Selection of Novel Reference Genes by RNA-Seq and Their Evaluation for Normalising Real-Time qPCR Expression Data of Anthocyanin-Related Genes in Lettuce and Wild Relatives
<p>Expression levels, Cq (quantification cycle) values assessed by real-time qPCR (quantitative PCR), of six tested candidate RGs across the samples in three experiments: (<b>A</b>) comparison of leaf colour in green and red lettuce commercial varieties; (<b>B</b>) comparison of tissues (leaf and stem) in a wild relative species; and (<b>C</b>) drought stress in a commercial variety, a traditional variety, and a wild relative species. Lower and upper ends of the boxes represent the 25th and 75th percentiles, respectively, and whisker caps indicate the minimum and maximum values. Horizontal bars and black and grey dots depict the median, mean and outliers, respectively.</p> "> Figure 2
<p>Expression stability of six tested candidate reference genes (RGs) calculated by (<span class="html-fig-inline" id="ijms-24-03052-i001"><img alt="Ijms 24 03052 i001" src="/ijms/ijms-24-03052/article_deploy/html/images/ijms-24-03052-i001.png"/></span>) geNorm (M), (<span class="html-fig-inline" id="ijms-24-03052-i002"><img alt="Ijms 24 03052 i002" src="/ijms/ijms-24-03052/article_deploy/html/images/ijms-24-03052-i002.png"/></span>) NormFinder, (<span class="html-fig-inline" id="ijms-24-03052-i003"><img alt="Ijms 24 03052 i003" src="/ijms/ijms-24-03052/article_deploy/html/images/ijms-24-03052-i003.png"/></span>) BestKeeper, and (<span class="html-fig-inline" id="ijms-24-03052-i004"><img alt="Ijms 24 03052 i004" src="/ijms/ijms-24-03052/article_deploy/html/images/ijms-24-03052-i004.png"/></span>) ΔCt (SV) methods in three experiments: (<b>A</b>) comparison of leaf colour (green and red) in lettuce commercial varieties; (<b>B</b>) comparison of tissues (leaf and stem) in a wild relative species; and (<b>C</b>) under drought stress in a commercial variety, a traditional variety, and a wild relative. The most stable genes are represented on the left and the least stable on the right of the graph.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Selection of Candidate reference genes (RGs) Based on RNA-seq Data
2.2. Expression Profile of Candidate RGs
2.3. Analysis of Gene Expression Stability in Accessions of Lactuca: Different Leaf Colour, Tissues, and Drought Stress Conditions
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Designs
4.2. RNA Extraction and RNA-Seq Analysis
4.3. Selection of Candidate RGs
4.4. mRNA Isolation, cDNA Synthesis and Real-Time qPCR
4.5. Stability Analysis of RGs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina-Lozano, I.; Bertolín, J.R.; Díaz, A. Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and anthocyanin content. Food Chem. 2021, 359, 129864. [Google Scholar] [CrossRef]
- Yousuf, B.; Gul, K.; Wani, A.A.; Singh, P. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Escamilla, J.O.; Jimeńez-Hernández, F.E.; Alvarez-Parrilla, E.; De La Rosa, L.A.; Martĺnez-Ruiz, N.D.R.; González-Fernández, R.; Orozco-Lucero, E.; González-Aguilar, G.A.; García-Fajardo, J.A.; Rodrigo-García, J. Effect of Elicitation on Polyphenol and Carotenoid Metabolism in Butterhead Lettuce (Lactuca sativa var. capitata). ACS Omega 2020, 5, 11535–11546. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Tao, R.; Liu, W.; Yu, C.; Yue, Z.; He, S.; Lavelle, D.; Zhang, W.; Zhang, L.; An, G.; et al. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnol. J. 2020, 18, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.C.; Inagaki, N.; Sakai, H.; Yamashita, H.; Nakai, Y.; Fujimoto, Z.; Yonemaru, J.; Itoh, H. Genetic effects of Red Lettuce Leaf genes on red coloration in leaf lettuce under artificial lighting conditions. Plant-Environment Interact. 2022, 3, 179–192. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Xu, S.Z.; Cheng, Y.W.; Ya, H.Y.; Han, J.M. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 2016, 15, 10-4238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Su, W.; Tao, R.; Zhang, W.; Chen, J.; Wu, P.; Yan, C.; Jia, Y.; Larkin, R.M.; Lavelle, D.; et al. RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nat. Commun. 2017, 8, 2264. [Google Scholar] [CrossRef]
- Ren, W.; Zhao, L.; Zhang, L.; Wang, Y.; Cui, L.; Tang, Y.; Sun, X.; Tang, K. Molecular cloning and characterization of 4-hydroxyphenylpyruvate dioxygenase gene from Lactuca sativa. J. Plant Physiol. 2011, 168, 1076–1083. [Google Scholar] [CrossRef]
- Damerum, A.; Selmes, S.L.; Biggi, G.F.; Clarkson, G.J.J.; Rothwell, S.D.; Truco, M.J.; Michelmore, R.W.; Hancock, R.D.; Shellcock, C.; Chapman, M.A.; et al. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa). Hortic. Res. 2015, 2, 15055. [Google Scholar] [CrossRef]
- Park, S.; Shi, A.; Mou, B. Genome-wide identification and expression analysis of the CBF/DREB1 gene family in lettuce. Sci. Rep. 2020, 10, 5733. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Xu, M.; Liu, C.; Hao, J.; Fan, S.; Han, Y. LsMYB15 Regulates Bolting in Leaf Lettuce (Lactuca sativa L.) Under High-Temperature Stress. Front. Plant Sci. 2022, 13, 921021. [Google Scholar] [CrossRef]
- Liu, R.; Su, Z.; Zhou, H.; Huang, Q.; Fan, S.; Liu, C.; Han, Y. LsHSP70 is induced by high temperature to interact with calmodulin, leading to higher bolting resistance in lettuce. Sci. Rep. 2020, 10, 15155. [Google Scholar] [CrossRef]
- Xiong, T.; Zhang, S.; Kang, Z.; Zhang, T.; Li, S. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce (Lactuca sativa L.) to Copper Oxide Nanoparticles-Insights into the Phytotoxicity Mechanisms. Int. J. Mol. Sci. 2021, 22, 3688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, C.; Tariq, M.; Xiao, Q.; Zhang, W.; Huang, K.; Lu, Q.; Lin, K.; Liu, Z. The response and tolerance mechanisms of lettuce (Lactuca sativa L.) exposed to nickel in a spiked soil system. Chemosphere 2019, 222, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Porcel, R.; Aroca, R.; Azcón, R.; Ruiz-Lozano, J.M. PIP Aquaporin Gene Expression in Arbuscular Mycorrhizal Glycine max and Lactuca sativa Plants in Relation to Drought Stress Tolerance. Plant Mol. Biol. 2006, 60, 389–404. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Aroca, R.; Zamarreño, Á.M.; Molina, S.; Andreo-Jiménez, B.; Porcel, R.; García-Mina, J.M.; Ruyter-Spira, C.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell Environ. 2016, 39, 441–452. [Google Scholar] [CrossRef]
