Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice
Abstract
:1. Introduction
2. Structure and Function of FVIII
3. The Relationship of FVIII and VWF
4. Plasma Clearance Receptors of FVIII and VWF
4.1. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1)
4.2. Low-Density Lipoprotein Receptor (LDLR)
4.3. Cell-Surface Heparan-Sulfate Proteoglycans (HSPGs)
4.4. Asialoglycoprotein Receptor (ASGPR)
4.5. Sialic Acid Binding Immuno Globulin-like Lectin Member 5 (SIGLEC5)
4.6. C-Type Lectin Domain Family 4 Member M (CLEC4M)
4.7. Stabilin-2 (STAB2)
4.8. Scavenger Receptor Type A Member 5 (SCARA5)
4.9. Scavenger Receptor Type A Member 1 (SCARA1)
4.10. Macrophage Galactose-Type Lectin (MGL)
4.11. Other Factors Interacting with FVIII and VWF, or Affecting Their Plasma Levels
4.12. Summary—FVIII Determinants to Be Modified to Extend the Plasma Half-Life
5. Designing FVIII Molecule to Extend Its Plasma Half-Life
5.1. Approaches to Modify FVIII
5.2. Discrepancy in Activity Measurements of Modified FVIII Variants
6. Extended Plasma Half-Life FVIII Variants
6.1. Efmoroctocog Alfa
6.2. Rurioctocog Alfa Pegol
6.3. Damoctocog Alfa Pegol
6.4. Turoctog Alfa Pegol
6.5. Efanesoctocog Alfa
6.6. Lonoctocog Alfa
6.7. Summary—EHL FVIII Drug Products
7. Discussion
7.1. The OC/CS Assay Discrepancy in the Measurements of EHL FVIII Variants Activity
7.2. Possible Root Cause of the OC/CS Assay Discrepancy for EHL FVIII/FIX Variants
7.3. Other Research Variants of EHL FVIII
7.4. Future Directions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mannucci, P.M. Hemophilia therapy: The future has begun. Haematologica 2020, 105, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, A.C. Gene therapy for hemophilia. Hematol. Am. Soc. Hematol. Educ. Program. 2022, 2022, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Terraube, V.; O’Donnell, J.S.; Jenkins, P.V. Factor VIII and von Willebrand factor interaction: Biological, clinical and therapeutic importance. Haemophilia 2010, 16, 3–13. [Google Scholar] [CrossRef]
- Fay, P.J. Factor VIII structure and function. Int. J. Hematol. 2006, 83, 103–108. [Google Scholar] [CrossRef]
- Fay, P.J. Activation of factor VIII and mechanisms of cofactor action. Blood Rev. 2004, 18, 1–15. [Google Scholar] [CrossRef]
- Fay, P.J.; Beattie, T.L.; Regan, L.M.; O’Brien, L.M.; Kaufman, R.J. Model for the factor VIIIa-dependent decay of the intrinsic factor Xase. Role of subunit dissociation and factor IXa-catalyzed proteolysis. J. Biol. Chem. 1996, 271, 6027–6032. [Google Scholar] [CrossRef]
- Yee, A.; Kretz, C.A. Von Willebrand factor: Form for function. Semin. Thromb. Hemost. 2014, 40, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Pipe, S.W.; Montgomery, R.R.; Pratt, K.P.; Lenting, P.J.; Lillicrap, D. Life in the shadow of a dominant partner: The FVIII-VWF association and its clinical implications for hemophilia A. Blood 2016, 128, 2007–2016. [Google Scholar] [CrossRef]
- Leyte, A.; Vanschijndel, H.B.; Niehrs, C.; Huttner, W.B.; Verbeet, M.P.; Mertens, K.; Vanmourik, J.A. Sulfation of Tyr1680 of Human Blood-Coagulation Factor-Viii Is Essential for the Interaction of Factor-Viii with Von-Willebrand Factor. J. Biol. Chem. 1991, 266, 740–746. [Google Scholar] [CrossRef]
- Tuddenham, E.G.; Lane, R.S.; Rotblat, F.; Johnson, A.J.; Snape, T.J.; Middleton, S.; Kernoff, P.B. Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human haemophilia A and von Willebrand’s disease. Br. J. Haematol. 1982, 52, 259–267. [Google Scholar] [CrossRef]
- Swystun, L.L.; Lillicrap, D. Current Understanding of Inherited Modifiers of FVIII Pharmacokinetic Variation. Pharmgenom. Pers. Med. 2023, 16, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, F.; Campos, M.; Bolgiano, D.; Houck, K.; Chambless, L.E.; Wu, K.K.; Folsom, A.R.; Couper, D.; Boerwinkle, E.; et al. Quantitative Influence of ABO Blood Groups on Factor VIII and Its Ratio to von Willebrand Factor, Novel Observations from an ARIC Study of 11,673 Subjects. PLoS ONE 2015, 10, e0132626. [Google Scholar] [CrossRef] [PubMed]
- Vlot, A.J.; Mauser-Bunschoten, E.P.; Zarkova, A.G.; Haan, E.; Kruitwagen, C.L.; Sixma, J.J.; van den Berg, H.M. The half-life of infused factor VIII is shorter in hemophiliac patients with blood group O than in those with blood group A. Thromb. Haemost. 2000, 83, 65–69. [Google Scholar] [PubMed]
- Lenting, P.J.; Christophe, O.D.; Denis, C.V. von Willebrand factor biosynthesis, secretion, and clearance: Connecting the far ends. Blood 2015, 125, 2019–2028. [Google Scholar] [CrossRef]
