Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice
<p>Morphological changes in A549 cells treated with FSK and IBMX. Undifferentiated A549 cells show normal epithelial morphology (<b>A</b>) whereas A549<sub>NED</sub> cells present neurite-like outgrowths 24 h after treatment with cAMP-elevating agents (<b>B</b>). A zoomed-in image of the cells with the largest processes observed in (<b>B</b>) is also included (<b>C</b>). The bar graph shows the average outgrowth size in treated and untreated cells (<b>D</b>); results are presented as the mean ± SEM (n = 3, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 2
<p>Gene expression of neuroendocrine markers. Syn, CgA, and GAPDH were amplified by RT-PCR from cDNA of A549 cells without treatment (Ctrl), A549 treated cells (NED), and neuroblastoma SK-N-AS cells (SK) as a positive control (<b>A</b>). Bar graphs showing changes in the relative gene expression of Syn (<b>B</b>) and CgA (<b>C</b>) in A549 cells with or without neuroendocrine differentiation (n = 3; * <span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Changes in PBMC profiles after immunization. Flow cytometric analysis of PBMC samples obtained from the different groups of mice, targeting CD68 (a monocyte/macrophage cellular marker), CD4 (a co-receptor for the T cell receptor and specific marker of T helper cells), CD8a (a co-receptor for the T cell receptor and specific marker of cytotoxic T cells), and CD335 (a cytotoxicity-activating receptor that mediates tumor cell lysis and distinguishes NK cells from other populations). The bar graphs show the percentage of CD68<sup>+</sup> (<b>A</b>), CD4<sup>+</sup> (<b>B</b>), CD8<sup>+</sup> (<b>C</b>), double positive CD4<sup>+</sup>/CD8<sup>+</sup> (<b>D</b>), and CD335<sup>+</sup> (<b>E</b>) cells in PBMCs from the different groups of mice. Results are presented as the mean ± SEM (n = 4, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05, # <span class="html-italic">p</span> < 0.1).</p> "> Figure 4
<p>Changes in T cell populations. Flow cytometer results from individual samples are presented; dot plots were generated from a mouse injected with PBS (<b>A</b>), A549 cells (<b>B</b>), and A549<sub>NED</sub> cells (<b>C</b>). Q1 contains CD4-positive cells, Q2 contains CD4/CD8 double-positive cells, Q3 encompasses CD8 positive cells, and Q4 includes cells that are negative for both CD4 and CD8.</p> "> Figure 5
<p>Cytokine levels in immunized mice. The bar graphs show IL-2 (<b>A</b>), IFN-γ (<b>B</b>), and IL-10 (<b>C</b>) levels 14 and 21 days after the first immunization; data are shown in pg/mL (n = 4, * <span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Adenocarcinoma and mononuclear cells after cocultures. The number of A549 (<b>A</b>) and A549<sub>NED</sub> (<b>B</b>) cells is expressed as a percentage relative to the negative control—cells without coculture. Cells were cocultured at a 1:2 ratio (A549:PBMC) with or without PBMC pre-treatment using phytohemagglutinin (PHA). Untreated (<b>C</b>) or PHA-activated (<b>D</b>) PBMC number after coculture with A549 cells is also shown, as well as the number of untreated (<b>E</b>) or PHA-activated (<b>F</b>) PBMCs after coculture with A549<sub>NED</sub> cells, all expressed as a percentage relative to the negative control. Cells were cocultured at a 1:2 ratio (A549:PBMC) (n = 3, * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 7
