Impact of a Functional Dairy Powder and Its Primary Component on the Growth of Pathogenic and Probiotic Gut Bacteria and Human Coronavirus 229E
<p>Antibacterial activity of the digested and undigested Immune Powder and Fractionated Milk Protein (FMP) samples against <span class="html-italic">E. coli.</span> Asterisks (*) signs indicate significant differences (<span class="html-italic">p</span> < 0.05) between the treatment groups according to two-way ANOVA (**** indicates <span class="html-italic">p</span> ≤ 0.0001).</p> "> Figure 2
<p>Effect of the Immune Powder and Fractionated Milk Protein (FMP) samples on the growth of <span class="html-italic">Lactobacillus delbrueckii</span> before and after in vitro digestion. Asterisks (*, **, and ****) signs indicate significant differences (<span class="html-italic">p</span> < 0.05, 0.01, and 0.0001, respectively) between the treatment groups according to two-way ANOVA with Tukey multiple comparison correction. The fold-change values are calculated based on the untreated control (increase or decrease compared to the untreated control). A fold-change value of over 1 (Log2FC of 0) indicates more cell growth than the untreated control.</p> "> Figure 3
<p>Effect of the Immune Powder and Fractionated Milk Protein (FMP) samples before and after in vitro digestion on nitric oxide production (<b>A</b>) and cell viability (<b>B</b>) in the lipopolysaccharide-stimulated murine RAW264.7 macrophages compared to control. Half-maximal inhibitory concentration (IC<sub>50</sub>) displays the sample concentration at which half of the nitric oxide production is inhibited. Data expressed as mean ± standard error mean (n = 3).</p> "> Figure 4
<p>Effect of the Immune Powder and Fractionated Milk Protein (FMP) samples on the growth of the MRC5 lung fibroblast cells before and after in vitro digestion. The 1-fold change indicates similar cell growth compared to the untreated healthy control, whereas a fold-change value of more than 1 indicates cell growth enhancement compared to the untreated healthy control. Asterisks (*, **, ***, and ****) signs indicate significant differences (<span class="html-italic">p</span> < 0.05, 0.01, 0.001, and 0.0001, respectively) between the treatment groups according to two-way ANOVA with Tukey multiple comparison correction.</p> "> Figure 5
<p>Antiviral activity of Immune Powder and Fractionated Milk Protein (FMP) against Human Coronavirus 229E before and after in vitro digestion. Asterisks (*) signs indicate significant differences (<span class="html-italic">p</span> < 0.05) between the treatment groups according to two-way ANOVA (** indicates <span class="html-italic">p</span> ≤ 0.01). The 1-fold change indicates similar cell growth compared to the untreated disease control, whereas a fold-change value of more than 1 indicates more healthy cells compared to the untreated disease control.</p> "> Figure 6
<p>Differentially expressed proteins in remdesivir-treated HCoV-229E-infected MRC-5 cells compared to control (HCoV-229E-infected MRC-5 cells) and the corresponding over-represented pathways. (<b>A</b>) Volcano plot with an absolute log2 fold change ≥ 1 and <span class="html-italic">p</span>-value ≤ 0.05 cutoff for the identified proteins in remdesivir-treated HCoV-229E-infected MRC-5 lung fibroblast cells. (<b>B</b>) STRING network of the 62 differentially expressed proteins (fold change ≥ 2; <span class="html-italic">p</span> and Q values ≤ 0.01) in the remdesivir-treated HCoV-229E-infected MRC-5 cells compared to the controls. The minimum required interaction score was 0.40 (medium confidence), and red, green, blue, purple, light-blue, and black interaction lines indicate the presence of fusion, neighbourhood, co-occurrence, experimental, database, and co-expression evidence, respectively. The disconnected nodes were hidden in the network.</p> "> Figure 7
