The CCCH-Type Zinc-Finger Protein GhC3H20 Enhances Salt Stress Tolerance in Arabidopsis thaliana and Cotton through ABA Signal Transduction Pathway
<p><span class="html-italic">GhC3H20</span> gene structure, sequence alignment, and phylogenetic analysis. (<b>A</b>) Gene structure of <span class="html-italic">GhC3H20</span>. (<b>B</b>) Phylogenetic analysis of <span class="html-italic">GhC3H20</span> and CCCH zinc-finger family group IX members in <span class="html-italic">Arabidopsis thaliana</span>. (<b>C</b>) Protein sequence alignments of GhC3H20 with AT2G19810, AT4G29190, and AT2G25900. Note: CCCH represents the C3H-type motif. The colored regions represent conserved amino acid sequences. The red star represents <span class="html-italic">GhC3H20</span> gene.</p> "> Figure 2
<p>Expression pattern analysis of <span class="html-italic">GhC3H20</span> under 200 mM NaCl and 20% PEG treatment and in eight cotton tissues (root, stem, leaf, bud, petal, stamen, pistil, and fiber) in cotton. (<b>A</b>) Expression pattern analysis of <span class="html-italic">GhC3H20</span> gene in roots under ddH<sub>2</sub>O (CK) and 200 mM NaCl treatments. (<b>B</b>) Expression pattern analysis of <span class="html-italic">GhC3H20</span> gene in leaves under ddH<sub>2</sub>O (CK) and 20% PEG treatments. (<b>C</b>) Expression pattern analysis of <span class="html-italic">GhC3H20</span> gene in eight tissues. The error bars represent standard deviations of three technical replicates (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, Student’s <span class="html-italic">t</span>-test).</p> "> Figure 3
<p>The expression level analysis of the <span class="html-italic">GhC3H20</span> gene under 100 μM ABA treatment. GUS activity analysis of Pro<span class="html-italic">GhC3H20</span>::GUS transgenic <span class="html-italic">Arabidopsis</span> in five tissues (root, stem, leaf, flower, and fruit pod), and GUS activity analysis of Pro <span class="html-italic">GhC3H20</span>::GUS transgenic <span class="html-italic">Arabidopsis</span> seedlings under control and salt treatment. (<b>A</b>) The expression level analysis of the <span class="html-italic">GhC3H20</span> gene under 100 μM ABA treatment. (<b>B</b>) GUS activity analysis of Pro<span class="html-italic">GhC3H20</span>::GUS transgenic <span class="html-italic">Arabidopsis</span> in five tissues (root, stem, leaf, flower, and fruit pod). (<b>C</b>) GUS activity analysis of Pro<span class="html-italic">GhC3H20</span>::GUS transgenic <span class="html-italic">Arabidopsis</span> seedlings on 1/2 MS medium. (<b>D</b>) GUS activity analysis of Pro<span class="html-italic">GhC3H20</span>::GUS transgenic <span class="html-italic">Arabidopsis</span> seedlings on 1/2 MS medium containing 150 mM NaCl. The error bars represent standard deviations of three technical replicates (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, Student’s <span class="html-italic">t</span>-test).</p> "> Figure 4
<p>Overexpression of <span class="html-italic">GhC3H20</span> enhanced salt and osmotic stresses tolerance in <span class="html-italic">Arabidopsis</span> seedlings. (<b>A</b>) The expression levels of <span class="html-italic">GhC3H20</span> in WT <span class="html-italic">Arabidopsis</span> and three transgenic <span class="html-italic">Arabidopsis</span> lines. (<b>B</b>) Root length phenotype of WT <span class="html-italic">Arabidopsis</span> and three transgenic <span class="html-italic">Arabidopsis</span> lines under 1/2 MS medium, 150 mM NaCl, and 200 mM mannitol treatments. (<b>C</b>) Statistics of root lengths of <span class="html-italic">Arabidopsis thaliana</span> seedlings under salt and osmotic stresses. The error bars represent standard deviations of three technical replicates or standard deviations of the root length among <span class="html-italic">Arabidopsis</span> seedlings (** <span class="html-italic">p</span> < 0.01, Student’s <span class="html-italic">t</span>-test). Note: WT represents wild-type <span class="html-italic">Arabidopsis</span>. Line 1, Line 2, and Line 3 represents three transgenic <span class="html-italic">Arabidopsis</span> lines.</p> "> Figure 5
