Discovering the Biological Significance and Therapeutic Potential of miR-29b-3p in Triple-Negative Breast Cancer
<p>The expression level of miR-29b-3p in TNBC (TCGA dataset) and breast cancer cell lines. (<b>A</b>) The expression level of miR-29b-3p in TNBC versus adjacent normal tissue according to TCGA patient’s cohort. (<b>B</b>) A detailed view of miR-29b-3p expression level in TNBC patients according to TCGA patient’s cohort (TT: tumor tissue, TN: normal adjacent tissue). (<b>C</b>) The overall survival rate for miR-29b-3p in TNBC patients, according to data available from the online application KM Plotter developed based on TCGA data. Patients with expression above the median are indicated in the red line, and patients with expression below the median in the black line compared by the log-rank test, HR: hazard ratio (<b>D</b>) The evaluation of miR-29b-3p expression levels in triple-negative breast cancer cell lines (Hs578T, BT549 and MDA-MB-231), compared to the expression level for this transcript in normal epithelial breast cell line, FR2, based on ΔΔCt method and U6 for normalization (* <span class="html-italic">p</span> < 0.05, **** <span class="html-italic">p</span> < 0.0001).</p> "> Figure 2
<p>The inhibition of miR-29b-3p reduces cell viability and the capacity for colony formation. (<b>A</b>) Using MTT assay, it was observed that the downregulation of miR-29b-3p reduces cell viability rate in both TNBC cell lines (<b>B</b>). The inhibition of miR-29b-3p reduced the capacity of colony assay formation. Colony formation was observed in both TNBC cell lines transfected with miR-29b-3p inhibitor and NC (negative control) inhibitor. Data are presented as % of NC inhibitor group, NC is considered as 100%; data presented as mean ± SD, n = 3; Student’s <span class="html-italic">t</span>-test was considered statistically significant for * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 when compared to the NC inhibitor group.</p> "> Figure 3
<p>miR-29b-3p inhibits mitochondrial activity and activates autophagy and apoptosis in both TNBC cell lines. (<b>A</b>) The inhibition of miR-29b-3p reduces the mitochondrial activity in transfected TNBC cell lines, shown through TMRE/Hoechst double staining (active mitochondria are stained in red; cell nuclei are stained in blue); (<b>B</b>) The evaluation of autophagic vacuoles using MDC/PI double staining. Thus, more autophagic vacuoles can be observed in both TNBC cell lines transfected with miR-29b-3p inhibitor compared to the NC inhibitor group. In the MDA-MB-231 cell line, the presence of cell nuclei stained with PI can be observed, suggesting the activation of apoptotic processes to a late phase or necrosis. (<b>C</b>) The evaluation of apoptotic cells was evaluated by using Annexin V-FITC double staining. Post-transfection with miR-29b-3p inhibitor, apoptotic cells in both TNBC cell lines are significantly increased, suggesting that cells undergo apoptosis. An increased number of cells were found in the early and late phases of apoptosis and the necrotic phases. Images were visualized under the inverted fluorescent microscope, IX71 Olympus (20X magnification). Data were analyzed with GraphPad Prism 8 software, using Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001) based on manual counting of the cells.</p> "> Figure 4