<p>Differentially expressed proteins in Immune Powder-treated HCoV-229E-infected MRC-5 cells compared to control and the corresponding over-represented pathways. (<b>A</b>) Volcano plot with an absolute log2 fold change ≥ 1 and <span class="html-italic">p</span>-value ≤ 0.05 cutoff for the identified proteins in Immune Powder-treated HCoV-229E-infected MRC-5 cells. (<b>B</b>) STRING network of the 28 differentially expressed proteins (fold change ≥ 2; <span class="html-italic">p</span> and Q values ≤ 0.01) in the Immune Powder-treated HCoV-229E-infected MRC-5 cells compared to the controls. The minimum required interaction score was 0.40 (medium confidence), and red, green, blue, purple, light-blue, and black interaction lines indicate the presence of fusion, neighbourhood, co-occurrence, experimental, database, and co-expression evidence, respectively. The disconnected nodes were hidden in the network.</p> "> Figure 8
<p>Differentially expressed proteins in Fractionated Milk Protein (FMP)-treated HCoV-229E-infected MRC-5 cells compared to control and the corresponding over-represented pathways. (<b>A</b>) Volcano plot with an absolute log2 fold change ≥ 1 and <span class="html-italic">p</span>-value ≤ 0.05 cut off for the identified proteins in FMP-treated HCoV-229E-infected MRC-5 cells. (<b>B</b>) STRING network of the 72 differentially expressed proteins (fold change ≥ 2; <span class="html-italic">p</span> and Q values ≤ 0.01) in the FMP-treated HCoV-229E-infected MRC-5 cells compared to the controls. The minimum required interaction score was 0.40 (medium confidence). Red, green, blue, purple, light-blue, and black interaction lines indicate the presence of fusion, neighbourhood, co-occurrence, experimental, database, and co-expression evidence, respectively. The disconnected nodes were hidden in the network.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibacterial Activity of the Immune Powder and FMP on the Growth of Pathogenic E. coli before and after In Vitro Digestion
2.2. Prebiotic Activity of the Immune Powder and FMP on the Growth of L. delbrueckii before and after In Vitro Digestion
2.3. Anti-Inflammatory Activity of the Immune Powder and FMP before and after In Vitro Digestion
2.4. Immune Powder and FMP Cytotoxicity on MRC5 Lung Fibroblast Cells
2.5. Antiviral Activity of the Immune Powder and FMP against HCoV-229E before and after In Vitro Digestion
2.6. Proteomics Analyses of the Antiviral Activity
3. Materials and Methodology
3.1. Cell, Viral, and Bacterial Culture
3.2. In Vitro Gastric Digestion of the Immune Powder and FMP
3.3. Determining the Antibacterial Activity of the Immune Powder and FMP on the Growth of Pathogenic E. coli before and after In Vitro Digestion
3.4. Determining the Prebiotic Activity of the Immune Powder and FMP on the Growth of Probiotic Lactobacillus delbrueckii before and after In Vitro Digestion
3.5. Evaluation of the Anti-Inflammatory Activity of the Immune Powder and FMP before and after In Vitro Digestion
3.6. Impact of the Immune Powder and FMP on the Viability of the MRC5 Lung Fibroblast Cells
3.7. Evaluation of the Antiviral Activity of the Immune Powder and FMP against HCoV-229E
3.8. Cellular and Molecular Mechanism of the Antiviral Activity
3.8.1. Protein Extraction
3.8.2. Protein Quantification
3.8.3. Preparation and Clean-Up of Peptides
