.48 (101.03, 204.7) | 0.077 | |
8-isoprastane | 19.4 (9.48, 42.12) | 16.82 (12.39, 30.77) | 28.14 (10.02, 58.6) | 13.17 (7.45, 21.99) | 0.083 | |
TAC | 555.84 (256.47, 1391.78) | 239.59 (148.58, 435.71) | 718.3 (383.45, 1267.68) | 726.54 (511.48, 1658.85) | 0.001 | 2 vs. 34 |
8-OHdG | 17.78 (7.76, 36.42) | 9.85 (4.38, 13.49) | 21.81 (11.69, 40.27) | 15.88 (7.14, 30.06) | 0.005 | 2 vs. 13 |
VUDS Parameters | (1) DO N = 51 | (2) HSB N = 29 | (3) NHIC N = 81 | (4) Control N = 30 | p-Value a | Post Hoc b |
---|---|---|---|---|---|---|
Pdet (cmH2O) | 23.64 ± 17.04 | 16.32 ± 6.92 | 18.88 ± 11.95 | 15.52 ± 6.41 | 0.007 | 1 vs. 4 |
Qmax (mL/s) | 12.95 ± 6.99 | 13.39 ± 5.77 | 11.61 ± 7.47 | 19.48 ± 8.14 | <0.001 | 123 vs. 4 |
Volume (mL) | 221.67 ± 125.24 | 264.68 ± 101.62 | 242.01 ± 137.79 | 429.39 ± 141.96 | <0.001 | 123 vs. 4 |
PVR (mL) | 19.58 ± 44.67 | 39.64 ± 69.25 | 52.63 ± 96.33 | 18.93 ± 75.54 | 0.049 | |
FSF (mL) | 99.67 ± 45.82 | 179.93 ± 206.93 | 131.24 ± 52.32 | 165.9 ± 65.51 | 0.001 | 1 vs. 24 2 vs. 3 |
FS (mL) | 158.9 ± 73.33 | 238.93 ± 52.92 | 198.4 ± 70.51 | 284.37 ± 95.96 | <0.001 | 1 vs. 234 24 vs. 3 |
Compliance (mL/cmH2O) | 56.62 ± 51.77 | 115.96 ± 61.89 | 63.98 ± 60.53 | 166.12 ± 105.29 | <0.001 | 13 vs. 24 |
BCI | 87.66 ± 33.47 | 86 ± 27.58 | 77.7 ± 37.75 | 116.65 ± 32.62 | <0.001 | 123 vs. 4 |
CBC (mL) | 244.79 ± 124.82 | 313.93 ± 75.07 | 294.91 ± 126.79 | 445.44 ± 117.8 | <0.001 | 1 vs. 234 2 vs. 34 3 vs. 4 |
cQmax | 0.86 ± 0.35 | 0.78 ± 0.3 | 0.68 ± 0.41 | 0.93 ± 0.35 | 0.009 | 14 vs. 3 |
VE | 0.93 ± 0.14 | 0.87 ± 0.22 | 0.79 ± 0.32 | 0.95 ± 0.18 | 0.001 | 14 vs. 3 |
AG number | −1.97 ± 25.33 | −10.7 ± 12.73 | −4.64 ± 19.9 | −25.48 ± 13.76 | <0.001 | 123 vs. 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Jiang, Y.-H.; Jhang, J.-F.; Kuo, H.-C. Using Urine Biomarkers to Differentiate Bladder Dysfunctions in Women with Sensory Bladder Disorders. Int. J. Mol. Sci. 2024, 25, 9359. https://doi.org/10.3390/ijms25179359
Chen Y-C, Jiang Y-H, Jhang J-F, Kuo H-C. Using Urine Biomarkers to Differentiate Bladder Dysfunctions in Women with Sensory Bladder Disorders. International Journal of Molecular Sciences. 2024; 25(17):9359. https://doi.org/10.3390/ijms25179359
Chicago/Turabian StyleChen, Yu-Chen, Yuan-Hong Jiang, Jia-Fong Jhang, and Hann-Chorng Kuo. 2024. "Using Urine Biomarkers to Differentiate Bladder Dysfunctions in Women with Sensory Bladder Disorders" International Journal of Molecular Sciences 25, no. 17: 9359. https://doi.org/10.3390/ijms25179359
APA StyleChen, Y. -C., Jiang, Y. -H., Jhang, J. -F., & Kuo, H. -C. (2024). Using Urine Biomarkers to Differentiate Bladder Dysfunctions in Women with Sensory Bladder Disorders. International Journal of Molecular Sciences, 25(17), 9359. https://doi.org/10.3390/ijms25179359