<p>Cellular mechanisms involved in cocultures. We illustrate the mechanisms proposed to explain our results, in which A549 cells lost viability in coculture with PHA-preactivated PBMCs, while A549<sub>NED</sub> cells had higher viability. Our results suggest that the pre-activation of cells with PHA caused the production of IL-2, a cytokine necessary for the activation of NK cells and monocytes, which exerted their effector functions on A549 cells, producing more proinflammatory cytokines; apoptosis favored the presentation of antigens mediated by monocytes and dendritic cells, allowing the activation and clonal expansion of cytotoxic T lymphocytes, which also exerted their cytolytic activity. A549<sub>NED</sub> cells, possibly through neurotransmitters such as serotonin and norepinephrine and cytokines such as IL-4, caused the polarization of T cells towards Th2 and Treg, inhibiting cytotoxic activity and secreting cytokines that favor proliferation from cancer cells, such as IL-4, IL-13, and TGF-β [<a href="#B21-ijms-24-00990" class="html-bibr">21</a>,<a href="#B52-ijms-24-00990" class="html-bibr">52</a>,<a href="#B57-ijms-24-00990" class="html-bibr">57</a>,<a href="#B60-ijms-24-00990" class="html-bibr">60</a>,<a href="#B61-ijms-24-00990" class="html-bibr">61</a>,<a href="#B62-ijms-24-00990" class="html-bibr">62</a>]. Image created on BioRender.com, licensed and published under agreement MH24DCXFXU.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Neuroendocrine Differentiation of A549 Lung Cancer Cells Is Induced by Treatment with cAMP-Elevating Agents
2.2. CD68+ Monocyte Levels Increase and CD4+ T Cells Decrease in Mice Immunized with A549 Cells, whereas Double Positive CD4+CD8+ T Cells Increase in Mice Immunized with A549NED Cells
2.3. IL-2 Increases in Mice Immunized with A549 Cells, whereas IL-10 Decreases in Mice Immunized with A549NED Cells and IFN-γ Stays the Same in All Groups
2.4. PBMCs Exert Cytotoxic Activity on A549 Cells, but They Lose This Capacity when Confronted with A549NED Cells
2.5. PBMCs Proliferate in Response to A549 Cells but Die when Cocultured with A549NED Cells
3. Discussion
4. Materials and Methods
4.1. Neuroendocrine Differentiation of Lung Adenocarcinoma Cells
4.2. BALB/c Mice Immunization
4.3. PBMC Extraction and Analysis with Flow Cytometry
4.4. Serum Isolation and Analysis
4.5. Co-Cultures between PBMCs and Cancer Cells
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Raina, V. Lung cancer: Prevalent trends & emerging concepts. Indian J. Med. Res. 2015, 141, 5–7. [Google Scholar] [CrossRef]
- Myers, D.J.; Wallen, J.M. Lung Adenocarcinoma. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519578/ (accessed on 18 July 2021).
- Roviello, G. The distinctive nature of adenocarcinoma of the lung. Onco Targets Ther. 2015, 8, 2399–2406. [Google Scholar] [CrossRef] [Green Version]
- Sardenberg, R.A.; Mello, E.S.; Younes, R.N. The lung adenocarcinoma guidelines: What to be considered by surgeons. J. Thorac. Dis. 2014, 6 (Suppl. 5), S561–S5617. [Google Scholar] [CrossRef] [PubMed]
- Linnoila, R.I.; Mulshine, J.L.; Steinberg, S.M.; Funa, K.; Matthews, M.J.; Cotelingam, J.D.; Gazdar, A.F. Neuroendocrine Differentiation in Endocrine and Nonendocrine Lung Carcinomas. Am. J. Clin. Pathol. 1998, 90, 641–652. [Google Scholar] [CrossRef]
- Sun, Y.; Niu, J.; Huang, J. Neuroendocrine differentiation in prostate cancer. Am. J. Transl. Res. 2009, 1, 148–162. [Google Scholar] [PubMed]
