Stable Enzymatic Nanoparticles from Nucleases, Proteases, Lipase and Antioxidant Proteins with Substrate-Binding and Catalytic Properties
"> Figure 1
<p>Scanning electron microscopy (SEM) images of ENP consisting of horseradish peroxidase (HRP), catalase, trypsin and chymotrypsin. Scale bar 1 μm and a single ENP with the corresponding diameter are shown for each image.</p> "> Figure 2
<p>Atomic force microscopy (AFM) images of the original trypsin NP immediately after fabrication and in 1 year of storage at +4 °C.</p> "> Figure 3
<p>AFM data of the original chymotrypsin NP immediately after fabrication and in 1 year of storage at +4 °C.</p> "> Figure 4
<p>Dynamic light scattering (DLS) measurements of the catalase and HRP NP sizes before and after storage in water for 9 months.</p> "> Figure 5
<p>Analysis of the nuclease activities of ENP. (<b>A</b>) Electropherogram of PCR product of 153 bp long before (lane 1) and after treatment with DNase NP 0.001 mg/mL (lane 2), 0.01 mg/mL (lane 3) and 1 mg/mL (lane 4) in 2% agarose gel 1× TBE buffer with ethidium bromide staining. (<b>B</b>) Data of reverse transcription with real-time PCR for β-coronavirus SARS-CoV-2 RNA from COVID-19 patient blood leukocytes in the presence of the ENP consisting of DNase I, RNase A or trypsin. Calculation of the fluorescence threshold cycles (Ct) for each well is shown in <a href="#app1-ijms-24-03043" class="html-app">Supplementary Materials Table S1</a>.</p> "> Figure 6
<p>Comparison of enzymatic activity of two antioxidant enzymes in the fluoroalcohol HFIP solution and ENP. Optical density at 450 nm of TMB solution in the presence of H<sub>2</sub>O<sub>2</sub> and catalase in HFIP solution, catalase NP, HRP in HFIP solution or HRP NP.</p> "> Figure 7
<p>Comparison of enzymatic activity of HRP (<b>A</b>) and catalase (<b>B</b>) in solutions in water and fluoroalcohol, as well as in ENP.</p> "> Figure 8
<p>Comparison of lipase activity in water, HFIP solutions and in the ENP using two substrates—OxiRed dye by measurements of optical densities at 570 nm (<b>A</b>) and 4-nitrophenol yellow with spectrophotometric measurements at 410 nm (<b>B</b>).</p> "> Figure 9
<p>Viability of Vero cells in the presence of 0.1 mg/mL ENP. Optical microscopy images (×400).</p> "> Figure 10
<p>Cytotoxicity of the ENP for HEp-2, HT-29 and Vero cells in the presence of ENP at 3 days posttreatment. Part (<b>A</b>) corresponds to HEp-2 cells, part (<b>B</b>)—HT-29 cells, part (<b>C</b>)—Vero cells.</p> "> Figure 10 Cont.
<p>Cytotoxicity of the ENP for HEp-2, HT-29 and Vero cells in the presence of ENP at 3 days posttreatment. Part (<b>A</b>) corresponds to HEp-2 cells, part (<b>B</b>)—HT-29 cells, part (<b>C</b>)—Vero cells.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Structures of ENPs
2.2. Conformational Changes
2.3. Enzymatic Activity of NP
2.4. Toxicity of ENP for Human Cell Lines
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Protein Nanoprecipitation
3.2.2. Scanning Electron Microscopy (SEM)
3.2.3. Atomic Force Microscopy (AFM)
3.2.4. Dynamic Light Scattering (DLS)
3.2.5. Ultraviolet (UV) Spectroscopy
3.2.6. Circular Dichroism Spectroscopy
3.2.7. DNase Activity Assay
3.2.8. RNase Activity Assay
3.2.9. Trypsin and Chymotrypsin Activity Assay
3.2.10. Catalase and HRP Activity Assay
3.2.11. Lipase Activity Assay
3.2.12. MTT Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AFM | atomic force microscopy |
CD | circular dichroism |
DLS | dynamic light scattering |
ENP | enzymatic nanoparticles |
EDTA | ethylenediaminetetraacetic acid |
HFIP | 1,1,1,3,3,3-Hexafluoro-propan-2-ol |
HRP | horse radish peroxidase |
PCR | polymerase chain reaction |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SEM | scanning electron microscopy |
References