<p>Phenotype and the content of CAT in WT <span class="html-italic">Arabidopsis</span> and three transgenic <span class="html-italic">Arabidopsis</span> lines under 400 mM NaCl treatment. (<b>A</b>) The phenotype of WT <span class="html-italic">Arabidopsis</span> and three transgenic <span class="html-italic">Arabidopsis</span> lines under 400 mM NaCl treatment. (<b>B</b>) The content of CAT in WT <span class="html-italic">Arabidopsis</span> and three transgenic <span class="html-italic">Arabidopsis</span> lines under 400 mM NaCl treatment. The error bars represent standard deviations of three biological replicates (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, Student’s <span class="html-italic">t</span>-test).</p> "> Figure 6
<p>Silencing of <span class="html-italic">GhC3H20</span> decreased salt stress tolerance in cotton. (<b>A</b>) Leaf whitening of positive control plants (plants injected with pYL156-<span class="html-italic">GhPDS</span> vector), and phenotype analysis of control plants and silent plants under 400 mM NaCl treatment. (<b>B</b>) The relative expression levels of control plants and silenced plants in cotton leaves. (<b>C</b>) The content of chlorophyll in leaves of control plants and silenced plants under 400 mM NaCl treatment. The error bars represent standard deviations of three biological replicates (** <span class="html-italic">p</span> <0.01, Student’s <span class="html-italic">t</span>-test).</p> "> Figure 7
<p>GhC3H20 interacted with GhPP2CA and GhHAB1 in vivo. (<b>A</b>) GhC3H20 transcriptional activation assay. (<b>B</b>) GhC3H20 interacted with GhPP2CA and GhHAB1 in yeast cells.</p> "> Figure 8
<p>The expression levels of genes related to ABA and osmotic stress in cotton and <span class="html-italic">Arabidopsis</span> under 400 mM NaCl treatment. (<b>A</b>) The expression levels of ABA marker genes (<span class="html-italic">AtPP2CA</span> and <span class="html-italic">AtHAB1</span>) in WT <span class="html-italic">Arabidopsis</span> and three transgenic <span class="html-italic">Arabidopsis</span> lines in leaves under 400 mM NaCl treatment. (<b>B</b>) The relative expression of the osmotic stress marker gene (<span class="html-italic">AtNHX1</span>) in WT <span class="html-italic">Arabidopsis</span> and three transgenic <span class="html-italic">Arabidopsis</span> lines in leaves under 400 mM NaCl treatment. (<b>C</b>) The relative expression of ABA marker genes (<span class="html-italic">GhPP2CA</span> and <span class="html-italic">GhHAB1</span>) in control plants (plants injected with pYL156 empty vector) and silenced plants (plants injected with pYL156-<span class="html-italic">GhC3H20</span> vector) in leaves under 400 mM NaCl treatment. (<b>D</b>) The relative expression of the osmotic stress marker gene (<span class="html-italic">GhNHX2</span>) in control plants (plants injected with pYL156 empty vector) and silenced plants (plants injected with pYL156-<span class="html-italic">GhC3H20</span> vector) in leaves under 400 mM NaCl treatment. (<b>E</b>) The expression levels of <span class="html-italic">GhPP2CA</span> and <span class="html-italic">GhHAB1</span> in roots under 200 mM NaCl treatment. The error bars represent standard deviations of three technical replicates (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, Student’s <span class="html-italic">t</span>-test).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Gene Structure, Phylogenetic Analysis, and Protein Sequence Alignment Analysis of GhC3H20
2.2. Expression Pattern Analysis of the GhC3H20 Gene under NaCl and PEG Treatments and in Eight Cotton Tissues
2.3. Promoter Analysis of GhC3H20
2.4. Overexpression of GhC3H20 Enhances Salt and osmotic Stress Tolerance in Transgenic Arabidopsis Seedlings
2.5. Overexpression of GhC3H20 Enhanced the Salt Stress Tolerance of Transgenic Arabidopsis at the Seedling Stage
2.6. Silencing of GhC3H20 in Cotton Decreased Salt Stress Tolerance
2.7. GhC3H20 Interacts with GhPP2CA and GhHAB1
2.8. GhC3H20 Increased the Expression Levels of ABA Signaling and Osmotic Stress-Related Genes in Arabidopsis and Cotton
3. Discussion
4. Materials and Methods
4.1. Plant Material and Treatments
4.2. DNA Extraction, RNA Isolation, and the qRT-PCR Analysis
4.3. Gene Clone and Sequence Analysis
4.4. Arabidopsis Transformation
4.5. β-Glucuronidase (GUS) Histochemical Staining
4.6. Phenotypic Observation of Transgenic Arabidopsis
4.7. VIGS Assay
4.8. Measurement of CAT and Chlorophyll Content