- Li, Q.; Zhang, C.S.; Zhang, Y. Molecular aspects of prostate cancer with neuroendocrine differentiation. Chin. J. Cancer Res. 2016, 28, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.C.; Cambio, A.J.; Yang, J.C.; Ok, J.H.; Lara, P.N.; Evans, C.P. Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis. 2007, 10, 6–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terry, S.; Beltran, H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front. Oncol. 2014, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Komiya, A.; Suzuki, H.; Imamoto, T.; Kamiya, N.; Nihei, N.; Naya, Y.; Ichikawa, T.; Fuse, H. Neuroendocrine differentiation in the progression of prostate cancer. Int. J. Urol. 2009, 16, 37–44. [Google Scholar] [CrossRef]
- Hu, C.D.; Choo, R.; Huang, J. Neuroendocrine differentiation in prostate cancer: A mechanism of radioresistance and treatment failure. Front. Oncol. 2015, 5, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendieta, I.; Nuñez-Anita, R.E.; Pérez-Sánchez, G.; Pavón, L.; Rodríguez-Cruz, A.; García-Alcocer, G.; Berumen, L.C. Effect of A549 neuroendocrine differentiation on cytotoxic immune response. Endocr. Connect. 2018, 7, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Carnaghi, C.; Rimassa, L.; Garassino, I.; Santoro, A. Clinical significance of neuroendocrine phenotype in non-small-cell lung cancer. Ann. Oncol. 2001, 12, S119–S123. [Google Scholar] [CrossRef] [PubMed]
- Kriegsmann, K.; Zgorzelski, C.; Muley, T.; Christopoulos, P.; Thomas, M.; Winter, H.; Eichhorn, M.; Eichhorn, F.; von Winterfeld, M.; Herpel, E.; et al. Role of Synaptophysin, Chromogranin and CD56 in adenocarcinoma and squamous cell carcinoma of the lung lacking morphological features of neuroendocrine differentiation: A retrospective large-scale study on 1170 tissue samples. BMC Cancer 2021, 21, 486. [Google Scholar] [CrossRef] [PubMed]
- Cerasuolo, M.; Paris, D.; Iannotti, F.A.; Melck, D.; Verde, R.; Mazzarella, E.; Ligresti, A. Neuroendocrine Transdifferentiation in Human Prostate Cancer Cells: An Integrated Approach Neuroendocrine Transdifferentiation and Prostate Cancer. Cancer Res. 2015, 75, 2975–2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, M.; Caro, A.A.; Raes, G.; Laoui, D. Systemic Reprogramming of Monocytes in Cancer. Front. Oncol. 2020, 10, 1399. [Google Scholar] [CrossRef]
- Sanford, D.E.; Belt, B.A.; Panni, R.Z.; Mayer, A.; Deshpande, A.D.; Carpenter, D.; Mitchem, J.B.; Plambeck-Suess, S.M.; Worley, L.A.; Goetz, B.D.; et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: A role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 2013, 19, 3404–3415. [Google Scholar] [CrossRef] [Green Version]
- Shigeta, K.; Kosaka, T.; Kitano, S.; Yasumizu, Y.; Miyazaki, Y.; Mizuno, R.; Shinojima, T.; Kikuchi, E.; Miyajima, A.; Tanoguchi, H.; et al. High Absolute Monocyte Count Predicts Poor Clinical Outcome in Patients with Castration-Resistant Prostate Cancer Treated with Docetaxel Chemotherapy. Ann. Surg. Oncol. 2016, 23, 4115–4122. [Google Scholar] [CrossRef]
- Feng, F.; Zheng, G.; Wang, Q.; Liu, S.; Liu, Z.; Xu, G.; Wang, F.; Guo, M.; Lian, X.; Zhang, H. Low lymphocyte count and high monocyte count predicts poor prognosis of gastric cancer. BMC Gastroenterol. 2018, 18, 148. [Google Scholar] [CrossRef] [Green Version]
- Olingy, C.E.; Dinh, H.Q.; Hedrick, C.C. Monocyte heterogeneity and functions in cancer. J. Leukoc. Biol. 2019, 106, 309–322. [Google Scholar] [CrossRef]