<p>The altered miRNA pattern in TNBC cell lines as an effect of miR-29b-3p inhibition versus NC inhibitor group. Hierarchical clustering of miRNA expression in (<b>A</b>) BT549 and (<b>B</b>) MDA-MB-231 cell lines represented as heat-map, a fold change > ±1.25 and significantly expressed <span class="html-italic">p</span> < 0.05. (<b>C</b>) The Venn diagram used for upregulated miRNAs and (<b>D</b>) The Venn diagram used for downregulated miRNAs as an effect of miR-29b-3p inhibitor on both TNBC cell lines, generated by using Venny software; (<b>E</b>) heatmap representation of the common up- and downregulated miRs in both TNBC cell lines by highlighted the main biological processes using <span class="html-italic">DIANA</span>-<span class="html-italic">miRPath software</span>.</p> "> Figure 5
<p>The network interaction between mRNA–miRNA is generated by using miRNet software. (<b>A</b>) BT549 cell line. (<b>B</b>) MDA-MB-231 cell line. Network generated with miRNet online tool.</p> "> Figure 6
<p>The relative expression level of miR-29b-3p in both transfected TNBC cell lines using qRT-PCR, based on ΔΔCt method (miR-29 inhibitor versus NC inhibitor group). Data were analyzed with GraphPad Prism 8 software, using Student’s <span class="html-italic">t</span>-test (** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 7
<p>The relative expression level of selected genes according to miRNet diagram using qRT-PCR based on ΔΔCt method (miR-29 inhibitor versus NC inhibitor group). In both TNBC cell lines, BT549 and MDA-MB-231, transfected with miR-29b-3p inhibitor for 48 h, the following genes, <span class="html-italic">MCL1</span>, <span class="html-italic">BCL2</span>, <span class="html-italic">TP53</span>, <span class="html-italic">CASP3</span>, <span class="html-italic">TGFB1</span>, <span class="html-italic">TGFBR2,</span> were analyzed. Data were analyzed with GraphPad Prism 8 software, using Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01).</p> "> Figure 8
<p>The quantification of IL6 protein in both TNBC cell lines, BT549 and MBA-MB-231, transfected with miR-29b-3p inhibitor for 48 h. Data were analyzed with GraphPad Prism 8 software, using Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01).</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Expression Level of miR-29b-3p in TNBC Tumor Tissue and Cell Lines
2.2. miR-29b-3p Inhibits Mitochondrial Activity and Activates Autophagy and Apoptosis
2.3. Identification of Differentially Expressed miRNAs as an Effect of miR-29b-3p Inhibition on TNBC Cell Lines Using Microarray Technology
2.4. The miR-29b-3p Expression Level Validated in Both TNBC Cell Lines Using qRT-PCR
2.5. Evaluation by qRT-PCR of Key Genes Targeted by miR-29b-3p
2.6. Quantifying IL6 in Cell Culture Medium for Both TNBC Cell Lines Using ELISA
3. Discussion
4. Materials and Methods