3.8.4. Label-Free Bottom-Up Quantification Proteomics Analysis via Nano-Ultra-High-Performance Liquid Chromatography Coupled with Quadruple Time-of-Flight Mass Spectrometry (Nano-UPLC-qTOF-MS)
3.9. Data Processing
3.10. Statistical Analyses
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero-Brey, I.; Bartenschlager, R. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses 2016, 8, 160. [Google Scholar] [CrossRef]
- Park, Y.W. Bioactive Components in Milk and Dairy Products; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Park, Y.W.; Nam, M.S. Bioactive Peptides in Milk and Dairy Products: A Review. Korean J. Food Sci. Anim. Resour. 2015, 35, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Orsi, N. The antimicrobial activity of lactoferrin: Current status and perspectives. Biometals 2004, 17, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef]
- Dionysius, D.A.; Grieve, P.A.; Milne, J.M. Forms of Lactoferrin: Their Antibacterial Effect on Enterotoxigenic Escherichia coli. J. Dairy Sci. 1993, 76, 2597–2606. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.P.; Paz, E.; Conneely, O.M. Lactoferrin. Cell. Mol. Life Sci. 2005, 62, 2540–2548. [Google Scholar] [CrossRef]
- Van der Strate, B.; Beljaars, L.; Molema, G.; Harmsen, M.; Meijer, D. Antiviral activities of lactoferrin. Antivir. Res. 2001, 52, 225–239. [Google Scholar] [CrossRef]
- Seganti, L.; Di Biase, A.M.; Marchetti, M.; Pietrantoni, A.; Tinari, A.; Superti, F. Antiviral activity of lactoferrin towards naked viruses. Biometals 2004, 17, 295–299. [Google Scholar] [CrossRef]
- Groot, F.; Geijtenbeek, T.B.; Sanders, R.W.; Baldwin, C.E.; Sanchez-Hernandez, M.; Floris, R.; van Kooyk, Y.; de Jong, E.C.; Berkhout, B. Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN—gp120 interaction. J. Virol. 2005, 79, 3009–3015. [Google Scholar] [CrossRef]
- Chang, R.; Ng, T.B.; Sun, W.-Z. Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int. J. Antimicrob. Agents 2020, 56, 106118. [Google Scholar] [CrossRef]
- Costagliola, G.; Spada, E.; Comberiati, P.; Peroni, D.G. Could nutritional supplements act as therapeutic adjuvants in COVID-19? Ital. J. Pediatr. 2021, 47, 32. [Google Scholar] [CrossRef]
- Hu, Y.; Meng, X.; Zhang, F.; Xiang, Y.; Wang, J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg. Microbes Infect. 2021, 10, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V.; Mishra, N.; Gadani, K.; Solanki, P.S.; Shah, N.A.; Tiwari, M. Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol. 2018, 9, 1218. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Athinarayanan, J.; Periyasamy, V.S.; Alshuniaber, M.A.; Alshammari, G.; Hakeem, M.J.; Ahmed, M.A.; Alshatwi, A.A. Antibacterial Mechanisms of Zinc Oxide Nanoparticle against Bacterial Food Pathogens Resistant to Beta-Lactam Antibiotics. Molecules 2022, 27, 2489. [Google Scholar] [CrossRef] [PubMed]
- Mayor-Ibarguren, A.; Busca-Arenzana, C.; Robles-Marhuenda, Á. A Hypothesis for the Possible Role of Zinc in the Immunological Pathways Related to COVID-19 Infection. Front. Immunol. 2020, 11, 1736. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, K.Q.; Cirne-Santos, C.C. Antiviral Activity of Zinc Finger Antiviral Protein (ZAP) in Different Virus Families. Pathogens 2023, 12, 1461. [Google Scholar] [CrossRef]
- Ihalin, R.; Loimaranta, V.; Tenovuo, J. Origin, structure, and biological activities of peroxidases in human saliva. Arch. Biochem. Biophys. 2006, 445, 261–268. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.K.; Kaushik, S.; Sinha, M.; Singh, R.P.; Sharma, P.; Sirohi, H.; Kaur, P.; Singh, T.P. Lactoperoxidase: Structural insights into the function, ligand binding and inhibition. Int. J. Biochem. Mol. Biol. 2013, 4, 108–128. [Google Scholar]
- Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Oxford, UK, 2021; pp. 428–440. [Google Scholar] [CrossRef]
- Bracci, N.; Pan, H.-C.; Lehman, C.; Kehn-Hall, K.; Lin, S.-C.J.P. Improved plaque assay for human coronaviruses 229E and OC43. PeerJ 2020, 8, e10639. [Google Scholar] [CrossRef]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Lactoferrin: Structure, function, denaturation and digestion. Crit. Rev. Food Sci. Nutr. 2019, 59, 580–596. [Google Scholar] [CrossRef]
- Alekish, M.; Ismail, Z.B.; Albiss, B.; Nawasrah, S. In vitro antibacterial effects of zinc oxide nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Escherichia coli: An alternative approach for antibacterial therapy of mastitis in sheep. Vet. World 2018, 11, 1428–1432. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 643–646. [Google Scholar] [CrossRef]
- Bueno, C.; Villegas, M.L.; Bertolotti, S.G.; Previtali, C.M.; Neumann, M.G.; Encinas, M.V. The excited-state interaction of resazurin and resorufin with amines in aqueous solutions. Photophysics and photochemical reactions. Photochem. Photobiol. 2002, 76, 385–390. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Low, M.N.; Zhou, X.; Kaur, K.; Li, G.; Li, C.G. Broad-spectrum pharmacological activity of Australian propolis and metabolomic-driven identification of marker metabolites of propolis samples from three continents. Food Funct. 2021, 12, 2498–2519. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K.; Tomita, M. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1992, 1121, 130–136. [Google Scholar] [CrossRef]
- Tomita, M.; Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 1991, 74, 4137–4142. [Google Scholar] [CrossRef]
- Yousefi, M.; Nematollahi, A.; Shadnoush, M.; Mortazavian, A.M.; Khorshidian, N. Antimicrobial Activity of Films and Coatings Containing Lactoperoxidase System: A Review. Front. Nutr. 2022, 9, 828065. [Google Scholar] [CrossRef]
- Shin, K.; Tomita, M.; Lönnerdal, B. Identification of lactoperoxidase in mature human milk. J. Nutr. Biochem. 2000, 11, 94–102. [Google Scholar] [CrossRef]
- Lönnerdal, B. Bioactive Proteins in Human Milk: Health, Nutrition, and Implications for Infant Formulas. J. Pediatr. 2016, 173, S4–S9. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front. Nutr. 2014, 1, 100515. [Google Scholar] [CrossRef]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, M.; Abdel-Bar, H.M.; Elmowafy, E.; El-khouly, A.; Mansour, M.; Awad, G.A.S. Investigating the Internalization and COVID-19 Antiviral Computational Analysis of Optimized Nanoscale Zinc Oxide. ACS Omega 2021, 6, 6848–6860. [Google Scholar] [CrossRef] [PubMed]
- Rani, I.; Goyal, A.; Bhatnagar, M.; Manhas, S.; Goel, P.; Pal, A.; Prasad, R. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutr. Res. 2021, 92, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Marreiro, D.d.N.; Cruz, K.J.C.; Oliveira, A.R.S.d.; Morais, J.B.S.; Freitas, B.d.J.e.S.d.A.; Melo, S.R.d.S.; dos Santos, L.R.; Cardoso, B.E.P.; Dias, T.M.d.S. Antiviral and immunological activity of zinc and possible role in COVID-19. Br. J. Nutr. 2022, 127, 1172–1179. [Google Scholar] [CrossRef]
- Poppe, M.; Wittig, S.; Jurida, L.; Bartkuhn, M.; Wilhelm, J.; Müller, H.; Beuerlein, K.; Karl, N.; Bhuju, S.; Ziebuhr, J.; et al. The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathogens 2017, 13, e1006286. [Google Scholar] [CrossRef]