- Hanna, R.N.; Cekic, C.; Sag, D.; Tacke, R.; Thomas, G.D.; Nowyhed, H.; Herrley, E.; Rasquinha, N.; McArdle, S.; Wu, R.; et al. Patrolling monocytes control tumor metastasis to the lung. Science 2015, 350, 985–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, R.; Kanti Barman, P.; Kumar Thatoi, P.; Tripathy, R.; Kumar Das, B.; Ravindran, B. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci. Rep. 2015, 5, 13886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamm, A.; Prenen, H.; Van Delm, W.; Di Matteo, M.; Wenes, M.; Delamarre, E.; Mazzone, M. Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut 2015, 65, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Imam, R.; Chang, Q.; Black, M.; Yu, C.; Cao, W. CD47 expression and CD163+ macrophages correlated with prognosis of pancreatic neuroendocrine tumor. BMC Cancer 2021, 21, 320. [Google Scholar] [CrossRef]
- Orozco-Morales, M.; Avilés-Salas, A.; Hernández-Pedro, N.; Catalán, R.; Cruz-Rico, G.; Colín-González, A.L.; Dosal-Mancilla, E.; Barrios-Bernal, P.; Arrieta, O. Clinicopathological and Prognostic Significance of CD47 Expression in Lung Neuroendocrine Tumors. J. Immunol. Res. 2021, 2021, 6632249. [Google Scholar] [CrossRef]
- Qu, S.; Jiao, Z.; Lu, G.; Xu, J.; Yao, B.; Wang, T.; Wang, J.; Yao, Y.; Yan, X.; Wang, T.; et al. Human lung adenocarcinoma CD47 is upregulated by interferon-γ and promotes tumor metastasis. Mol. Ther. Oncolytics 2022, 25, 276–287. [Google Scholar] [CrossRef]
- Affandi, A.J.; Olesek, K.; Grabowska, J.; Nijen Twilhaar, M.K.; Rodríguez, E.; Saris, A.; Zwart, E.S.; Nossent, E.J.; Kalay, H.; de Kok, M.; et al. CD169 Defines Activated CD14+ Monocytes with Enhanced CD8+ T Cell Activation Capacity. Front. Immunol. 2021, 12, 697840. [Google Scholar] [CrossRef]
- O’Connell, K.E.; Mikkola, A.M.; Stepanek, A.M.; Vernet, A.; Hall, C.D.; Sun, C.C.; Yildirim, E.; Staropoli, J.F.; Lee, J.T.; Brown, D.E. Practical murine hematopathology: A comparative review and implications for research. Comp. Med. 2015, 65, 96–113. [Google Scholar]
- Espinoza-Delgado, I.; Bosco, M.C.; Musso, T.; Gusella, G.L.; Longo, D.L.; Varesio, L. Interleukin-2 and human monocyte activation. J. Leukoc. Biol. 1995, 57, 13–19. [Google Scholar] [CrossRef]
- Bosco, M.C.; Curiel, R.E.; Zea, A.H.; Malabarba, M.G.; Ortaldo, J.R.; Espinoza-Delgado, I. IL-2 signaling in human monocytes involves the phosphorylation and activation of p59hck. J. Immunol. 2000, 16, 4575–4585. [Google Scholar] [CrossRef] [Green Version]
- Luckheeram, R.V.; Zhou, R.; Verma, A.D.; Xia, B. CD4+T cells: Differentiation and functions. Clin. Dev. Immunol. 2012, 2012, 925135. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Denardo, D.G.; Coussens, L.M. Polarized immune responses differentially regulate cancer development. Immunol. Rev. 2008, 222, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, T.A. Type 2 cytokines: Mechanisms and therapeutic strategies. Nat. Rev. Immunol. 2015, 15, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Bohner, P.; Chevalier, M.F.; Cesson, V.; Rodrigues-Dias, S.C.; Dartiguenave, F.; Burruni, R.; Tawadros, T.; Valerio, M.; Lucca, I.; Nardelli-Haefliger, D.; et al. Double Positive CD4+CD8+ T Cells Are Enriched in Urological Cancers and Favor T Helper-2 Polarization. Front. Immunol. 2019, 10, 622. [Google Scholar] [CrossRef] [PubMed]
- Pommier, A.; Lucas, B.; Prévost-Blondel, A. Crucial role of inflammatory monocytes in antitumor immunity. Oncoimmunology 2013, 2, e26384. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.L.; Jang, J.W.; Lee, S.W.; Yoo, S.H.; Kwon, J.H.; Nam, S.W.; Bae, S.H.; Choi, J.Y.; Han, N.I.; Yoon, S.K. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci. Rep. 2019, 9, 3260. [Google Scholar] [CrossRef] [Green Version]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Lin, J.X.; Leonard, W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013, 38, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol. 2019, 234, 8509–8521. [Google Scholar] [CrossRef]