4.1. miR-29b-3p Expression Levels in TNBC
4.2. Cell Culture
4.3. miRNA Transfection
4.4. Cell Proliferation Assay
4.5. Colony Formation Assay
4.6. The Assessment of Mitochondrial Activity in Transfected TNBC Cell Lines
4.7. Apoptosis and Autophagic Vacuoles Assessment in Transfected TNBC Cell Lines
4.8. miRNA Altered Pattern as Effect of miR-29b Transfection in TNBC Cells
4.9. Gene and miRNA Expression Evaluation Using qRT-PCR
4.10. IL6 Quantification from the Cell Culture Medium
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016, 293, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Polyak, K. Heterogeneity in breast cancer. J. Clin. Investig. 2011, 121, 3786–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurzu, S.; Banias, L.; Bara, T.; Feher, I.; Bara, T.; Jung, I. The Epithelial-Mesenchymal Transition Pathway in Two Cases with Gastric Metastasis Originating from Breast Carcinoma, One with a Metachronous Primary Gastric Cancer. Recent Patient Anticancer Drug Discov. 2018, 13, 118–124. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiorean, R.; Braicu, C.; Berindan-Neagoe, I. Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth? Breast 2013, 22, 1026–1033. [Google Scholar] [CrossRef]
- Choi, Y.L.; Oh, E.; Park, S.; Kim, Y.; Park, Y.H.; Song, K.; Cho, E.Y.; Hong, Y.C.; Choi, J.S.; Lee, J.E.; et al. Triple-negative, basal-like, and quintuple-negative breast cancers: Better prediction model for survival. BMC Cancer 2010, 10, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, H.; Baggerly, K.A.; Wang, Y.; Zhang, Y.; Gonzalez-Angulo, A.M.; Meric-Bernstam, F.; Valero, V.; Lehmann, B.D.; Pietenpol, J.A.; Hortobagyi, G.N.; et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 5533–5540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 2017, 389, 2430–2442. [Google Scholar] [CrossRef] [Green Version]
- Turashvili, G.; Brogi, E. Tumor Heterogeneity in Breast Cancer. Front. Med. 2017, 4, 227. [Google Scholar] [CrossRef] [Green Version]
- Irimie, A.I.; Braicu, C.; Sonea, L.; Zimta, A.A.; Cojocneanu-Petric, R.; Tonchev, K.; Mehterov, N.; Diudea, D.; Buduru, S.; Berindan-Neagoe, I. A Looking-Glass of Non-coding RNAs in oral cancer. Int. J. Mol. Sci. 2017, 18, 2620. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.L.; Wu, J.; Liu, Q.; Zhang, Y.; Sun, Z.L.; Jing, H. MiR-886-5p inhibition inhibits growth and induces apoptosis of MCF7 cells. Asian Pac. J. Cancer Prev. 2014, 15, 1511–1515. [Google Scholar] [CrossRef]
- Berindan-Neagoe, I.; Calin, G.A. Molecular pathways: MicroRNAs, cancer cells, and microenvironment. Clin. Cancer Res. 2014, 20, 6247–6253. [Google Scholar] [CrossRef] [Green Version]
- Cho, W.C. MicroRNAs: Potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol. 2010, 42, 1273–1281. [Google Scholar] [CrossRef]