4.9. Yeast Two-Hybrid (Y2H) Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Shang, H.; Shi, Y.; Huang, L.; Li, J.; Ge, Q.; Gong, J.; Liu, A.; Chen, T.; Wang, D.; et al. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). BMC Plant Biol. 2016, 16, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, C.; Zhou, L. Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton (Gossypium spp.). New Phytol. 2019, 223, 1856–1872. [Google Scholar] [CrossRef] [PubMed]
- Hoang, X.L.T.; Nhi, D.N.H.; Thu, N.B.A.; Thao, N.P.; Tran, L.P. Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr. Genom. 2017, 18, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Shao, H.; Tang, X. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Front. Plant Sci. 2016, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Magnani, E.; Sjolander, K.; Hake, S. From endonucleases to transcription factors: Evolution of the AP2 DNA binding domain in plants. Plant Cell 2004, 16, 2265–2277. [Google Scholar] [CrossRef] [Green Version]
- Takatsuji, H. Zinc-finger transcription factors in plants. Cell. Mol. Life Sci. CMLS 1998, 54, 582–596. [Google Scholar] [CrossRef]
- Stege, J.T.; Guan, X.; Ho, T.; Beachy, R.N.; Barbas, C.F., III. Controlling gene expression in plants using synthetic zinc finger transcription factors. Plant J. Cell Mol. Biol. 2002, 32, 1077–1086. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.; Ullman, C. Recent developments in the engineering of zinc finger proteins. Brief. Funct. Genom. Proteom. 2003, 1, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Kosarev, P.; Mayer, K.F.; Hardtke, C.S. Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol. 2002, 3, research0016.1. [Google Scholar] [CrossRef]
- Nakano, T.; Suzuki, K.; Fujimura, T.; Shinshi, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006, 140, 411–432. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, L. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evol. Biol. 2005, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Lijavetzky, D.; Carbonero, P.; Vicente-Carbajosa, J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol. Biol. 2003, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, D.; Déjardin, A.; Leplé, J.C.; Lesage-Descauses, M.C.; Pilate, G. Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa. DNA Res. 2007, 14, 103–116. [Google Scholar] [CrossRef]
- Jenkins, T.H.; Li, J.; Scutt, C.P.; Gilmartin, P.M. Analysis of members of the Silene latifolia Cys2/His2 zinc-finger transcription factor family during dioecious flower development and in a novel stamen-defective mutant ssf1. Planta 2005, 220, 559–571. [Google Scholar] [CrossRef]
- Schumann, U.; Prestele, J.; O’Geen, H.; Brueggeman, R.; Wanner, G.; Gietl, C. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc. Natl. Acad. Sci. USA 2007, 104, 1069–1074. [Google Scholar] [CrossRef] [Green Version]
- Berg, J.M.; Shi, Y. The galvanization of biology: A growing appreciation for the roles of zinc. Science 1996, 271, 1081–1085. [Google Scholar] [CrossRef]
- Guo, Y.H.; Yu, Y.P.; Wang, D.; Wu, C.A.; Yang, G.D.; Huang, J.G.; Zheng, C.C. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol. 2009, 183, 62–75. [Google Scholar] [CrossRef]
- Huang, P.; Ju, H.W.; Min, J.H.; Zhang, X.; Chung, J.S.; Cheong, H.S.; Kim, C.S. Molecular and physiological characterization of the Arabidopsis thaliana Oxidation-related Zinc Finger 2, a plasma membrane protein involved in ABA and salt stress response through the ABI2-mediated signaling pathway. Plant Cell Physiol. 2012, 53, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Seok, H.Y.; Nguyen, L.V.; Park, H.Y.; Tarte, V.N.; Ha, J.; Lee, S.Y.; Moon, Y.H. Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator in salt stress response. Biochem. Biophys. Res. Commun. 2018, 498, 954–959. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, X.; Zhi, Y.; Li, X.; Zhang, Q.; Niu, J.; Wang, J.; Zhai, H.; Zhao, N.; Li, J.; et al. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol. 2019, 223, 1918–1936. [Google Scholar] [CrossRef]
- Long, L.; Yang, W.W.; Liao, P.; Guo, Y.W.; Kumar, A.; Gao, W. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Sci. 2019, 281, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guo, Y.; Wu, C.; Yang, G.; Li, Y.; Zheng, C. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom. 2008, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Thomas, T.L. PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 1998, 10, 383–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Z.; Li, M.; Yang, W.; Xu, W.; Xue, Y. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol. 2006, 141, 1376–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.; Qiao, Z.; Li, Y.; Wang, C.; Wang, B. The Roles of CCCH Zinc-Finger Proteins in Plant Abiotic Stress Tolerance. Int. J. Mol. Sci. 2021, 22, 8327. [Google Scholar] [CrossRef]