- Aksakal, O.; Tabay, D.; Esringu, A.; Icoglu Aksakal, F.; Esim, N. Effect of proline on biochemical and molecular mechanisms in lettuce (Lactuca sativa L.) exposed to UV-B radiation. Photochem. Photobiol. Sci. 2017, 16, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Serrano-Heras, G.; Castaño, M.J.; Solera, J. Real-time PCR detection chemistry. Clin. Chim. Acta 2015, 439, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345, 646–651. [Google Scholar] [CrossRef]
- Kiarash, J.G.; Dayton Wilde, H.; Amirmahani, F.; Mehdi Moemeni, M.; Zaboli, M.; Nazari, M.; Saeed Moosavi, S.; Jamalvandi, M. Selection and validation of reference genes for normalization of qRT-PCR gene expression in wheat (Triticum durum L.) under drought and salt stresses. J. Genet. 2018, 97, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Shi, L.; Han, C.; Yu, J.; Li, D.; Zhang, Y. Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE 2012, 7, e46451. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Miranda, V.; Coelho, R.R.; Viana, A.A.B.; de Oliveira Neto, O.B.; Carneiro, R.M.D.G.; Rocha, T.L.; de Sa, M.F.G.; Fragoso, R.R. Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack. BMC Res. Notes 2013, 6, 196. [Google Scholar] [CrossRef]
- Gutierrez, L.; Mauriat, M.; Guénin, S.; Pelloux, J.; Lefebvre, J.-F.; Louvet, R.; Rusterucci, C.; Moritz, T.; Guerineau, F.; Bellini, C.; et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 2008, 6, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.T.; Poolakkalody, N.J.; Shah, J.M. Plant reference genes for development and stress response studies. J. Biosci. 2018, 43, 173–187. [Google Scholar] [CrossRef]
- Sgamma, T.; Pape, J.; Massiah, A.; Jackson, S. Selection of reference genes for diurnal and developmental time-course real-time PCR expression analyses in lettuce. Plant Methods 2016, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Borowski, J.M.; Galli, V.; da Silva Messias, R.; Perin, E.C.; Buss, J.H.; dos Anjos e Silva, S.D.; Rombaldi, C.V. Selection of candidate reference genes for real-time PCR studies in lettuce under abiotic stresses. Planta 2014, 239, 1187–1200. [Google Scholar] [CrossRef]
- Song, Y.; Hanner, R.H.; Meng, B. Genome-wide screening of novel RT-qPCR reference genes for study of GLRaV-3 infection in wine grapes and refinement of an RNA isolation protocol for grape berries. Plant Methods 2021, 17, 110. [Google Scholar] [CrossRef]
- Yim, A.K.Y.; Wong, J.W.H.; Ku, Y.S.; Qin, H.; Chan, T.F.; Lam, H.M. Using RNA-seq Data to Evaluate Reference Genes Suitable for Gene Expression Studies in Soybean. PLoS ONE 2015, 10, e0136343. [Google Scholar] [CrossRef]
- Zhou, Z.; Cong, P.; Tian, Y.; Zhu, Y. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots. PLoS ONE 2017, 12, e0185288. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Rime Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T. Determination of most stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- PGR (Plant Genetic Resources) Lettuce. The Lettuce Gene Pool. Available online: https://www.pgrportal.nl/en/lettuce-genetic-resources-portal.htm (accessed on 21 November 2022).
- Garrido, J.; Aguilar, M.; Prieto, P. Identification and validation of reference genes for RT-qPCR normalization in wheat meiosis. Sci. Rep. 2020, 10, 2726. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Batut, B.; Van Den Beek, M.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Broad Institute. Picard Tools. Available online: http://broadinstitute.github.io/picard/ (accessed on 25 October 2022).