- Yan, B.; Guo, Q.; Fu, F.J.; Wang, Z.; Yin, Z.; Wei, Y.B.; Yang, J.R. The role of miR-29b in cancer: Regulation, function, and signaling. Onco Targets Ther. 2015, 8, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kole, A.J.; Swahari, V.; Hammond, S.M.; Deshmukh, M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev. 2011, 25, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Shetti, D.; Fan, C.; Wei, K. miR-29b-3p promotes progression of MDA-MB-231 triple-negative breast cancer cells through downregulating TRAF3. Biol. Res. 2019, 52, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenvang, J.; Petri, A.; Lindow, M.; Obad, S.; Kauppinen, S. Inhibition of microRNA function by antimiR oligonucleotides. Silence 2012, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Braicu, C.; Catana, C.; Calin, G.A.; Berindan-Neagoe, I. NCRNA combined therapy as future treatment option for cancer. Curr. Pharm. Des. 2014, 20, 6565–6574. [Google Scholar] [CrossRef]
- Hozaka, Y.; Seki, N.; Tanaka, T.; Asai, S.; Moriya, S.; Idichi, T.; Wada, M.; Tanoue, K.; Kawasaki, Y.; Mataki, Y.; et al. Molecular Pathogenesis and Regulation of the miR-29-3p-Family: Involvement of ITGA6 and ITGB1 in Intra-Hepatic Cholangiocarcinoma. Cancers 2021, 13, 2804. [Google Scholar] [CrossRef]
- Ciocan-Cartita, C.A.; Jurj, A.; Zanoaga, O.; Cojocneanu, R.; Pop, L.A.; Moldovan, A.; Moldovan, C.; Zimta, A.A.; Raduly, L.; Pop-Bica, C.; et al. New insights in gene expression alteration as effect of doxorubicin drug resistance in triple negative breast cancer cells. J. Exp. Clin. Cancer Res. 2020, 39, 241. [Google Scholar] [CrossRef]
- Ciocan-Cȃrtiţă, C.A.; Jurj, A.; Raduly, L.; Cojocneanu, R.; Moldovan, A.; Pileczki, V.; Pop, L.A.; Budişan, L.; Braicu, C.; Korban, S.S.; et al. New perspectives in triple-negative breast cancer therapy based on treatments with TGFβ1 siRNA and doxorubicin. Mol. Cell Biochem. 2020, 475, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Jurj, A.; Pop, L.A.; Zanoaga, O.; Ciocan-Cârtiţă, C.A.; Cojocneanu, R.; Moldovan, C.; Raduly, L.; Pop-Bica, C.; Trif, M.; Irimie, A.; et al. New Insights in Gene Expression Alteration as Effect of Paclitaxel Drug Resistance in Triple Negative Breast Cancer Cells. Cell Physiol. Biochem. 2020, 54, 648–664. [Google Scholar] [CrossRef] [PubMed]
- Muluhngwi, P.; Alizadeh-Rad, N.; Vittitow, S.L.; Kalbfleisch, T.S.; Klinge, C.M. The miR-29 transcriptome in endocrine-sensitive and resistant breast cancer cells. Sci. Rep. 2017, 7, 5205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.; Du, Y.; Li, R.; Shen, A.; Liu, X.; Li, C.; Hu, B. miR-29b-3p Increases Radiosensitivity in Stemness Cancer Cells via Modulating Oncogenes Axis. Front. Cell Dev. Biol. 2021, 9, 741074. [Google Scholar] [CrossRef]
- Grassilli, S.; Vezzali, F.; Cairo, S.; Brugnoli, F.; Volinia, S.; De Mattei, M.; Judde, J.G.; Bertagnolo, V. Targeting the Vav1/miR-29b axis as a potential approach for treating selected molecular subtypes of triple-negative breast cancer. Oncol. Rep. 2021, 45, 1–7. [Google Scholar] [CrossRef]
- De Blasio, A.; Di Fiore, R.; Pratelli, G.; Drago-Ferrante, R.; Saliba, C.; Baldacchino, S.; Grech, G.; Scerri, C.; Vento, R.; Tesoriere, G. A loop involving NRF2, miR-29b-1-5p and AKT, regulates cell fate of MDA-MB-231 triple-negative breast cancer cells. J. Cell. Physiol. 2020, 235, 629–637. [Google Scholar] [CrossRef]