- Caillet, C.; Stofberg, M.L.; Muleya, V.; Shonhai, A.; Zininga, T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front. Mol. Biosci. 2022, 9, 938099. [Google Scholar] [CrossRef]
- Basu, A.; Sarkar, A.; Bandyopadhyay, S.; Maulik, U. In silico strategies to identify protein–protein interaction modulator in cell-to-cell transmission of SARS CoV2. Transbound. Emerg. Dis. 2022, 69, 3896–3905. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Wan, L.; Yan, Q.; Wang, X.; Zhang, J.; Yang, X.; Zhang, Y.; Fan, C.; Li, D.; Deng, Y.; et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat. Metab. 2020, 2, 1391–1400. [Google Scholar] [CrossRef]
- Huang, J.J.; Wang, C.W.; Liu, Y.; Zhang, Y.Y.; Yang, N.B.; Yu, Y.C.; Jiang, Q.; Song, Q.F.; Qian, G.Q. Role of the extracellular matrix in COVID-19. World J. Clin. Cases 2023, 11, 73–83. [Google Scholar] [CrossRef]
- Hudák, A.; Letoha, A.; Szilák, L.; Letoha, T. Contribution of Syndecans to the Cellular Entry of SARS-CoV-2. Int. J. Mol. Sci. 2021, 22, 5336. [Google Scholar] [CrossRef]
- Simons, P.; Rinaldi, D.A.; Bondu, V.; Kell, A.M.; Bradfute, S.; Lidke, D.S.; Buranda, T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci. Rep. 2021, 11, 20398. [Google Scholar] [CrossRef]
- Marchetti, M.; Superti, F.; Ammendolia, M.G.; Rossi, P.; Valenti, P.; Seganti, L. Inhibition of poliovirus type 1 infection by iron-, manganese- and zinc-saturated lactoferrin. Med. Microbiol. Immunol. 1999, 187, 199–204. [Google Scholar] [CrossRef]
- Jacobs, J.P.; Jones, C.M.; Baille, J.P. Characteristics of a Human Diploid Cell Designated MRC-5. Nature 1970, 227, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Johnson, J.R. Medical and economic impact of extraintestinal infections due to Escherichia coli: Focus on an increasingly important endemic problem. Microbes Infect. 2003, 5, 449–456. [Google Scholar] [CrossRef]
- Ashraf, R.; Shah, N.P. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt—A review. Int. J. Food Microbiol. 2011, 149, 194–208. [Google Scholar] [CrossRef]
- Eladwy, R.A.; Alsherbiny, M.A.; Chang, D.; Fares, M.; Li, C.-G.; Bhuyan, D.J. The postbiotic sodium butyrate synergizes the antiproliferative effects of dexamethasone against the AGS gastric adenocarcinoma cells. Front. Nutr. 2024, 11, 1372982. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, C.; Wang, J. Cytopathic Effect Assay and Plaque Assay to Evaluate in vitro Activity of Antiviral Compounds against Human Coronaviruses 229E, OC43, and NL63. Bio-Protocol 2022, 12, e4314. [Google Scholar] [CrossRef]
- Alsherbiny, M.A.; Bhuyan, D.J.; Radwan, I.; Chang, D.; Li, C.-G. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int. J. Mol. Sci. 2021, 22, 7840. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef]
- Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 2019, 14, 482–517. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B. The reactome pathway knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef] [PubMed]
- Kamburov, A.; Cavill, R.; Ebbels, T.M.; Herwig, R.; Keun, H.C. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 2011, 27, 2917–2918. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
Uniprot ID | HGNC Gene ID | Protein Name | Log2 Fold Change |
---|---|---|---|
Remdesivir-treated HCoV-229E-infected MRC-5 cells compared to control (HCoV-2-infected MRC-5 cells) | |||
Q5JVD1 | CNTRL | Centriolin | −5.78 |
J3QS41 | HELZ | Probable helicase with zinc finger domain | −3.59 |
P68871 | HBB | Hemoglobin subunit beta | −3.35 |
K7EKL3 | GRN | Progranulin (Fragment) | −3.32 |
A0A0U1RRM4 | PTBP1 | Polypyrimidine tract-binding protein 1 | −2.79 |
P60709 | ACTB | Actin_ cytoplasmic 1 | −2.48 |
E9PFT7 | APC | Adenomatous polyp | −2.04 |