- Ilyas, M.; Hussain Shah, S.; Fujita, Y.; Maruyama, K.; Nakashima, K.; Yamaguchi-Shinozaki, K.; Jan, A. OsTZF1, a CCCH-tandem zinc finger protein gene, driven under own promoter produces no pleiotropic effects and confers salt and drought tolerance in rice. Plant Signal. Behav. 2022, 17, 2142725. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.; Suzuki, N.; Ciftci-Yilmaz, S.; Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010, 33, 453–467. [Google Scholar] [CrossRef]
- Chen, J.; Song, L.; Dai, J.; Gan, N.; Liu, Z. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 2004, 43, 393–400. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Jan, A.; Maruyama, K.; Todaka, D.; Kidokoro, S.; Abo, M.; Yoshimura, E.; Shinozaki, K.; Nakashima, K.; Yamaguchi-Shinozaki, K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol. 2013, 161, 1202–1216. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, L.J.; Huang, R.D. Cytoskeleton and plant salt stress tolerance. Plant Signal. Behav. 2011, 6, 29–31. [Google Scholar] [CrossRef] [Green Version]
- León, J.; Castillo, M.C.; Coego, A.; Lozano-Juste, J.; Mir, R. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. J. Exp. Bot. 2014, 65, 907–921. [Google Scholar] [CrossRef]
- Saxena, I.; Srikanth, S.; Chen, Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. Front. Plant Sci. 2016, 7, 570. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Jensen, C.R.; Shahanzari, A.; Andersen, M.N.; Jacobsen, S.-E. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 2005, 168, 831–836. [Google Scholar] [CrossRef]
- Tuteja, N. Abscisic Acid and abiotic stress signaling. Plant Signal. Behav. 2007, 2, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, C.; Zhang, Y.; Wang, B.; Ran, Q.; Zhang, J. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J. Exp. Bot. 2019, 70, 5471–5486. [Google Scholar] [CrossRef]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 2012, 1819, 86–96. [Google Scholar] [CrossRef]
- Uno, Y.; Furihata, T.; Abe, H.; Yoshida, R.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 2000, 97, 11632–11637. [Google Scholar] [CrossRef] [Green Version]
- Krzywińska, E.; Kulik, A.; Bucholc, M.; Fernandez, M.A.; Rodriguez, P.L.; Dobrowolska, G. Protein phosphatase type 2C PP2CA together with ABI1 inhibits SnRK2.4 activity and regulates plant responses to salinity. Plant Signal. Behav. 2016, 11, e1253647. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Q.; Jiang, L.; Kai, W.; Liang, B.; Wang, J.; Du, Y.; Zhai, X.; Wang, J.; Zhang, Y.; et al. Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato. Plant Cell Physiol. 2018, 59, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Holsters, M.; de Waele, D.; Depicker, A.; Messens, E.; van Montagu, M.; Schell, J. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. MGG 1978, 163, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhang, J.; Wei, F.; Fu, X.; Wei, H.; Lu, J.; Ma, L.; Wang, H. The CCCH-Type Zinc-Finger Protein GhC3H20 Enhances Salt Stress Tolerance in Arabidopsis thaliana and Cotton through ABA Signal Transduction Pathway. Int. J. Mol. Sci. 2023, 24, 5057. https://doi.org/10.3390/ijms24055057
Zhang Q, Zhang J, Wei F, Fu X, Wei H, Lu J, Ma L, Wang H. The CCCH-Type Zinc-Finger Protein GhC3H20 Enhances Salt Stress Tolerance in Arabidopsis thaliana and Cotton through ABA Signal Transduction Pathway. International Journal of Molecular Sciences. 2023; 24(5):5057. https://doi.org/10.3390/ijms24055057
Chicago/Turabian StyleZhang, Qi, Jingjing Zhang, Fei Wei, Xiaokang Fu, Hengling Wei, Jianhua Lu, Liang Ma, and Hantao Wang. 2023. "The CCCH-Type Zinc-Finger Protein GhC3H20 Enhances Salt Stress Tolerance in Arabidopsis thaliana and Cotton through ABA Signal Transduction Pathway" International Journal of Molecular Sciences 24, no. 5: 5057. https://doi.org/10.3390/ijms24055057
APA StyleZhang, Q., Zhang, J., Wei, F., Fu, X., Wei, H., Lu, J., Ma, L., & Wang, H. (2023). The CCCH-Type Zinc-Finger Protein GhC3H20 Enhances Salt Stress Tolerance in Arabidopsis thaliana and Cotton through ABA Signal Transduction Pathway. International Journal of Molecular Sciences, 24(5), 5057. https://doi.org/10.3390/ijms24055057