- Song, Y.; Zeng, S.; Zheng, G.; Chen, D.; Li, P.; Yang, M.; Luo, K.; Yin, J.; Gu, Y.; Zhang, Z.; et al. FOXO3a-driven miRNA signatures suppresses VEGF-A/NRP1 signaling and breast cancer metastasis. Oncogene 2021, 40, 777–790. [Google Scholar] [CrossRef]
- Wang, H.; An, X.; Yu, H.; Zhang, S.; Tang, B.; Zhang, X.; Li, Z. MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells. Oncotarget 2017, 8, 102119–102133. [Google Scholar] [CrossRef]
- Grassilli, S.; Bertagnolo, V.; Brugnoli, F. Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics 2022, 12, 2139. [Google Scholar] [CrossRef]
- Muluhngwi, P.; Klinge, C.M. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers 2021, 13, 3530. [Google Scholar] [CrossRef]
- Chung, A.W.; Kozielski, A.J.; Qian, W.; Zhou, J.; Anselme, A.C.; Chan, A.A.; Pan, P.-Y.; Lee, D.J.; Chang, J.C. Tocilizumab overcomes chemotherapy resistance in mesenchymal stem-like breast cancer by negating autocrine IL-1A induction of IL-6. NPJ Breast Cancer 2022, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Hartman, Z.C.; Poage, G.M.; den Hollander, P.; Tsimelzon, A.; Hill, J.; Panupinthu, N.; Zhang, Y.; Mazumdar, A.; Hilsenbeck, S.G.; Mills, G.B.; et al. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 2013, 73, 3470–3480. [Google Scholar] [CrossRef] [Green Version]
- Campbell, K.J.; Mason, S.M.; Winder, M.L.; Willemsen, R.B.E.; Cloix, C.; Lawson, H.; Rooney, N.; Dhayade, S.; Sims, A.H.; Blyth, K.; et al. Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function. Cell Death Differ. 2021, 28, 2589–2600. [Google Scholar] [CrossRef]
- Wagner, K.-U. Know thy cells: Commonly used triple-negative human breast cancer cell lines carry mutations in RAS and effectors. Breast Cancer Res. 2022, 24, 44. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 00341–003411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef]
BT549 | MDA-MB-231 | ||||
---|---|---|---|---|---|
Systematic_Name | FC | Corr p Value | Systematic_Name | FC | Corr p Value |
hsa-miR-29c-3p | −96.24 | 0.0001 | hsa-miR-6889-3p | −15.41 | 0.011 |
hsa-miR-185-5p | −16.09 | 0.0002 | hsa-miR-6508-5p | −6.93 | 0.025 |
hsa-miR-6512-5p | −15.81 | 0.0003 | hsa-miR-1228-3p | −6.12 | 0.036 |
hsa-miR-101-3p | −14.33 | 0.0004 | hsa-miR-4433a-5p | −5.19 | 0.013 |
hsa-miR-3156-5p | −13.59 | 0.0008 | hsa-miR-29a-3p | −5.01 | 0.045 |
hsa-miR-660-5p | −11.97 | 0.0000 | hsa-miR-29b-3p | −3.62 | 0.043 |
hsa-miR-455-3p | −11.63 | 0.0003 | hsa-miR-6737-3p | −3.37 | 0.006 |
hsa-miR-1914-3p | −11.62 | 0.0020 | hsa-miR-940 | −3.10 | 0.047 |
hsa-miR-29a-3p | −11.24 | 0.0016 | hsa-miR-6797-3p | −2.85 | 0.002 |
hsa-miR-29b-3p | −7.17 | 0.0004 | hsa-miR-6766-3p | −2.69 | 0.009 |
hsa-miR-1271-5p | −5.83 | 0.0284 | hsa-miR-6800-5p | 19.82 | 0.000 |
hsa-miR-4800-5p | 19.97 | 0.0044 | hsa-miR-3125 | 19.51 | 0.000 |
hsa-miR-3648 | 16.12 | 0.0091 | hsa-miR-4466 | 17.33 | 0.000 |
hsa-miR-765 | 14.67 | 0.0004 | hsa-miR-1914-3p | 15.88 | 0.000 |
hsa-miR-7110-5p | 3.74 | 0.0433 | hsa-miR-3141 | 15.33 | 0.000 |
hsa-miR-1229-5p | 2.96 | 0.0060 | hsa-miR-5787 | 14.21 | 0.004 |
hsa-miR-6087 | 2.79 | 0.0478 | hsa-miR-6858-5p | 14.05 | 0.024 |