- Halle, S.; Halle, O.; Förster, R. Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo. Trends Immunol. 2017, 38, 432–443. [Google Scholar] [CrossRef]
- Kalia, V.; Sarkar, S. Regulation of Effector and Memory CD8 T Cell Differentiation by IL-2-A Balancing Act. Front. Immunol. 2018, 9, 2987. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.E.; Ohlén, C.; Nelson, B.H.; Greenberg, P.D. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl. Acad. Sci. USA 2002, 99, 3001–3006. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, N.; Zhou, L.; Wang, J.; Zhou, Y.; Zhang, T.; Fang, Y.; Deng, J.; Gao, Y.; Liang, X.; et al. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor. Nat. Immunol. 2021, 22, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Dolina, J.S.; Van Braeckel-Budimir, N.; Thomas, G.D.; Salek-Ardakani, S. CD8+ T Cell Exhaustion in Cancer. Front. Immunol. 2021, 12, 715234. [Google Scholar] [CrossRef] [PubMed]
- Rha, M.S.; Shin, E.C. Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cell. Mol. Immunol. 2021, 18, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Hadad, U.; Thauland, T.J.; Martinez, O.M.; Butte, M.J.; Porgador, A.; Krams, S.M. NKp46 Clusters at the Immune Synapse and Regulates NK Cell Polarization. Front. Immunol. 2015, 6, 495. [Google Scholar] [CrossRef] [Green Version]
- Spolski, R.; Li, P.; Leonard, W.J. Biology and regulation of IL-2: From molecular mechanisms to human therapy. Nat. Rev. Immunol. 2018, 18, 648–659. [Google Scholar] [CrossRef]
- Groth, A.; Klöss, S.; von Strandmann, E.P.; Koehl, U.; Koch, J. Mechanisms of tumor and viral immune escape from natural killer cell-mediated surveillance. J. Innate Immun. 2011, 3, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Lal, G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front. Immunol. 2017, 8, 1124. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Kastelein, R.A.; Hunter, C.A. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18. Eur. J. Immunol. 1999, 29, 2658–2665. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, Z.; Wei, H. Developmental and Functional Control of Natural Killer Cells by Cytokines. Front. Immunol. 2017, 8, 930. [Google Scholar] [CrossRef]
- Park, Y.J.; Song, B.; Kim, Y.S.; Kim, E.K.; Lee, J.M.; Lee, G.E.; Kim, J.O.; Kim, Y.J.; Chang, W.S.; Kang, C.Y. Tumor microenvironmental conversion of natural killer cells into myeloid-derived suppressor cells. Cancer Res. 2013, 73, 5669–5681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coussens, L.M.; Zitvogel, L.; Palucka, A.K. Neutralizing tumor-promoting chronic inflammation: A magic bullet? Science 2013, 339, 286–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oft, M. IL-10: Master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunol. Res. 2014, 2, 194–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Malireddi, R.; Karki, R.; Sundaram, B.; Kancharana, B.; Lee, S.; Samir, P.; Kanneganti, T.D. Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth. ImmunoHorizons 2021, 5, 568–580. [Google Scholar] [CrossRef]
- Gibbs, J.H.; Potts, R.C.; Brown, R.A.; Robertson, A.J.; Beck, J.S. Mechanisms of phytohaemagglutinin (PHA) stimulation of normal human lymphocytes: ‘trigger’ ‘push’ or both? Cell Prolif. 1982, 15, 131–137. [Google Scholar] [CrossRef]
- Macian, F. NFAT proteins: Key regulators of T-cell development and function. Nat. Rev. Immunol. 2005, 5, 472–484. [Google Scholar] [CrossRef]