- Chhillar, A.K.; Rana, J.S. Enzyme nanoparticles and their biosensing applications: A review. Anal. Biochem. 2019, 581, 113345. [Google Scholar]
- Kuang, T.; Liu, Y.; Gong, T.; Peng, X.; Hu, X.; Yu, Z. Enzyme-responsive Nanoparticles for Anticancer Drug Delivery. Curr. Nanosci. 2016, 12, 38–46. [Google Scholar] [CrossRef]
- Li, M.; Zhao, G.; Su, W.K.; Shuai, Q. Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery. Front. Chem. 2020, 8, 647. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; Stenzel, M.H. All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles. J. Am. Chem. Soc. 2019, 141, 2754–2769. [Google Scholar] [CrossRef] [PubMed]
- Barinov, N.A.; Prokhorov, V.V.; Dubrovin, E.V.; Klinov, D.V. AFM visualization at a single-molecule level of denaturated states of proteins on graphite. Colloids Surf. B Biointerfaces 2016, 146, 777–784. [Google Scholar] [CrossRef]
- Yadav, N.; Narang, J.; Chhillar, A.K.; Pundir, C.S. Preparation, characterization, and application of enzyme nanoparticles. Methods Enzymol. 2018, 609, 171–196. [Google Scholar]
- Zhuang, J.; Duan, Y.; Zhang, Q.; Gao, W.; Li, S.; Fang, R.H.; Zhang, L. Multimodal Enzyme Delivery and Therapy Enabled by Cell Membrane-Coated Metal-Organic Framework Nanoparticles. Nano Lett. 2020, 20, 4051–4058. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, F.; Battocchio, C.; Antoccia, A.; Fratoddi, I.; Venditti, I.; Fracassi, A.; Luisetto, I.; Russo, M.V.; Polzonetti, G. Synthesis of functionalized gold nanoparticles capped with 3-mercapto-1-propansulfonate and 1-thioglucose mixed thiols and “in vitro” bioresponse. Colloids Surf. B Biointerfaces 2016, 142, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Rodzik-Czałka, Ł.; Lewandowska-Łańcucka, J.; Gatta, V.; Venditti, I.; Fratoddi, I.; Szuwarzyński, M.; Romek, M.; Nowakowska, M. Nucleobases functionalized quantum dots and gold nanoparticles bioconjugates as a fluorescence resonance energy transfer (FRET) system—Synthesis, characterization and potential applications. J. Colloid Interface Sci. 2018, 514, 479–490. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Battocchio, C.; Carlini, L.; Amatori, S.; Porchia, M.; Tisato, F.; Bondino, F.; Magnano, E.; Pellei, M.; et al. Highly Hydrophilic Gold Nanoparticles as Carrier for Anticancer Copper(I) Complexes: Loading and Release Studies for Biomedical Applications. Nanomaterials 2019, 9, 772. [Google Scholar] [CrossRef]
- Vivo-Llorca, G.; Morellá-Aucejo, Á.; García-Fernández, A.; Díez, P.; Llopis-Lorente, A.; Orzáez, M.; Martínez-Máñez, R. Horseradish Peroxidase-Functionalized Gold Nanoconjugates for Breast Cancer Treatment Based on Enzyme Prodrug Therapy. Int. J. Nanomed. 2022, 17, 409–422. [Google Scholar] [CrossRef]
- Cayetano-Cruz, M.; Coffeen, C.F.; Valadez-García, J.; Montiel, C.; Bustos-Jaimes, I. Decoration of virus-like particles with an enzymatic activity of biomedical interest. Virus Res. 2018, 255, 1–9. [Google Scholar] [CrossRef]
- Sanders, N.; Rudolph, C.; Braeckmans, K.; De Smedt, S.C.; Demeester, J. Extracellular barriers in respiratory gene therapy. Adv. Drug Deliv. Rev. 2009, 61, 115–127. [Google Scholar] [CrossRef]
- Suk, J.S.; Lai, S.K.; Boylan, N.J.; Dawson, M.R.; Boyle, M.P.; Hanes, J. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine 2011, 6, 365–375. [Google Scholar] [CrossRef]
- Li, Z.L.; Liu, W.; Chen, X.F.; Shang, W.L. Research on the application of horseradish peroxidase and hydrogen peroxide to the oil removal of oily water. Water Sci. Technol. 2009, 59, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Pavlova, E.R.; Bagrov, D.V.; Barinov, N.A.; Prusakov, K.A.; Isaeva, E.I.; Podgorsky, V.V.; Basmanov, D.V.; Klinov, D.V. Protein nanoparticles with ligand-binding and enzymatic activities. Int. J. Nanomed. 2018, 13, 6637–6646. [Google Scholar] [CrossRef] [PubMed]