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2013, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubista, M.; Sindelka, R. The Prime Technique-Real-time PCR Data Analysis. G.I.T Lab. J. 2007, 9, 33–35. [Google Scholar]
Name | Description | Primer Sequence (5′–3′) | Amplicon Length (bp) | Annealing Temperature (°C) |
---|---|---|---|---|
ADF2 | Actin-depolymerizing factor 2 | F-TTGGAGAACCAGCAGAAAC | 199 | 62 |
R-CCATCAAGCTCTCTCTTGAAC | ||||
CYB5 | Cytochrome B5 | F-GCACGCTACGAAAGAGG | 80 | 59 |
R-CAGGATGATCATCTAGAAAAGG | ||||
iPGAM | Probable 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | F-GGGAGATGTTTCAATTCCAAG | 162 | 62 |
R-CCCATTAGAGAAAGATGAGCAG | ||||
SCL13 | Scarecrow-like protein 13 | F-AGTCGGTTAGCACGGTTA | 100 | 56 |
R-TTCGTGTTCGATTCTTGTT | ||||
TRXL3-3 | Thioredoxin-like protein 3-3 | F-TGGTGTCGTGTTTGTGCAGAG | 112 | 62 |
R-GTTGGGTTGTTTCTGGGCATT | ||||
VHA-H | V-type proton ATPase subunit H | F-TGCAAGTGATGATGTTTTGA | 152 | 59 |
R-TGCTTGAACAAATGAAGACC |
Gene a | Green vs. Red | Leaf vs. Stem | Drought Stress | ||
---|---|---|---|---|---|
‘Romired’ | ‘Morada de Belchite’ | L. homblei | |||
ACT | 0.564 ns | 0.938 ns | 0.421 ns | 0.018 * | 0.036 * |
α-TUB | 0.635 ns | 0.001 ** | 0.435 ns | 0.637 ns | 0.643 ns |
EEF1-α | 0.019 * | 0.066 ns | 0.976 ns | 0.089 ns | 0.696 ns |
GAPDH-2C | 0.028 * | 0.027 * | 0.407 ns | 0.302 ns | 0.593 ns |
UBC32 | 0.159 ns | 0.159 ns | 0.398 ns | 0.276 ns | 0.010 * |
UPL6 | 0.471 ns | 0.013 * | 0.003 ** | 0.013 * | 0.168 ns |
ADF2 | 0.569 ns | 0.884 ns | 0.400 ns | 0.660 ns | 0.547 ns |
CYB5 | 0.449 ns | 0.270 ns | 0.723 ns | 0.371 ns | 0.673 ns |
iPGAM | 0.833 ns | 0.773 ns | 0.128 ns | 0.418 ns | 0.210 ns |
SCL13 | 0.408 ns | 0.902 ns | 0.883 ns | 0.427 ns | 0.239 ns |
TRXL3-3 | 0.487 ns | 0.406 ns | 0.843 ns | 0.161 ns | 0.470 ns |
VHA-H | 0.198 ns | 0.576 ns | 0.116 ns | 0.195 ns | 0.741 ns |
geNorm | NormFinder | BestKeeper | Delta Ct | ||||||
---|---|---|---|---|---|---|---|---|---|
Experiment | Ranking | Gene | M | Gene | SV | Gene | SV | Gene | SV |
Green vs. red | 1 | CYB5 | 0.33 | TRXL3-3 | 0.71 | TRXL3-3 | 0.40 | CYB5 | 0.83 |
2 | ADF2 | 0.33 | VHA-H | 0.77 | CYB5 | 0.53 | ADF2 | 0.83 | |
3 | TRXL3-3 | 0.54 | CYB5 | 0.81 | SCL13 | 0.53 | SCL13 | 0.92 | |
4 | VHA-H | 1.11 | ADF2 | 1.09 | ADF2 | 0.57 | TRXL3-3 | 1.10 | |
5 | iPGAM | 1.33 | iPGAM | 1.49 | iPGAM | 0.72 | iPGAM | 1.28 | |
6 | SCL13 | 1.90 | SCL13 | 2.88 | VHA-H | 1.12 | VHA-H | 1.41 | |
Leaf vs. stem | 1 | CYB5 | 0.77 | TRXL3-3 | 0.30 | TRXL3-3 | 0.44 | TRXL3-3 | 0.93 |
2 | ADF2 | 0.77 | VHA-H | 0.30 | iPGAM | 0.47 | CYB5 | 1.03 | |
3 | TRXL3-3 | 1.01 | ADF2 | 1.18 | CYB5 | 0.77 | iPGAM | 1.08 | |
4 | VHA-H | 1.07 | CYB5 | 1.34 | ADF2 | 0.89 | ADF2 | 1.10 | |
5 | iPGAM | 1.22 | iPGAM | 1.55 | SCL13 | 0.92 | VHA-H | 1.38 | |
6 | SCL13 | 2.41 | SCL13 | 4.73 | VHA-H | 1.23 | SCL13 | 1.54 | |