- Saenko, E.L.; Yakhyaev, A.V.; Mikhailenko, I.; Strickland, D.K.; Sarafanov, A.G. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J. Biol. Chem. 1999, 274, 37685–37692. [Google Scholar] [CrossRef]
- Bovenschen, N.; Mertens, K.; Hu, L.; Havekes, L.M.; van Vlijmen, B.J. LDL receptor cooperates with LDL receptor-related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood 2005, 106, 906–912. [Google Scholar] [CrossRef]
- Sarafanov, A.G.; Ananyeva, N.M.; Shima, M.; Saenko, E.L. Cell surface heparan sulfate proteoglycans participate in factor VIII catabolism mediated by low density lipoprotein receptor-related protein. J. Biol. Chem. 2001, 276, 11970–11979. [Google Scholar] [CrossRef]
- Bovenschen, N.; Rijken, D.C.; Havekes, L.M.; van Vlijmen, B.J.; Mertens, K. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J. Thromb. Haemost. 2005, 3, 1257–1265. [Google Scholar] [CrossRef]
- Grewal, P.K.; Uchiyama, S.; Ditto, D.; Varki, N.; Le, D.T.; Nizet, V.; Marth, J.D. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat. Med. 2008, 14, 648–655. [Google Scholar] [CrossRef]
- Pegon, J.N.; Kurdi, M.; Casari, C.; Odouard, S.; Denis, C.V.; Christophe, O.D.; Lenting, P.J. Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica 2012, 97, 1855–1863. [Google Scholar] [CrossRef]
- Rydz, N.; Swystun, L.L.; Notley, C.; Paterson, A.D.; Riches, J.J.; Sponagle, K.; Boonyawat, B.; Montgomery, R.R.; James, P.D.; Lillicrap, D. The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood 2013, 121, 5228–5237. [Google Scholar] [CrossRef]
- Swystun, L.L.; Notley, C.; Georgescu, I.; Lai, J.D.; Nesbitt, K.; James, P.D.; Lillicrap, D. The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner. J. Thromb. Haemost. 2019, 17, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Swystun, L.L.; Lai, J.D.; Notley, C.; Georgescu, I.; Paine, A.S.; Mewburn, J.; Nesbitt, K.; Schledzewski, K.; Geraud, C.; Kzhyshkowska, J.; et al. The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity. J. Clin. Investig. 2018, 128, 4057–4073. [Google Scholar] [CrossRef] [PubMed]
- Swystun, L.L.; Ogiwara, K.; Lai, J.D.; Ojala, J.R.M.; Rawley, O.; Lassalle, F.; Notley, C.; Rengby, O.; Michels, A.; Nesbitt, K.; et al. The scavenger receptor SCARA5 is an endocytic receptor for von Willebrand factor expressed by littoral cells in the human spleen. J. Thromb. Haemost. 2019, 17, 1384–1396. [Google Scholar] [CrossRef]
- Wohner, N.; Muczynski, V.; Mohamadi, A.; Legendre, P.; Proulle, V.; Ayme, G.; Christophe, O.D.; Lenting, P.J.; Denis, C.V.; Casari, C. Macrophage scavenger receptor SR-AI contributes to the clearance of von Willebrand factor. Haematologica 2018, 103, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.E.; Guest, T.; Byrne, C.; Lopes, P.; O’Sullivan, J.M.; Doherty, D.; O’Connell, D.; Gutierrez Llaneza, S.; Chion, A.; Fazavana, J.; et al. Macrophage Galactose Lectin Contributes to the Regulation of FVIII (Factor VIII) Clearance in Mice-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.E.; O’Sullivan, J.M.; Drakeford, C.; Aguila, S.; Jondle, C.N.; Sharma, J.; Fallon, P.G.; Brophy, T.M.; Preston, R.J.S.; Smyth, P.; et al. A novel role for the macrophage galactose-type lectin receptor in mediating von Willebrand factor clearance. Blood 2018, 131, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Lenting, P.J.; Neels, J.G.; van den Berg, B.M.; Clijsters, P.P.; Meijerman, D.W.; Pannekoek, H.; van Mourik, J.A.; Mertens, K.; van Zonneveld, A.J. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J. Biol. Chem. 1999, 274, 23734–23739. [Google Scholar] [CrossRef]
- Au, D.T.; Strickland, D.K.; Muratoglu, S.C. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling. J. Diabetes Res. 2017, 2017, 8356537. [Google Scholar] [CrossRef]
- Cooper, J.M.; Lathuiliere, A.; Migliorini, M.; Arai, A.L.; Wani, M.M.; Dujardin, S.; Muratoglu, S.C.; Hyman, B.T.; Strickland, D.K. Regulation of tau internalization, degradation, and seeding by LRP1 reveals multiple pathways for tau catabolism. J. Biol. Chem. 2021, 296, 100715. [Google Scholar] [CrossRef]
- Fisher, C.; Beglova, N.; Blacklow, S.C. Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Mol. Cell. 2006, 22, 277–283. [Google Scholar] [CrossRef] [PubMed]