- Auer, S.; Kashchiev, D. Phase diagram of alpha-helical and beta-sheet forming peptides. Phys. Rev. Lett. 2010, 104, 168105. [Google Scholar] [CrossRef]
- Hirota, N.; Mizuno, K.; Goto, Y. Cooperative alpha-helix formation of beta-lactoglobulin and melittin induced by hexafluoroisopropanol. Protein Sci. 1997, 6, 416–421. [Google Scholar] [CrossRef]
- Yoshida, K.; Yamaguchi, T. Structure and dynamics of hexafluoroisopropanol-water mixtures by x-ray diffraction, small-angle neutron scattering, NMR spectroscopy, and mass spectrometry. J. Chem. Phys. 2003, 119, 6132–6142. [Google Scholar] [CrossRef]
- Morozova, O.V.; Manuvera, V.A.; Grishchechkin, A.E.; Barinov, N.A.; Shevlyagina, N.V.; Zhukhovitsky, V.G.; Lazarev, V.N.; Klinov, D.V. Targeting of Silver Cations, Silver-Cystine Complexes, Ag Nanoclusters, and Nanoparticles towards SARS-CoV-2 RNA and Recombinant Virion Proteins. Viruses 2022, 14, 902. [Google Scholar] [CrossRef]
- Laemmli, U. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-Based Nanoparticle Preparation via Nanoprecipitation Method. Materials 2018, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Lee, Y.H.; Yoshimura, Y.; Yagi, H.; Goto, Y. Solubility and supersaturation-dependent protein misfolding revealed by ultrasonication. Langmuir 2014, 30, 1845–1854. [Google Scholar] [CrossRef]
- Morozova, O.V.; Sokolova, A.I.; Pavlova, E.R.; Isaeva, E.I.; Obraztsova, E.A.; Ivleva, E.A.; Klinov, D.V. Protein nanoparticles: Cellular uptake, intracellular distribution, biodegradation and induction of cytokine gene expression. Nanomedicine 2020, 30, 102293. [Google Scholar] [CrossRef]
Secondary Structures | DNase I | RNase A | Trypsin | Chymotrypsin | Catalase | Horse Radish Peroxidase | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Structures (%) | E | ENP | E | ENP | E | ENP | E | ENP | E | ENP | E | ENP |
Helix | 24.1 | 4 | 0 | 0 | 7.7 | 13.6 | 5.7 | 4.1 | 0.9 | 0.5 | 77.2 | 3.7 |
Antiparallel | 11 | 26.5 | 44.6 | 36.3 | 21.1 | 26.6 | 22.5 | 26.8 | 32.5 | 33.7 | 0 | 27.1 |
Parallel | 10.3 | 0 | 31.7 | 11.5 | 0 | 11.5 | 8.6 | 9.7 | 9.8 | 0 | 11.3 | |
Beta-Turn | 13.9 | 15.3 | 13.6 | 0 | 15.1 | 12.8 | 15.4 | 16.1 | 15 | 14.1 | 0.1 | 15.3 |
Random coil | 39.1 | 43.8 | 41.8 | 31.9 | 44.6 | 47 | 44.9 | 44.4 | 41.9 | 41.9 | 22.7 | 42.6 |
ENP | HEp-2 | HT-29 | Vero |
---|---|---|---|
DNase NP | 0.295 | 0.569 | 0.149 |
RNase NP | 0.980 | 0.764 | 0.545 |
trypsin NP | 1.020 | 0.666 | 0.670 |
chymotrypsin NP | 0.999 | 0.587 | 0.649 |
catalase NP | 0.858 | 0.783 | 0.763 |
horseradish peroxidase NP | 0.899 | 0.378 | 0.712 |
lipase NP | 0.709 | 0.378 | 0.427 |
control cells | 1.012 | 0.739 | 0.694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, O.V.; Barinov, N.A.; Klinov, D.V. Stable Enzymatic Nanoparticles from Nucleases, Proteases, Lipase and Antioxidant Proteins with Substrate-Binding and Catalytic Properties. Int. J. Mol. Sci. 2023, 24, 3043. https://doi.org/10.3390/ijms24033043
Morozova OV, Barinov NA, Klinov DV. Stable Enzymatic Nanoparticles from Nucleases, Proteases, Lipase and Antioxidant Proteins with Substrate-Binding and Catalytic Properties. International Journal of Molecular Sciences. 2023; 24(3):3043. https://doi.org/10.3390/ijms24033043
Chicago/Turabian StyleMorozova, Olga V., Nikolay A. Barinov, and Dmitry V. Klinov. 2023. "Stable Enzymatic Nanoparticles from Nucleases, Proteases, Lipase and Antioxidant Proteins with Substrate-Binding and Catalytic Properties" International Journal of Molecular Sciences 24, no. 3: 3043. https://doi.org/10.3390/ijms24033043
APA StyleMorozova, O. V., Barinov, N. A., & Klinov, D. V. (2023). Stable Enzymatic Nanoparticles from Nucleases, Proteases, Lipase and Antioxidant Proteins with Substrate-Binding and Catalytic Properties. International Journal of Molecular Sciences, 24(3), 3043. https://doi.org/10.3390/ijms24033043