hsa-miR-4433a-5p | 2.12 | 0.0433 | hsa-miR-3665 | 13.60 | 0.001 |
hsa-miR-6740-5p | 1.36 | 0.0284 | hsa-miR-423-5p | 13.54 | 0.001 |
hsa-miR-3156-5p | 13.54 | 0.000 | |||
hsa-miR-4298 | 12.98 | 0.000 | |||
hsa-miR-7107-5p | 12.87 | 0.016 | |||
hsa-miR-1268a | 12.83 | 0.001 | |||
hsa-miR-6769b-5p | 10.73 | 0.006 | |||
hsa-miR-1229-5p | 10.08 | 0.018 | |||
hsa-miR-1288-3p | 9.33 | 0.001 | |||
hsa-miR-6891-5p | 8.77 | 0.004 | |||
hsa-miR-4653-3p | 8.51 | 0.042 | |||
hsa-miR-2861 | 8.15 | 0.035 | |||
hsa-miR-7847-3p | 8.01 | 0.002 | |||
hsa-miR-483-5p | 7.97 | 0.014 | |||
hsa-miR-6780a-5p | 7.70 | 0.006 | |||
hsa-miR-3656 | 7.55 | 0.004 | |||
hsa-miR-1915-3p | 7.09 | 0.028 | |||
hsa-miR-138-5p | 6.71 | 0.042 | |||
hsa-miR-4669 | 6.43 | 0.001 | |||
hsa-miR-7150 | 5.09 | 0.018 | |||
hsa-miR-484 | 4.49 | 0.017 | |||
hsa-miR-186-5p | 3.45 | 0.000 | |||
hsa-miR-6727-5p | 3.14 | 0.006 | |||
hsa-miR-584-5p | 3.09 | 0.004 | |||
hsa-miR-937-5p | 2.71 | 0.048 | |||
hsa-miR-23a-5p | 2.11 | 0.023 |
Demographics | TNBC |
No. of cases | |
Females | 112 |
Age | |
Median, Range | 54 (29–90) |
TNM | |
T1 | 27 |
T2 | 70 |
T3 | 11 |
T4 | 4 |
Tx | - |
N0 | 72 |
N1 | 25 |
N2 | 11 |
N3 | 4 |
Nx | - |
M0 | 95 |
Mx | 17 |
Tumor grade (I–IV) | |
I: | 20 |
II: | 70 |
III: | 18 |
IV: | 1 |
Unknown: | 3 |
Primer | Sequence |
---|---|
MCL1 | FW-TGTCCAGTTCCGAAGCAT/ RV-AAGCGAATGGGCAGGTCGT |
BCL2 | FW-GCGCTACAGTTCCACAAAGG/ RV-AGTACCTGAACCGGCACCT |
TP53 | FW: CCC TTT TTG GAC TTC AGG TG/ RV: AGG CCT TGG AAC TCA AGG AT |
Caspase 3 | FW-GCTTGTCGGCATACTGTTTCAG/ RV-AGAACTGGACTGTGGCATTGAG |
TGFβ1 | FW-ACTACTACGCCAAGGAGGTCAC/ RV-TGCTTGAACTTGTCATAGATTTCG |
TGFΒR2 | FW-CACCGCACGTTCAGAAGTC/ RV-TGGATGGGCAGTCCTATTACA |
B2M | FW-CACCCCCACTGAAAAAGATGAG/ RV-CCTCCATGATGCTGCTTACATG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurj, A.; Zanoaga, O.; Raduly, L.; Morhan, V.; Papi, Z.; Ciocan, C.; Pop, L.-A.; Berindan-Neagoe, I.; Braicu, C. Discovering the Biological Significance and Therapeutic Potential of miR-29b-3p in Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 5048. https://doi.org/10.3390/ijms24055048
Jurj A, Zanoaga O, Raduly L, Morhan V, Papi Z, Ciocan C, Pop L-A, Berindan-Neagoe I, Braicu C. Discovering the Biological Significance and Therapeutic Potential of miR-29b-3p in Triple-Negative Breast Cancer. International Journal of Molecular Sciences. 2023; 24(5):5048. https://doi.org/10.3390/ijms24055048
Chicago/Turabian StyleJurj, Ancuta, Oana Zanoaga, Lajos Raduly, Vlad Morhan, Zsofia Papi, Cristina Ciocan, Laura-Ancuta Pop, Ioana Berindan-Neagoe, and Cornelia Braicu. 2023. "Discovering the Biological Significance and Therapeutic Potential of miR-29b-3p in Triple-Negative Breast Cancer" International Journal of Molecular Sciences 24, no. 5: 5048. https://doi.org/10.3390/ijms24055048
APA StyleJurj, A., Zanoaga, O., Raduly, L., Morhan, V., Papi, Z., Ciocan, C., Pop, L.-A., Berindan-Neagoe, I., & Braicu, C. (2023). Discovering the Biological Significance and Therapeutic Potential of miR-29b-3p in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 24(5), 5048. https://doi.org/10.3390/ijms24055048