- van den Biggelaar, M.; Madsen, J.J.; Faber, J.H.; Zuurveld, M.G.; van der Zwaan, C.; Olsen, O.H.; Stennicke, H.R.; Mertens, K.; Meijer, A.B. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising “Hot-Spot” Lysine Residues. J. Biol. Chem. 2015, 290, 16463–16476. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.; Kurasawa, J.H.; Olivares, P.; Marakasova, E.S.; Shestopal, S.A.; Hassink, G.U.; Karnaukhova, E.; Migliorini, M.; Obi, J.O.; Smith, A.K.; et al. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. J. Thromb. Haemost. 2022, 20, 2255–2269. [Google Scholar] [CrossRef] [PubMed]
- Kurasawa, J.H.; Shestopal, S.A.; Woodle, S.A.; Ovanesov, M.V.; Lee, T.K.; Sarafanov, A.G. Cluster III of low-density lipoprotein receptor-related protein 1 binds activated blood coagulation factor VIII. Biochemistry 2015, 54, 481–489. [Google Scholar] [CrossRef]
- Sarafanov, A.G.; Makogonenko, E.M.; Pechik, I.V.; Radtke, K.P.; Khrenov, A.V.; Ananyeva, N.M.; Strickland, D.K.; Saenko, E.L. Identification of coagulation factor VIII A2 domain residues forming the binding epitope for low-density lipoprotein receptor-related protein. Biochemistry 2006, 45, 1829–1840. [Google Scholar] [CrossRef]
- Wohner, N.; Legendre, P.; Casari, C.; Christophe, O.D.; Lenting, P.J.; Denis, C.V. Shear stress-independent binding of von Willebrand factor-type 2B mutants p.R1306Q & p.V1316M to LRP1 explains their increased clearance. J. Thromb. Haemost. 2015, 13, 815–820. [Google Scholar] [CrossRef]
- Castro-Nunez, L.; Dienava-Verdoold, I.; Herczenik, E.; Mertens, K.; Meijer, A.B. Shear stress is required for the endocytic uptake of the factor VIII-von Willebrand factor complex by macrophages. J. Thromb. Haemost. 2012, 10, 1929–1937. [Google Scholar] [CrossRef]
- Dieckmann, M.; Dietrich, M.F.; Herz, J. Lipoprotein receptors—An evolutionarily ancient multifunctional receptor family. Biol. Chem. 2010, 391, 1341–1363. [Google Scholar] [CrossRef]
- Go, G.W.; Mani, A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med. 2012, 85, 19–28. [Google Scholar]
- Lane-Donovan, C.; Philips, G.T.; Herz, J. More than cholesterol transporters: Lipoprotein receptors in CNS function and neurodegeneration. Neuron 2014, 83, 771–787. [Google Scholar] [CrossRef]
- Fass, D.; Blacklow, S.; Kim, P.S.; Berger, J.M. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature 1997, 388, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, N.; Girelli, D.; Lunghi, B.; Pinotti, M.; Marchetti, G.; Malerba, G.; Pignatti, P.F.; Corrocher, R.; Olivieri, O.; Bernardi, F. Polymorphisms at LDLR locus may be associated with coronary artery disease through modulation of coagulation factor VIII activity and independently from lipid profile. Blood 2010, 116, 5688–5697. [Google Scholar] [CrossRef] [PubMed]
- Vormittag, R.; Bencur, P.; Ay, C.; Tengler, T.; Vukovich, T.; Quehenberger, P.; Mannhalter, C.; Pabinger, I. Low-density lipoprotein receptor-related protein 1 polymorphism 663 C > T affects clotting factor VIII activity and increases the risk of venous thromboembolism. J. Thromb. Haemost. 2007, 5, 497–502. [Google Scholar] [CrossRef]
- Kurasawa, J.H.; Shestopal, S.A.; Karnaukhova, E.; Struble, E.B.; Lee, T.K.; Sarafanov, A.G. Mapping the binding region on the low density lipoprotein receptor for blood coagulation factor VIII. J. Biol. Chem. 2013, 288, 22033–22041. [Google Scholar] [CrossRef] [PubMed]
- Ananyeva, N.M.; Makogonenko, Y.M.; Kouiavskaia, D.V.; Ruiz, J.; Limburg, V.; Meijer, A.B.; Khrenov, A.V.; Shima, M.; Strickland, D.K.; Saenko, E.L. The binding sites for the very low density lipoprotein receptor and low-density lipoprotein receptor-related protein are shared within coagulation factor VIII. Blood Coagul. Fibrin 2008, 19, 166–177. [Google Scholar] [CrossRef]
- Ananyeva, N.M.; Makogonenko, Y.M.; Sarafanov, A.G.; Pechik, I.V.; Gorlatova, N.; Radtke, K.P.; Shima, M.; Saenko, E.L. Interaction of coagulation factor VIII with members of the low-density lipoprotein receptor family follows common mechanism and involves consensus residues within the A2 binding site 484–509. Blood Coagul. Fibrin 2008, 19, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Bovenschen, N.; van Dijk, K.W.; Havekes, L.M.; Mertens, K.; van Vlijmen, B.J. Clearance of coagulation factor VIII in very low-density lipoprotein receptor knockout mice. Br. J. Haematol. 2004, 126, 722–725. [Google Scholar] [CrossRef]
- Park, P.W.; Reizes, O.; Bernfield, M. Cell surface heparan sulfate proteoglycans: Selective regulators of ligand-receptor encounters. J. Biol. Chem. 2000, 275, 29923–29926. [Google Scholar] [CrossRef]