- Gerosa, F.; Mingari, M.C.; Moretta, L. Interleukin-2 production in response to phytohemagglutinin is not necessarily dependent upon the T3-mediated pathway of T-cell activation. Clin. Immunol. Immunopathol. 1986, 40, 525–531. [Google Scholar] [CrossRef]
- Futakuchi, M.; Lami, K.; Tachibana, Y.; Yamamoto, Y.; Furukawa, M.; Fukuoka, J. The Effects of TGF-β Signaling on Cancer Cells and Cancer Stem Cells in the Bone Microenvironment. Int. J. Mol. Sci. 2019, 20, 5117. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Song, X.; Traub, B.; Luxenhofer, M.; Kornmann, M. Involvement of IL-4, IL-13 and Their Receptors in Pancreatic Cancer. Int. J. Mol. Sci. 2021, 22, 2998. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, T.H.; Appell, K.C.; Berg, L.J. Cell cycle progression following naive T cell activation is independent of Jak3/common gamma-chain cytokine signals. J. Immunol. 2009, 183, 4493–4501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herr, N.; Bode, C.; Duerschmied, D. The Effects of Serotonin in Immune Cells. Front. Cardiovasc. Med. 2017, 4, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, P.; Bloch, W.; Kieven, M.; Lövenich, L.; Lehmann, J.; Holthaus, M.; Theurich, S.; Schenk, A. Serotonin Shapes the Migratory Potential of NK Cells—An in vitro Approach. Int. J. Sports Med. 2017, 38, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Arreola, R.; Becerril-Villanueva, E.; Cruz-Fuentes, C.; Velasco-Velázquez, M.A.; Garcés-Alvarez, M.E.; Hurtado-Alvarado, G.; Quintero-Fabian, S.; Pavón, L. Immunomodulatory effects mediated by serotonin. J. Immunol. Res. 2015, 2015, 354957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, M.; Ding, L.; Wang, D.; Han, J.; Gao, P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front. Immunol. 2020, 11, 186. [Google Scholar] [CrossRef] [Green Version]
- Stefulj, J.; Jakopec, S.; Osmak, M.; Jernej, B. Serotonin and apoptosis: Studies on rat lymphocytes. Neuroimmunomodulation 2002, 10, 132–133. [Google Scholar] [CrossRef]
- Coley, J.S.; Calderon, T.M.; Gaskill, P.J.; Eugenin, E.A.; Berman, J.W. Dopamine increases CD14+CD16+ monocyte migration and adhesion in the context of substance abuse and HIV neuropathogenesis. PLoS ONE 2015, 10, e0117450. [Google Scholar] [CrossRef] [Green Version]
- Arreola, R.; Alvarez-Herrera, S.; Pérez-Sánchez, G.; Becerril-Villanueva, E.; Cruz-Fuentes, C.; Flores-Gutierrez, E.O.; Garcés-Alvarez, M.E.; de la Cruz-Aguilera, D.L.; Medina-Rivero, E.; Hurtado-Alvarado, G.; et al. Immunomodulatory Effects Mediated by Dopamine. J. Immunol. Res. 2016, 2016, 3160486. [Google Scholar] [CrossRef] [Green Version]
- Capellino, S.; Claus, M.; Watzl, C. Regulation of natural killer cell activity by glucocorticoids, serotonin, dopamine, and epinephrine. Cell. Mol. Immunol. 2020, 17, 705–711. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, Y.; Liu, Z.; Cao, B.B.; Peng, Y.P.; Qiu, Y.H. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS ONE 2013, 8, e65860. [Google Scholar] [CrossRef] [PubMed]
- Stolk, R.F.; van der Pasch, E.; Naumann, F.; Schouwstra, J.; Bressers, S.; van Herwaarden, A.E.; Gerretsen, J.; Schambergen, R.; Ruth, M.M.; van der Hoeven, J.G.; et al. Norepinephrine Dysregulates the Immune Response and Compromises Host Defense during Sepsis. Am. J. Respir. Crit. Care Med. 2020, 202, 830–842. [Google Scholar] [CrossRef] [PubMed]
- Xiu, F.; Stanojcic, M.; Jeschke, M.G. Norepinephrine inhibits macrophage migration by decreasing CCR2 expression. PLoS ONE 2013, 8, e69167. [Google Scholar] [CrossRef] [PubMed]
