Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein
<p>(<b>A</b>) Spinning dope obtained from freeze-dried RSF (4% <span class="html-italic">w</span>/<span class="html-italic">v</span> dissolved in HFIP) 10 min after mixing the two components. (<b>B</b>) Spinning dope obtained from freeze-dried RSF (4% <span class="html-italic">w</span>/<span class="html-italic">v</span> dissolved in HFIP) after overnight incubation at room temperature.</p> "> Figure 2
<p>(<b>A</b>) Exemplary dynamic viscosity curve for NSFfd (red) and RSF (blue). (<b>B</b>) Exemplary oscillatory sweeps for NSFfd (red) and RSF (blue). Elastic modulus (<span class="html-italic">G</span>′ triangle) and viscous modulus (<span class="html-italic">G</span>″ square) are shown.</p> "> Figure 3
<p>Exemplary dynamic viscosity curves for 4% (<span class="html-italic">w</span>/<span class="html-italic">v</span>) RSF dissolved in HFIP after storage at room temperature (20 °C) for 2, 23, and 37 days.</p> "> Figure 4
<p>Comparison of molecular mass distribution of NSF and RSF using SDS-PAGE analysis. Films from NSF, freeze-dried NSF dissolved in HFIP (4% (<span class="html-italic">w</span>/<span class="html-italic">v</span>, NSFfd, stored for 37 d), and freeze-dried RSF dissolved in HFIP (4% (<span class="html-italic">w</span>/<span class="html-italic">v</span>)) after spending different amounts of time in solution and storage at room temperature (37 d, 23 d, and 2 d, respectively). All samples were dissolved in LiSCN, and 50 μg of each solution was loaded onto a precast gradient polyacrylamide gel (4–20%). PageRuler™ Plus Prestained Ladder (10 to 250 kDa) was used as a molecular mass marker. Arrowheads display molecular mass of the three subunits of silk fibroin (heavy chain fibroin, FibHC, 350 kDa; light chain fibroin, FibLC, 26 kDa; fibrohexamerin/p25, 30 kDa).</p> "> Figure 5
<p>(<b>A</b>) Schematic of the custom-made spinning machine for continuous wet spinning: 1—spinning dope storage; 2—spinning dope; 3—spinning nozzle; 4—air gap; 5—coagulation bath; 6—roller; 7—draw roller 1; 8—washing bath; 9—draw roller 2; 10—collecting spool. (<b>B</b>) Wet-spun lustrous RSF fiber on a spool. (<b>C</b>–<b>E</b>) SEM images of ribbon-shaped wet-spun RSF fibers: Cross-section (<b>C</b>), side view (<b>D</b>), and bottom view of wet-spun RSF fiber (<b>E</b>).</p> "> Figure 6
<p>Mechanical properties of RSF fibers. Representative tensile stress–strain curve of fibers wet-spun from freeze-dried RSF (4% <span class="html-italic">w</span>/<span class="html-italic">v</span>) dissolved in HFIP. Dots denote the breaking points of all specimens tested (n = 80).</p> "> Figure 7
<p>Representative FTIR absorbance spectra of the amide I band (1720 to 1580 cm<sup>−1</sup>) of degummed NSF fibers from <span class="html-italic">B. mori</span> cocoons (<b>A</b>) and wet-spun fibers from RSF (<b>B</b>). The raw curve is shown in black, and the fitted curve is displayed in red. The colored lines show the contribution of the spectra of each type of secondary structure (orange: β-turn; blue: random coil and/or helix; green: β-sheet).</p> "> Figure 8
<p>Cytocompatibility of wet-spun RSF fibers: (<b>Left</b>): XTT assay for determining cell viability of L929 cells cultivated with extracts from wet-spun RSF fibers for 24 h. The mean cell metabolic activity and standard error of the mean are reported for four independent spinning experiments conducted (at least) in duplicates. (<b>Right</b>): Representative fluorescence microscopy image of live–dead staining of L929 cells after 24 h of cultivation with extracts from wet-spun RSF.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Spinning Dope
2.2. Wet Spinning and Fiber Morphology
2.3. Mechanical Properties of Wet-Spun RSF Fibers
2.4. Secondary Structure Analysis
2.5. Cytotoxicity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Silk Degumming
4.3. Dissolution of Silk Fibroin Fibers and Desalting