- Bernfield, M.; Gotte, M.; Park, P.W.; Reizes, O.; Fitzgerald, M.L.; Lincecum, J.; Zako, M. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 1999, 68, 729–777. [Google Scholar] [CrossRef]
- Chappell, D.A.; Fry, G.L.; Waknitz, M.A.; Muhonen, L.E.; Pladet, M.W.; Iverius, P.H.; Strickland, D.K. Lipoprotein lipase induces catabolism of normal triglyceride-rich lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor in vitro. A process facilitated by cell-surface proteoglycans. J. Biol. Chem. 1993, 268, 14168–14175. [Google Scholar] [CrossRef]
- Ji, Z.S.; Fazio, S.; Lee, Y.L.; Mahley, R.W. Secretion-capture role for apolipoprotein E in remnant lipoprotein metabolism involving cell surface heparan sulfate proteoglycans. J. Biol. Chem. 1994, 269, 2764–2772. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W.; Ji, Z.S. Remnant lipoprotein metabolism: Key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res. 1999, 40, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mikhailenko, I.; Kounnas, M.Z.; Strickland, D.K. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. A process facilitated by cell-surface proteoglycans. J. Biol. Chem. 1995, 270, 9543–9549. [Google Scholar] [CrossRef] [PubMed]
- Knauer, M.F.; Crisp, R.J.; Kridel, S.J.; Knauer, D.J. Analysis of a structural determinant in thrombin-protease nexin 1 complexes that mediates clearance by the low density lipoprotein receptor-related protein. J. Biol. Chem. 1999, 274, 275–281. [Google Scholar] [CrossRef]
- Warshawsky, I.; Broze, G.J., Jr.; Schwartz, A.L. The low density lipoprotein receptor-related protein mediates the cellular degradation of tissue factor pathway inhibitor. Proc. Natl. Acad. Sci. USA 1994, 91, 6664–6668. [Google Scholar] [CrossRef]
- Butenas, S.; Parhami-Seren, B.; Undas, A.; Fass, D.N.; Mann, K.G. The “normal” factor VIII concentration in plasma. Thromb. Res. 2010, 126, 119–123. [Google Scholar] [CrossRef]
- Castro-Nunez, L.; Koornneef, J.M.; Rondaij, M.G.; Bloem, E.; van der Zwaan, C.; Mertens, K.; Meijer, A.B.; Meems, H. Cellular uptake of coagulation factor VIII: Elusive role of the membrane-binding spikes in the C1 domain. Int. J. Biochem. Cell. Biol. 2017, 89, 34–41. [Google Scholar] [CrossRef]
- Canis, K.; Anzengruber, J.; Garenaux, E.; Feichtinger, M.; Benamara, K.; Scheiflinger, F.; Savoy, L.A.; Reipert, B.M.; Malisauskas, M. In-depth comparison of N-glycosylation of human plasma-derived factor VIII and different recombinant products: From structure to clinical implications. J. Thromb. Haemost. 2018, 16, 1592–1603. [Google Scholar] [CrossRef]
- Canis, K.; McKinnon, T.A.; Nowak, A.; Haslam, S.M.; Panico, M.; Morris, H.R.; Laffan, M.A.; Dell, A. Mapping the N-glycome of human von Willebrand factor. Biochem. J. 2012, 447, 217–228. [Google Scholar] [CrossRef]
- Canis, K.; McKinnon, T.A.; Nowak, A.; Panico, M.; Morris, H.R.; Laffan, M.; Dell, A. The plasma von Willebrand factor O-glycome comprises a surprising variety of structures including ABH antigens and disialosyl motifs. J. Thromb. Haemost. 2010, 8, 137–145. [Google Scholar] [CrossRef]
- Hironaka, T.; Furukawa, K.; Esmon, P.C.; Fournel, M.A.; Sawada, S.; Kato, M.; Minaga, T.; Kobata, A. Comparative study of the sugar chains of factor VIII purified from human plasma and from the culture media of recombinant baby hamster kidney cells. J. Biol. Chem. 1992, 267, 8012–8020. [Google Scholar] [CrossRef] [PubMed]
- Lenting, P.J.; Pegon, J.N.; Christophe, O.D.; Denis, C.V. Factor VIII and von Willebrand factor--too sweet for their own good. Haemophilia 2010, 16 (Suppl. S5), 194–199. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Titani, K.; Mizuochi, T. Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. J. Biol. Chem. 1992, 267, 8723–8731. [Google Scholar] [CrossRef]
- Grewal, P.K. The Ashwell-Morell receptor. Methods Enzymol. 2010, 479, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.H.; Aziz, P.V.; Heithoff, D.M.; Mahan, M.J.; Smith, J.W.; Marth, J.D. An intrinsic mechanism of secreted protein aging and turnover. Proc. Natl. Acad. Sci. USA 2015, 112, 13657–13662. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.; O’Sullivan, J.M.; O’Donnell, J.S. von Willebrand factor sialylation-A critical regulator of biological function. J. Thromb. Haemost. 2019, 17, 1018–1029. [Google Scholar] [CrossRef] [PubMed]
- CLEC4M_Human. Available online: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=10332 (accessed on 10 April 2023).