- Takamoto, T.; Hori, Y.; Koga, Y.; Toshima, H.; Hara, A.; Yokoyama, M.M. Norepinephrine inhibits human natural killer cell activity in vitro. Int. J. Neurosci. 1991, 58, 127–131. [Google Scholar] [CrossRef]
- Martino, M.; Rocchi, G.; Escelsior, A.; Fornaro, M. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance. Curr. Neuropharmacol. 2012, 10, 97–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbieri, A.; Bimonte, S.; Palma, G.; Luciano, A.; Rea, D.; Giudice, A.; Scognamiglio, G.; La Mantia, E.; Franco, R.; Perdonà, S.; et al. The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int. J. Oncol. 2015, 47, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balboa, D.; Saarimäki-Vire, J.; Borshagovski, D.; Survila, M.; Lindholm, P.; Galli, E.; Eurola, S.; Ustinov, J.; Grym, H.; Huopio, H.; et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. eLife 2018, 7, e38519. [Google Scholar] [CrossRef]
- Reuter, J. Subcutaneous Injection of Tumor Cells. Bio-Protocol 2011, 1, e166. [Google Scholar] [CrossRef]
Neurotransmitter | Target Cell | Effect | Reference |
---|---|---|---|
Serotonin | Monocytes | Loss of ability to secrete proinflammatory cytokines such as TNF-α and IL-1β | [64] |
Macrophages | Suppresses IFN-γ-mediated phagocytosis as well as their ability to present antigens | [64] | |
NK cells | Increased proliferative and migratory capacity | [64,65] | |
T cells | Apoptosis, inhibition of PHA-mediated proliferation, reduced activation capacity, Th0 polarization towards Tregs | [66,67,68] | |
Dopamine * | Monocytes | Increased migration and adhesion | [69] |
Macrophages | Increased phagocytic activity | [70] | |
NK cells | Increased cytotoxic activity against cancer cells | [71,72] | |
T cells | Inhibition of apoptosis, increased cytokine expression (TNF-α, IL-10), increased migration and extravasation of CTLs | [70] | |
Norepinephrine | Monocytes | Impaired metabolism and cytokine production | [73] |
Macrophages | Impaired migration | [74] | |
NK cells | Decreased activity | [75] | |
T cells | Th2 polarization of immune response | [76] | |
Cancer cells | Increased migratory potential | [77] |
Gene | Sequence | Product (bp) |
---|---|---|
Syn | Fwd: 5′-AGACAGGGAACACATGCAAG-3′ | 123 |
Rev: 5′-TCTCCTTAAACACGAACCACAG-3′ | ||
CgA 1 | Fwd: 5′-AACCGCAGACCAGAGGACCA-3′ | 102 |
Rev: 5′-GTCTCAGCCCCGCCGTAGT-3′ | ||
GAPDH | Fwd: 5′-TTGCCCTCAACGACCACTTT-3′ | 120 |
Rev: 5′-TGGTCCAGGGGTCTTACTCC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fosado, R.; Soto-Hernández, J.E.; Núñez-Anita, R.E.; Aceves, C.; Berumen, L.C.; Mendieta, I. Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice. Int. J. Mol. Sci. 2023, 24, 990. https://doi.org/10.3390/ijms24020990
Fosado R, Soto-Hernández JE, Núñez-Anita RE, Aceves C, Berumen LC, Mendieta I. Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice. International Journal of Molecular Sciences. 2023; 24(2):990. https://doi.org/10.3390/ijms24020990
Chicago/Turabian StyleFosado, Ricardo, Jazmín E. Soto-Hernández, Rosa Elvira Núñez-Anita, Carmen Aceves, Laura C. Berumen, and Irasema Mendieta. 2023. "Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice" International Journal of Molecular Sciences 24, no. 2: 990. https://doi.org/10.3390/ijms24020990
APA StyleFosado, R., Soto-Hernández, J. E., Núñez-Anita, R. E., Aceves, C., Berumen, L. C., & Mendieta, I. (2023). Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice. International Journal of Molecular Sciences, 24(2), 990. https://doi.org/10.3390/ijms24020990