O15031 | PLXNB2 | Plexin-B2 | −1.95 |
Q5JTH9 | RRP12 | RRP12-like protein | −1.83 |
P52306 | RAP1GDS1 | Rap1 GTPase-GDP dissociation stimulator 1 | −1.82 |
A0A0B4J1T8 | EPHA6 | Receptor protein-tyr | −1.81 |
A0A6I8PUA5 | AKAP9 | A-kinase anchor protein 9 (Fragment) | −1.81 |
A0A024R4E5 | HDLBP | High-density lipoprotein-binding protein (Vigilin)_ isoform CRA_a | −1.71 |
P49221 | TGM4 | Protein-glutamine gamma-glutamyltransferase 4 | −1.69 |
Q15056 | EIF4H | Eukaryotic translation initiation factor 4H | −1.61 |
P62736 | ACTA2 | Actin_ aortic smooth muscle | −1.61 |
O43776 | NARS1 | Asparagine--tRNA ligase_ cytoplasmic | −1.60 |
Q9UBG0 | MRC2 | C-type mann | −1.57 |
A0A0R4J2E8 | MATR3 | Matrin-3 | −1.50 |
A0A087WTA8 | COL1A2 | Collagen alpha-2(I) chain | −1.50 |
P10644 | PRKAR1A | cAMP-dependent protein kinase type I-alpha regulatory subunit | −1.47 |
O95302 | FKBP9 | Peptidyl-prolyl cis-trans isomerase FKBP9 | −1.41 |
O76074 | PDE5A | cGMP-specific 3′_5′-cyclic ph | −1.37 |
K7EJ78 | RPS15 | 40S rib | −1.35 |
Q8IWE2 | FAM114A1 | Protein NOXP20 | −1.33 |
P42704 | LRPPRC | Leucine-rich PPR motif-containing protein_ mitochondrial | −1.26 |
Q9H6A9 | PCNX3 | Pecanex-like protein 3 | −1.23 |
Q13148 | TARDBP | TAR DNA-binding protein 43 | −1.23 |
P84090 | ERH | Enhancer of rudimentary homolog | −1.22 |
Q13283 | G3BP1 | Ras GTPase-activating protein-binding protein 1 | −1.21 |
Q9UBQ7 | GRHPR | Glyoxylate reductase/hydroxypyruvate reductase | −1.20 |
Q13263 | TRIM28 | Transcription intermediary factor 1-beta | −1.18 |
A0A0A0MRA5 | HNRNPUL1 | Heterogeneous nuclear ribonucleoprotein U-like protein 1 | −1.18 |
P02452 | COL1A1 | Collagen alpha-1(I) chain | −1.18 |
P61106 | RAB14 | Ras-related protein Rab-14 | −1.17 |
E7EPK1 | SEPTIN7 | Septin-7 | −1.07 |
O75874 | IDH1 | Isocitrate dehydrogenase [NADP] cytoplasmic | −1.07 |
P10809 | HSPD1 | 60 kDa heat shock protein_ mitochondrial | 1.02 |
A0A3B3IUB5 | HM13 | Minor histocompatibility antigen H13 | 1.02 |
I3L1P8 | SLC25A11 | Mitochondrial 2-oxoglutarate/malate carrier protein (Fragment) | 1.07 |
A0A3B3IRT8 | SSR1 | Signal sequence receptor subunit alpha | 1.09 |
A0A0G2JIW1 | HSPA1B | Heat shock 70 kDa protein 1B | 1.11 |
A0A3B3IS40 | KDM5B | [Histone H3]-trimethyl-L-lysine (4) demethylase | 1.12 |
P07093 | SERPINE2 | Glia-derived nexin | 1.12 |
P11021 | HSPA5 | Endoplasmic reticulum chaperone BiP | 1.13 |
P21796 | VDAC1 | Voltage-dependent anion-selective channel protein 1 | 1.14 |
Q70UQ0 | IKBIP | Inhibitor of nuclear factor kappa-B kinase-interacting protein | 1.2 |
P80303 | NUCB2 | Nucleobindin-2 | 1.21 |
A0A590UK15 | NNT | Proton-translocating NAD(P) (+) transhydrogenase | 1.24 |
P14625 | HSP90B1 | Endoplasmin | 1.33 |
P04264 | KRT1 | Keratin_ type II cyt | 1.41 |
P45880 | VDAC2 | Voltage-dependent anion-selective channel protein 2 | 1.42 |
P13645 | KRT10 | Keratin_ type I cyt | 1.45 |
P00403 | MT-CO2 | Cytochrome c oxidase subunit 2 | 1.46 |
P13796 | LCP1 | Plastin-2 | 1.64 |
A0A6Q8PGJ3 | KIF5A | Kinesin heavy-chain isoform 5A | 1.69 |
P31689 | DNAJA1 | DnaJ homolog subfamily A member 1 | 1.79 |
Q96NL6 | SCLT1 | Sodium channel and clathrin linker 1 | 1.83 |
P35908 | KRT2 | Keratin_ type II cyt | 1.9 |
P69905 | HBA1 | Hemoglobin subunit alpha | 1.92 |
O95757 | HSPA4L | Heat shock 70 kDa protein 4L | 2.28 |
P43251 | BTD | Biotinidase | 4.15 |
Immune Powder-treated HCoV-229E-infected MRC-5 cells compared to control (HCoV-229E-infected MRC-5 cells) | |||
E9PFT7 | APC | Adenomatous polyposis coli protein (Fragment) | −1.97 |
A0A0U1RRM4 | PTBP1 | Polypyrimidine tract-binding protein 1 | −1.82 |