- Huffman, J.E.; de Vries, P.S.; Morrison, A.C.; Sabater-Lleal, M.; Kacprowski, T.; Auer, P.L.; Brody, J.A.; Chasman, D.I.; Chen, M.H.; Guo, X.; et al. Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF. Blood 2015, 126, e19–e29. [Google Scholar] [CrossRef]
- Smith, N.L.; Chen, M.H.; Dehghan, A.; Strachan, D.P.; Basu, S.; Soranzo, N.; Hayward, C.; Rudan, I.; Sabater-Lleal, M.; Bis, J.C.; et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation 2010, 121, 1382–1392. [Google Scholar] [CrossRef]
- van Loon, J.; Dehghan, A.; Weihong, T.; Trompet, S.; McArdle, W.L.; Asselbergs, F.W.; Chen, M.H.; Lopez, L.M.; Huffman, J.E.; Leebeek, F.W.; et al. Genome-wide association studies identify genetic loci for low von Willebrand factor levels. Eur. J. Hum. Genet. 2016, 24, 1035–1040. [Google Scholar] [CrossRef]
- Desch, K.C.; Ozel, A.B.; Halvorsen, M.; Jacobi, P.M.; Golden, K.; Underwood, M.; Germain, M.; Tregouet, D.A.; Reitsma, P.H.; Kearon, C.; et al. Whole-exome sequencing identifies rare variants in STAB2 associated with venous thromboembolic disease. Blood 2020, 136, 533–541. [Google Scholar] [CrossRef]
- Kayashima, Y.; Clanton, C.A.; Lewis, A.M.; Sun, X.; Hiller, S.; Huynh, P.; Wilder, J.; Hagaman, J.; Li, F.; Maeda-Smithies, N.; et al. Reduction of Stabilin-2 Contributes to a Protection Against Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 818662. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Hu, Z.; Cao, L.; Peng, C.; He, Y. The scavenger receptor SCARA1 (CD204) recognizes dead cells through spectrin. J. Biol. Chem. 2019, 294, 18881–18897. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.M.; Jenkins, P.V.; Rawley, O.; Gegenbauer, K.; Chion, A.; Lavin, M.; Byrne, B.; O’Kennedy, R.; Preston, R.J.; Brophy, T.M.; et al. Galectin-1 and Galectin-3 Constitute Novel-Binding Partners for Factor VIII. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Saint-Lu, N.; Oortwijn, B.D.; Pegon, J.N.; Odouard, S.; Christophe, O.D.; de Groot, P.G.; Denis, C.V.; Lenting, P.J. Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 894–901. [Google Scholar] [CrossRef]
- Antoni, G.; Oudot-Mellakh, T.; Dimitromanolakis, A.; Germain, M.; Cohen, W.; Wells, P.; Lathrop, M.; Gagnon, F.; Morange, P.E.; Tregouet, D.A. Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels. BMC Med. Genet. 2011, 12, 102. [Google Scholar] [CrossRef]
- Sabater-Lleal, M.; Huffman, J.E.; de Vries, P.S.; Marten, J.; Mastrangelo, M.A.; Song, C.; Pankratz, N.; Ward-Caviness, C.K.; Yanek, L.R.; Trompet, S.; et al. Genome-Wide Association Transethnic Meta-Analyses Identifies Novel Associations Regulating Coagulation Factor VIII and von Willebrand Factor Plasma Levels. Circulation 2019, 139, 620–635. [Google Scholar] [CrossRef]
- Bank, I.; Libourel, E.J.; Middeldorp, S.; Hamulyak, K.; van Pampus, E.C.; Koopman, M.M.; Prins, M.H.; van der Meer, J.; Buller, H.R. Elevated levels of FVIII:C within families are associated with an increased risk for venous and arterial thrombosis. J. Thromb. Haemost. 2005, 3, 79–84. [Google Scholar] [CrossRef]
- Schmidbauer, S.; Witzel, R.; Robbel, L.; Sebastian, P.; Grammel, N.; Metzner, H.J.; Schulte, S. Physicochemical characterisation of rVIII-SingleChain, a novel recombinant single-chain factor VIII. Thromb. Res. 2015, 136, 388–395. [Google Scholar] [CrossRef]
- Chun, H.; Pettersson, J.R.; Shestopal, S.A.; Wu, W.W.; Marakasova, E.S.; Olivares, P.; Surov, S.S.; Ovanesov, M.V.; Shen, R.F.; Sarafanov, A.G. Characterization of protein unable to bind von Willebrand factor in recombinant factor VIII products. J. Thromb. Haemost. 2021, 19, 954–966. [Google Scholar] [CrossRef]
- Pipe, S.W. Functional roles of the factor VIII B domain. Haemophilia 2009, 15, 1187–1196. [Google Scholar] [CrossRef]
- Ivens, I.A.; Baumann, A.; McDonald, T.A.; Humphries, T.J.; Michaels, L.A.; Mathew, P. PEGylated therapeutic proteins for haemophilia treatment: A review for haemophilia caregivers. Haemophilia 2013, 19, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Duivelshof, B.L.; Murisier, A.; Camperi, J.; Fekete, S.; Beck, A.; Guillarme, D.; D’Atri, V. Therapeutic Fc-fusion proteins: Current analytical strategies. J. Sep. Sci. 2021, 44, 35–62. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, V.; Wang, C.W.; Geething, N.C.; Spink, B.J.; Campbell, A.; To, W.; Scholle, M.D.; Yin, Y.; Yao, Y.; Bogin, O.; et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol. 2009, 27, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, F.; Oldenburg, J.; Friedman, K.D. A critical appraisal of one-stage and chromogenic assays of factor VIII activity. J. Thromb. Haemost. 2016, 14, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.; Miesbach, W.; Pruller, F.; Siegemund, T.; Scholz, U.; Sachs, U.J.; Standing Commission Labor of the Society of, T.; Haemostasis, R. An Update on Laboratory Diagnostics in Haemophilia A and B. Hamostaseologie 2022, 42, 248–260. [Google Scholar] [CrossRef]
- Ovanesov, M.V.; Jackson, J.W.; Golding, B.; Lee, T.K. Considerations on activity assay discrepancies in factor VIII and factor IX products. J. Thromb. Haemost. 2021, 19, 2102–2111. [Google Scholar] [CrossRef]
- Product_Information. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=e1419c33-ef07-4268-be1f-c8993502d597 (accessed on 24 March 2023).