Drought stress | 1 | TRXL3-3 | 1.54 | TRXL3-3 | 0.77 | TRXL3-3 | 0.85 | SCL13 | 3.89 |
2 | ADF2 | 1.54 | ADF2 | 0.77 | SCL13 | 0.92 | TRXL3-3 | 3.90 | |
3 | CYB5 | 1.98 | iPGAM | 2.81 | iPGAM | 1.11 | iPGAM | 4.01 | |
4 | iPGAM | 3.40 | CYB5 | 2.91 | ADF2 | 1.23 | ADF2 | 4.04 | |
5 | SCL13 | 4.41 | SCL13 | 6.62 | CYB5 | 1.50 | CYB5 | 4.07 | |
6 | VHA-H | 6.82 | VHA-H | 11.27 | VHA-H | 10.35 | VHA-H | 14.08 |
Ranking | Green vs. Red | Leaf vs. Stem | Drought Stress |
---|---|---|---|
1 | CYB5 | TRXL3-3 | TRXL3-3 |
2 | TRXL3-3 | CYB5 | ADF2 |
3 | ADF2 | ADF2 | SCL13 |
4 | VHA-H | VHA-H | iPGAM |
5 | SCL13 | iPGAM | CYB5 |
6 | iPGAM | SCL13 | VHA-H |
Experiment | Accession Name | Species | Group | Leaf Colour | Year | Source a | Accession Number |
---|---|---|---|---|---|---|---|
Leaf colour (green vs. red) | ‘Begoña’ | Lactuca sativa L. | Commercial variety | Green | 2018/2019 | Ramiro Arnedo Semillas S.A. | - |
‘Romired’ | Lactuca sativa L. | Commercial variety | Red | CGN | CGN24713 | ||
Tissue (leaf vs. stem) | Lactuca squarrosa | Lactuca squarrosa (Thunb.) Miq. | Wild crop relative | Semi-red (red stems) | 2020/2021 | BGHZ | BGHZ5124 |
Drought stress (C vs. DI-1 vs. DI-2) b | ‘Romired’ | Lactuca sativa L. | Commercial variety | Red | 2020/2021 | CGN | CGN24713 |
‘Morada de Belchite’ | Lactuca sativa L. | Traditional variety | Semi-red | BGHZ | BGHZ0527 | ||
Lactuca homblei | Lactuca homblei De Wild | Wild crop relative | Semi-red | BGHZ | BGHZ5322 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Lozano, I.; Arnedo, M.S.; Grimplet, J.; Díaz, A. Selection of Novel Reference Genes by RNA-Seq and Their Evaluation for Normalising Real-Time qPCR Expression Data of Anthocyanin-Related Genes in Lettuce and Wild Relatives. Int. J. Mol. Sci. 2023, 24, 3052. https://doi.org/10.3390/ijms24033052
Medina-Lozano I, Arnedo MS, Grimplet J, Díaz A. Selection of Novel Reference Genes by RNA-Seq and Their Evaluation for Normalising Real-Time qPCR Expression Data of Anthocyanin-Related Genes in Lettuce and Wild Relatives. International Journal of Molecular Sciences. 2023; 24(3):3052. https://doi.org/10.3390/ijms24033052
Chicago/Turabian StyleMedina-Lozano, Inés, María Soledad Arnedo, Jérôme Grimplet, and Aurora Díaz. 2023. "Selection of Novel Reference Genes by RNA-Seq and Their Evaluation for Normalising Real-Time qPCR Expression Data of Anthocyanin-Related Genes in Lettuce and Wild Relatives" International Journal of Molecular Sciences 24, no. 3: 3052. https://doi.org/10.3390/ijms24033052
APA StyleMedina-Lozano, I., Arnedo, M. S., Grimplet, J., & Díaz, A. (2023). Selection of Novel Reference Genes by RNA-Seq and Their Evaluation for Normalising Real-Time qPCR Expression Data of Anthocyanin-Related Genes in Lettuce and Wild Relatives. International Journal of Molecular Sciences, 24(3), 3052. https://doi.org/10.3390/ijms24033052