A0A024R4E5 | HDLBP | High-density lipoprotein-binding protein (Vigilin)_ isoform CRA_a | −1.55 |
O15031 | PLXNB2 | Plexin-B2 | −1.53 |
Q13283 | G3BP1 | Ras GTPase-activating protein-binding protein 1 | −1.42 |
O43491 | EPB41L2 | Band 4.1-like protein 2 | −1.34 |
P02452 | COL1A1 | Collagen alpha 1(I) chain | −1.33 |
Q9UBG0 | MRC2 | C-type mannose receptor 2 | −1.32 |
O76074 | PDE5A | cGMP-specific 3′_5′-cyclic phosphodiesterase | −1.19 |
A0A087WTA8 | COL1A2 | Collagen alpha 2(I) chain | −1.18 |
Q15056 | EIF4H | Eukaryotic translation initiation factor 4H | −1.11 |
K7EJ78 | RPS15 | 40S ribosomal protein S15 | −1.07 |
P10644 | PRKAR1A | cAMP-dependent protein kinase type I-alpha regulatory subunit | −1.07 |
A0A0R4J2E8 | MATR3 | Matrin-3 | −1.03 |
P29966 | MARCKS | Myristoylated alanine-rich C-kinase substrate | −1.02 |
P13645 | KRT10 | Keratin_ type I cytoskeletal 10 | 2.06 |
P35527 | KRT9 | Keratin_ type I cytoskeletal 9 | 2.2 |
P07093 | SERPINE2 | Glia-derived nexin | 2.22 |
A0A0G2JIW1 | HSPA1B | Heat shock 70 kDa protein 1B | 2.32 |
P35908 | KRT2 | Keratin_ type II cytoskeletal 2 epidermal | 2.46 |
P69905 | HBA1 | Hemoglobin subunit alpha | 2.53 |
A0A6Q8PGJ3 | KIF5A | Kinesin heavy-chain isoform 5A | 2.63 |
Q96NL6 | SCLT1 | Sodium channel and clathrin linker 1 | 2.66 |
P04264 | KRT1 | Keratin_ type II cytoskeletal 1 | 2.78 |
P02533 | KRT14 | Keratin_ type I cytoskeletal 14 | 2.86 |
P31689 | DNAJA1 | DnaJ homolog subfamily A member 1 | 3.09 |
O95757 | HSPA4L | Heat shock 70 kDa protein 4L | 3.77 |
P43251 | BTD | Biotinidase | 20.99 |
FMP-treated HCoV-229E-infected MRC-5 cells compared to control (HCoV-229E-infected MRC-5 cells) | |||
Q5JVD1 | CNTRL | Centriolin | −4.45 |
P60709 | ACTB | Actin_ cytoplasmic 1 | −3.85 |
A0A0U1RRM4 | PTBP1 | Polypyrimidine tract-binding protein 1 | −3.77 |
J3QS41 | HELZ | Probable helicase with zinc finger domain | −2.91 |
P30613 | PKLR | Pyruvate kinase PKLR | −2.48 |
P10644 | PRKAR1A | cAMP-dependent protein kinase type I-alpha regulatory subunit | −2.37 |
A0A0B4J1T8 | EPHA6 | Receptor protein-tyrosine kinase | −2.34 |
E9PFT7 | APC | Adenomatous polyposis coli protein (Fragment) | −2.04 |
P61106 | RAB14 | Ras-related protein Rab-14 | −1.97 |
O43776 | NARS1 | Asparagine--tRNA ligase_ cytoplasmic | −1.96 |
Q9UBQ7 | GRHPR | Glyoxylate reductase/hydroxypyruvate reductase | −1.95 |
Q5JTH9 | RRP12 | RRP12-like protein | −1.92 |
O75340 | PDCD6 | Programmed cell death protein 6 | −1.81 |
P49221 | TGM4 | Protein-glutamine gamma-glutamyltransferase 4 | −1.80 |
O95302 | FKBP9 | Peptidyl-prolyl cis-trans isomerase FKBP9 | −1.78 |
A0A0R4J2E8 | MATR3 | Matrin-3 | −1.74 |
F8W1A4 | AK2 | Adenylate kinase 2_ mitochondrial | −1.70 |
Q8IWE2 | FAM114A1 | Protein NOXP20 | −1.65 |
Q15056 | EIF4H | Eukaryotic translation initiation factor 4H | −1.64 |
Q13148 | TARDBP | TAR DNA-binding protein 43 | −1.61 |
A0A024R4E5 | HDLBP | High-density lipoprotein-binding protein (Vigilin)_ isoform CRA_a | −1.56 |
P55010 | EIF5 | Eukaryotic translation initiation factor 5 | −1.49 |
A0A0A0MRA5 | HNRNPUL1 | Heterogeneous nuclear ribonucleoprotein U-like protein 1 | −1.48 |
P62736 | ACTA2 | Actin_ aortic smooth muscle | −1.46 |
Q9UBG0 | MRC2 | C-type mannose receptor 2 | −1.42 |
O43491 | EPB41L2 | Band 4.1-like protein 2 | −1.40 |
O14818 | PSMA7 | Proteasome subunit alpha type 7 | −1.35 |
P52306 | RAP1GDS1 | Rap1 GTPase-GDP dissociation stimulator 1 | −1.32 |
Q09028 | RBBP4 | Histone-binding protein RBBP4 | −1.28 |
A0A6I8PUA5 | AKAP9 | A-kinase anchor protein 9 (Fragment) | −1.26 |
P02452 | COL1A1 | Collagen alpha 1(I) chain | −1.24 |
A0A087WTA8 | COL1A2 | Collagen alpha 2(I) chain | −1.23 |