- Product_Information. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=ef290433-997f-4e98-86d6-42f6a99d6d18 (accessed on 24 March 2023).
- Product_Information. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f04e5bd5-d7e2-453b-a407-2616d81a695d (accessed on 24 March 2023).
- Product_Information. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=562f94e8-825f-4d7f-b93c-b783ac3a43bc (accessed on 24 March 2023).
- Product_Information. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=01411972-df40-4ccf-88f0-d3220e5abda9 (accessed on 24 March 2023).
- Product_Information. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=80fa03d2-cd4c-4155-9b57-1396c4fa42da (accessed on 24 March 2023).
- Peters, R.T.; Toby, G.; Lu, Q.; Liu, T.; Kulman, J.D.; Low, S.C.; Bitonti, A.J.; Pierce, G.F. Biochemical and functional characterization of a recombinant monomeric factor VIII-Fc fusion protein. J. Thromb. Haemost. 2013, 11, 132–141. [Google Scholar] [CrossRef]
- Sommer, J.M.; Moore, N.; McGuffie-Valentine, B.; Bardan, S.; Buyue, Y.; Kamphaus, G.D.; Konkle, B.A.; Pierce, G.F. Comparative field study evaluating the activity of recombinant factor VIII Fc fusion protein in plasma samples at clinical haemostasis laboratories. Haemophilia 2014, 20, 294–300. [Google Scholar] [CrossRef]
- Kitchen, S.; Jennings, I.; Makris, M.; Kitchen, D.P.; Woods, T.A.L.; Walker, I.D. Clotting and chromogenic factor VIII assay variability in post-infusion and spiked samples containing full-length recombinant FVIII or recombinant factor VIII Fc fusion protein (rFVIIIFc). Int. J. Lab. Hematol. 2019, 41, 176–183. [Google Scholar] [CrossRef]
- Owaidah, T.M.; Alzahrani, H.A.; Al-Numair, N.S.; Alnosair, A.O.; Aguilos, A.M.; Saleh, M. Assessing the Performance of Extended Half-Life Coagulation Factor VIII, FC Fusion Protein by Using Chromogenic and One-Stage Assays in Saudi Hemophilia A Patients. Adv. Hematol. 2020, 2020, 8768074. [Google Scholar] [CrossRef]
- Augustsson, C.; Norstrom, E.; Andersson, N.G.; Zetterberg, E.; Astermark, J.; Strandberg, K. Monitoring standard and extended half-life products in hemophilia: Assay discrepancies for factor VIII and IX in pre- and postinfusion samples. Res. Pract. Thromb. Haemost. 2020, 4, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Turecek, P.L.; Bossard, M.J.; Graninger, M.; Gritsch, H.; Hollriegl, W.; Kaliwoda, M.; Matthiessen, P.; Mitterer, A.; Muchitsch, E.M.; Purtscher, M.; et al. BAX 855, a PEGylated rFVIII product with prolonged half-life. Development, functional and structural characterisation. Hamostaseologie 2012, 32 (Suppl. S1), S29–S38. [Google Scholar] [CrossRef] [PubMed]
- Klamroth, R.; Windyga, J.; Radulescu, V.; Collins, P.W.; Stasyshyn, O.; Ibrahim, H.M.; Engl, W.; Tangada, S.D.; Savage, W.; Ewenstein, B. Rurioctocog alfa pegol PK-guided prophylaxis in hemophilia A: Results from the phase 3 PROPEL study. Blood 2021, 137, 1818–1827. [Google Scholar] [CrossRef] [PubMed]
- Konkle, B.A.; Stasyshyn, O.; Chowdary, P.; Bevan, D.H.; Mant, T.; Shima, M.; Engl, W.; Dyck-Jones, J.; Fuerlinger, M.; Patrone, L.; et al. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood 2015, 126, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- US_FDA. Available online: https://www.fda.gov/ (accessed on 24 March 2023).