O94925 | GLS | Glutaminase kidney isoform_ mitochondrial | −1.20 |
E7EPK1 | SEPTIN7 | Septin-7 | −1.19 |
Q13283 | G3BP1 | Ras GTPase-activating protein-binding protein 1 | −1.19 |
Q8WX93 | PALLD | Palladin | −1.19 |
A0A0A0MSQ0 | PLS3 | Plastin-3 | −1.16 |
P23381 | WARS1 | Tryptophan--tRNA ligase_ cytoplasmic | −1.16 |
Q5TB53 | TM9SF3 | Transmembrane 9 superfamily member (Fragment) | −1.14 |
K7EJ78 | RPS15 | 40S ribosomal protein S15 | −1.11 |
P42704 | LRPPRC | Leucine-rich PPR motif-containing protein_ mitochondrial | −1.09 |
P12109 | COL6A1 | Collagen alpha-1chain | −1.07 |
Q12841 | FSTL1 | Follistatin-related protein 1 | −1.07 |
P05091 | ALDH2 | Aldehyde dehydrogenase_ mitochondrial | −1.05 |
P29966 | MARCKS | Myristoylated alanine-rich C-kinase substrate | −1.05 |
P06756 | ITGAV | Integrin alpha V | −1.04 |
Q13308 | PTK7 | Inactive tyrosine-protein kinase 7 | −1.04 |
Q9Y570 | PPME1 | Protein phosphatase methylesterase 1 | −1.03 |
Q13263 | TRIM28 | Transcription intermediary factor 1-beta | −1.03 |
A0A087WTP3 | KHSRP | Far upstream element-binding protein 2 | −1.01 |
P45974 | USP5 | Ubiquitin carboxyl-terminal hydrolase 5 | −1.01 |
Q9H6A9 | PCNX3 | Pecanex-like protein 3 | −1.01 |
P61247 | RPS3A | 40S ribosomal protein S3a | 1.02 |
P78332 | RBM6 | RNA-binding protein 6 | 1.04 |
P21980 | TGM2 | Protein-glutamine gamma-glutamyltransferase 2 | 1.05 |
Q9Y394 | DHRS7 | Dehydrogenase/reductase SDR family member 7 | 1.1 |
O00231 | PSMD11 | 26S proteasome non-ATPase regulatory subunit 11 | 1.11 |
P13796 | LCP1 | Plastin-2 | 1.11 |
A0A0G2JIW1 | HSPA1B | Heat shock 70 kDa protein 1B | 1.2 |
P02765 | AHSG | Alpha-2-HS-glycoprotein | 1.25 |
Q9Y4B5 | MTCL1 | Microtubule cross-linking factor 1 | 1.27 |
P17050 | NAGA | Alpha-N-acetylgalactosaminidase | 1.31 |
P02768 | ALB | Albumin | 1.32 |
A0A6Q8PGJ3 | KIF5A | Kinesin heavy-chain isoform 5A | 1.4 |
Q96NL6 | SCLT1 | Sodium channel and clathrin linker 1 | 1.43 |
P69905 | HBA1 | Hemoglobin subunit alpha | 1.61 |
E7EQB2 | LTF | Lactotransferrin (Fragment) | 1.62 |
O95757 | HSPA4L | Heat shock 70 kDa protein 4L | 1.84 |
P80303 | NUCB2 | Nucleobindin-2 | 1.9 |
P34932 | HSPA4 | Heat shock 70 kDa protein 4 | 3.18 |
P43251 | BTD | Biotinidase | 4.02 |
Q15811 | ITSN1 | Intersectin-1 | 4.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, V.B.; Alsherbiny, M.A.; Lin, R.; Gao, Y.; Li, C.; Bhuyan, D.J. Impact of a Functional Dairy Powder and Its Primary Component on the Growth of Pathogenic and Probiotic Gut Bacteria and Human Coronavirus 229E. Int. J. Mol. Sci. 2024, 25, 9353. https://doi.org/10.3390/ijms25179353
Dang VB, Alsherbiny MA, Lin R, Gao Y, Li C, Bhuyan DJ. Impact of a Functional Dairy Powder and Its Primary Component on the Growth of Pathogenic and Probiotic Gut Bacteria and Human Coronavirus 229E. International Journal of Molecular Sciences. 2024; 25(17):9353. https://doi.org/10.3390/ijms25179353
Chicago/Turabian StyleDang, Vu Bao, Muhammad A. Alsherbiny, Ruohui Lin, Yumei Gao, Chunguang Li, and Deep Jyoti Bhuyan. 2024. "Impact of a Functional Dairy Powder and Its Primary Component on the Growth of Pathogenic and Probiotic Gut Bacteria and Human Coronavirus 229E" International Journal of Molecular Sciences 25, no. 17: 9353. https://doi.org/10.3390/ijms25179353
APA StyleDang, V. B., Alsherbiny, M. A., Lin, R., Gao, Y., Li, C., & Bhuyan, D. J. (2024). Impact of a Functional Dairy Powder and Its Primary Component on the Growth of Pathogenic and Probiotic Gut Bacteria and Human Coronavirus 229E. International Journal of Molecular Sciences, 25(17), 9353. https://doi.org/10.3390/ijms25179353