- Turecek, P.L.; Romeder-Finger, S.; Apostol, C.; Bauer, A.; Crocker-Buque, A.; Burger, D.A.; Schall, R.; Gritsch, H. A world-wide survey and field study in clinical haemostasis laboratories to evaluate FVIII:C activity assay variability of ADYNOVATE and OBIZUR in comparison with ADVATE. Haemophilia 2016, 22, 957–965. [Google Scholar] [CrossRef]
- Mei, B.; Pan, C.; Jiang, H.; Tjandra, H.; Strauss, J.; Chen, Y.; Liu, T.; Zhang, X.; Severs, J.; Newgren, J.; et al. Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood 2010, 116, 270–279. [Google Scholar] [CrossRef]
- Coyle, T.E.; Reding, M.T.; Lin, J.C.; Michaels, L.A.; Shah, A.; Powell, J. Phase I study of BAY 94-9027, a PEGylated B-domain-deleted recombinant factor VIII with an extended half-life, in subjects with hemophilia A. J. Thromb. Haemost. 2014, 12, 488–496. [Google Scholar] [CrossRef]
- Church, N.; Leong, L.; Katterle, Y.; Ulbrich, H.F.; Noerenberg, I.; Kitchen, S.; Michaels, L.A. Factor VIII activity of BAY 94-9027 is accurately measured with most commonly used assays: Results from an international laboratory study. Haemophilia 2018, 24, 823–832. [Google Scholar] [CrossRef]
- Lenting, P.J.; van de Loo, J.W.; Donath, M.J.; van Mourik, J.A.; Mertens, K. The sequence Glu1811-Lys1818 of human blood coagulation factor VIII comprises a binding site for activated factor IX. J. Biol. Chem. 1996, 271, 1935–1940. [Google Scholar] [CrossRef]
- Stennicke, H.R.; Kjalke, M.; Karpf, D.M.; Balling, K.W.; Johansen, P.B.; Elm, T.; Ovlisen, K.; Moller, F.; Holmberg, H.L.; Gudme, C.N.; et al. A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models. Blood 2013, 121, 2108–2116. [Google Scholar] [CrossRef]
- Tiede, A.; Brand, B.; Fischer, R.; Kavakli, K.; Lentz, S.R.; Matsushita, T.; Rea, C.; Knobe, K.; Viuff, D. Enhancing the pharmacokinetic properties of recombinant factor VIII: First-in-human trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A. J. Thromb. Haemost. 2013, 11, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Tiefenbacher, S.; Clausen, W.H.O.; Hansen, M.; Lutzhoft, R.; Ezban, M. A field study evaluating the activity of N8-GP in spiked plasma samples at clinical haemostasis laboratories. Haemophilia 2019, 25, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.; Clausen, W.H.O.; Ezban, M. Measuring factor VIII activity in samples from patients treated with N8-GP (Esperoct((R)); turoctocog alfa pegol) during the pathfinder clinical trials programme. Haemophilia 2021, 27, e389–e392. [Google Scholar] [CrossRef] [PubMed]
- Ezban, M.; Hansen, M.; Kjalke, M. An overview of turoctocog alfa pegol (N8-GP.; ESPEROCT((R))) assay performance: Implications for postadministration monitoring. Haemophilia 2020, 26, 156–163. [Google Scholar] [CrossRef]
- Keam, S.J. Efanesoctocog Alfa: First Approval. Drugs 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Seth Chhabra, E.; Liu, T.; Kulman, J.; Patarroyo-White, S.; Yang, B.; Lu, Q.; Drager, D.; Moore, N.; Liu, J.; Holthaus, A.M.; et al. BIVV001, a new class of factor VIII replacement for hemophilia A that is independent of von Willebrand factor in primates and mice. Blood 2020, 135, 1484–1496. [Google Scholar] [CrossRef]
- von Drygalski, A.; Chowdary, P.; Kulkarni, R.; Susen, S.; Konkle, B.A.; Oldenburg, J.; Matino, D.; Klamroth, R.; Weyand, A.C.; Jimenez-Yuste, V.; et al. Efanesoctocog Alfa Prophylaxis for Patients with Severe Hemophilia A. N. Engl. J. Med. 2023, 388, 310–318. [Google Scholar] [CrossRef]
- Zollner, S.; Raquet, E.; Claar, P.; Muller-Cohrs, J.; Metzner, H.J.; Weimer, T.; Pragst, I.; Dickneite, G.; Schulte, S. Non-clinical pharmacokinetics and pharmacodynamics of rVIII-SingleChain, a novel recombinant single-chain factor VIII. Thromb. Res. 2014, 134, 125–131. [Google Scholar] [CrossRef]
- Product_Information. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=51f19873-a63f-4229-9477-5da4ecf31cde (accessed on 24 March 2023).
- St Ledger, K.; Feussner, A.; Kalina, U.; Horn, C.; Metzner, H.J.; Bensen-Kennedy, D.; Blackman, N.; Veldman, A.; Stowers, A.; Friedman, K.D. International comparative field study evaluating the assay performance of AFSTYLA in plasma samples at clinical hemostasis laboratories. J. Thromb. Haemost. 2018, 16, 555–564. [Google Scholar] [CrossRef]
- Hubbard, A.R.; Weller, L.J.; Bevan, S.A. Activation profiles of factor VIII in concentrates reflect one-stage/chromogenic potency discrepancies. Br. J. Haematol. 2002, 117, 957–960. [Google Scholar] [CrossRef]
- Bloem, E.; Karpf, D.M.; Norby, P.L.; Johansen, P.B.; Loftager, M.; Rahbek-Nielsen, H.; Petersen, H.H.; Blouse, G.E.; Thim, L.; Kjalke, M.; et al. Factor VIII with a 237 amino acid B-domain has an extended half-life in F8-knockout mice. J. Thromb. Haemost. 2019, 17, 350–360. [Google Scholar] [CrossRef]
- Muczynski, V.; Casari, C.; Moreau, F.; Ayme, G.; Kawecki, C.; Legendre, P.; Proulle, V.; Christophe, O.D.; Denis, C.V.; Lenting, P.J. A factor VIII-nanobody fusion protein forming an ultrastable complex with VWF: Effect on clearance and antibody formation. Blood 2018, 132, 1193–1197. [Google Scholar] [CrossRef] [PubMed]
- Shestopal, S.A.; Parunov, L.A.; Olivares, P.; Chun, H.; Ovanesov, M.V.; Pettersson, J.R.; Sarafanov, A.G. Isolated Variable Domains of an Antibody Can Assemble on Blood Coagulation Factor VIII into a Functional Fv-like Complex. Int. J. Mol. Sci. 2022, 23, 8134. [Google Scholar] [CrossRef] [PubMed]
- Fay, P.J.; Chavin, S.I.; Malone, J.E.; Schroeder, D.; Young, F.E.; Marder, V.J. The effect of carbohydrate depletion on procoagulant activity and in vivo survival of highly purified human factor VIII. Biochim. Biophys. Acta 1984, 800, 152–158. [Google Scholar] [CrossRef]
- Martinowitz, U.; Bjerre, J.; Brand, B.; Klamroth, R.; Misgav, M.; Morfini, M.; Santagostino, E.; Tiede, A.; Viuff, D. Bioequivalence between two serum-free recombinant factor VIII preparations (N8 and ADVATE(R))—An open-label, sequential dosing pharmacokinetic study in patients with severe haemophilia A. Haemophilia 2011, 17, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Teare, J.M.; Kates, D.S.; Shah, A.; Garger, S. Increased branching and sialylation of N-linked glycans correlate with an improved pharmacokinetic profile for BAY 81-8973 compared with other full-length rFVIII products. Drug. Des. Devel Ther. 2019, 13, 941–948. [Google Scholar] [CrossRef]
- Bas, M.; Terrier, A.; Jacque, E.; Dehenne, A.; Pochet-Beghin, V.; Beghin, C.; Dezetter, A.S.; Dupont, G.; Engrand, A.; Beaufils, B.; et al. Fc Sialylation Prolongs Serum Half-Life of Therapeutic Antibodies. J. Immunol. 2019, 202, 1582–1594. [Google Scholar] [CrossRef]
- Shestopal, S.A.; Hao, J.J.; Karnaukhova, E.; Liang, Y.; Ovanesov, M.V.; Lin, M.; Kurasawa, J.H.; Lee, T.K.; McVey, J.H.; Sarafanov, A.G. Expression and characterization of a codon-optimized blood coagulation factor VIII. J. Thromb. Haemost. 2017, 15, 709–720. [Google Scholar] [CrossRef]
- Blair, H.A. Valoctocogene Roxaparvovec: First Approval. Drugs 2022, 82, 1505–1510. [Google Scholar] [CrossRef]
Receptor | Recognition Determinants | Expression (Cell Type) | Ligand | Reference |
---|---|---|---|---|
LRP1 1 | Protein (specific lysines) | Hepatocytes, macrophages | FVIII, VWF | [14,15] |
LDLR 2 | Protein (specific lysines) | Hepatocytes, macrophages | FVIII | [16] |
HSPGs 3 | Protein (basic residues) | Hepatocytes, macrophages | FVIII | [17] |
ASGPR 4 | Asialic sugars (N-linked) | Hepatocytes | FVIII, VWF | [18,19] |
SIGLEC5 5 | Sialic sugars (proteins) | Macrophages (etc.) | FVIII, VWF | [20] |
CLEC4M 6 | Mannose sugars | Endothelium | FVIII, VWF | [21,22] |
STAB2 7 | Glycosaminoglycans | Endothelium | VWF | [23] |
SCARA5 8 | Glycans | Endothelium, macrophages | VWF | [24] |
SCARA1 9 | Glycans | Macrophages | VWF | [25] |
MGL 10 | Asialic sugars (O-linked) | Macrophages | FVIII, VWF | [26,27] |
Molecule Name 1 | Producing Cells 2 | Major Modifications 3 | Available Since 4 | Reference 5 |
---|---|---|---|---|
Efmoroctocog alfa 6 | HEK | BDD, Fc | 2014 | [88] |
Rurioctocog alfa pegol 6 | CHO | Pegylation 8 | 2015 | [89] |
Damoctocog alfa pegol 6 | BHK | BDD, Pegylation 9 | 2018 | [90] |
Turoctog alfa pegol 6 | CHO | BDD, Pegylation 10 | 2019 | [91] |
Efanesoctocog alfa 7 | HEK | BDD, SCh, Fc, D’D3, XTEN | 2023 | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarafanov, A.G. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Int. J. Mol. Sci. 2023, 24, 8584. https://doi.org/10.3390/ijms24108584
Sarafanov AG. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. International Journal of Molecular Sciences. 2023; 24(10):8584. https://doi.org/10.3390/ijms24108584
Chicago/Turabian StyleSarafanov, Andrey G. 2023. "Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice" International Journal of Molecular Sciences 24, no. 10: 8584. https://doi.org/10.3390/ijms24108584
APA StyleSarafanov, A. G. (2023). Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. International Journal of Molecular Sciences, 24(10), 8584. https://doi.org/10.3390/ijms24108584