4.4. Preparation of Native Silk Fibroin from Silkworm Silk Glands
4.5. Freeze Drying of Silk Fibroin
4.6. Preparation of Spinning Dope
4.7. Preparation of Silk Fibroin Films
4.8. SDS-Polyacrylamide Gele Electrophoresis (SDS-PAGE)
4.9. Rheological Characterization of Spinning Dope
4.10. Wet Spinning
4.11. Fiber Characterization
4.12. Attenuated Total Reflection Infrared Spectroscopy (ATR-FTIR)
4.13. Scanning Electron Microscopy (SEM)
4.14. In Vitro Cytotoxicity
4.15. Statistical Evaluation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Liu, M.; Huang, H.; Cheng, L.; Zhao, H.-P. Mechanical properties of Bombyx mori silkworm silk fibre and its corresponding silk fibroin filament: A comparative study. Mater. Des. 2019, 181, 108077. [Google Scholar] [CrossRef]
- Sparkes, J.; Holland, C. Analysis of the pressure requirements for silk spinning reveals a pultrusion dominated process. Nat. Commun. 2017, 8, 226. [Google Scholar] [CrossRef] [PubMed]
- Domigan, L.J.; Andersson, M.; Alberti, K.A.; Chesler, M.; Xu, Q.; Johansson, J.; Rising, A.; Kaplan, D.L. Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands. Insect Biochem. Mol. Biol. 2015, 65, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Asakura, T.; Umemura, K.; Nakazawa, Y.; Hirose, H.; Higham, J.; Knight, D. Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Biomacromolecules 2007, 8, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Foo, C.W.P.; Bini, E.; Hensman, J.; Knight, D.P.; Lewis, R.V.; Kaplan, D.L. Role of pH and charge on silk protein assembly in insects and spiders. Appl. Phys. A 2006, 82, 223–233. [Google Scholar] [CrossRef]
- Laity, P.R.; Baldwin, E.; Holland, C. Changes in Silk Feedstock Rheology during Cocoon Construction: The Role of Calcium and Potassium Ions. Macromol. Biosci. 2019, 19, e1800188. [Google Scholar] [CrossRef]
- Holland, C.; Urbach, J.S.; Blair, D.L. Direct visualization of shear dependent silk fibrillogenesis. Soft Matter 2012, 8, 2590–2594. [Google Scholar] [CrossRef]
- Shao, Z.; Vollrath, F. Surprising strength of silkworm silk. Nature 2002, 418, 741. [Google Scholar] [CrossRef]
- Mortimer, B.; Holland, C.; Vollrath, F. Forced reeling of Bombyx mori silk: Separating behavior and processing conditions. Biomacromolecules 2013, 14, 3653–3659. [Google Scholar] [CrossRef]
- Du, N.; Liu, X.Y.; Narayanan, J.; Li, L.; Lim, M.L.M.; Li, D. Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 2006, 91, 4528–4535. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Morikawa, H.; Gotoh, Y.; Miura, M.; Ming, Z.; Sato, Y.; Iwasa, M. Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds. Int. J. Biol. Macromol. 2008, 42, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, J.; Ling, S. Bioinspired and biomimetic silk spinning. Compos. Commun. 2019, 13, 85–96. [Google Scholar] [CrossRef]
- Koeppel, A.; Holland, C. Progress and Trends in Artificial Silk Spinning: A Systematic Review. ACS Biomater. Sci. Eng. 2017, 3, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Shao, Z.; Knight, D.P.; Yan, J.; Chen, X. Silk Fibers Extruded Artificially from Aqueous Solutions of Regenerated Bombyx mori Silk Fibroin are Tougher than their Natural Counterparts. Adv. Mater. 2009, 21, 366–370. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Lin, Z.; Lin, Y.; van Esch, J.H.; Liu, X.Y. Programing Performance of Silk Fibroin Materials by Controlled Nucleation. Adv. Funct. Mater. 2016, 26, 8978–8990. [Google Scholar] [CrossRef]
- Chen, J.; Ohta, Y.; Nakamura, H.; Masunaga, H.; Numata, K. Aqueous spinning system with a citrate buffer for highly extensible silk fibers. Polym. J. 2021, 53, 179–189. [Google Scholar] [CrossRef]
- Plaza, G.R.; Corsini, P.; Marsano, E.; Pérez-Rigueiro, J.; Elices, M.; Riekel, C.; Vendrely, C.; Guinea, G.V. Correlation between processing conditions, microstructure and mechanical behavior in regenerated silkworm silk fibers. J. Polym. Sci. B Polym. Phys. 2012, 50, 455–465. [Google Scholar] [CrossRef]
- Corsini, P.; Perez-Rigueiro, J.; Guinea, G.V.; Plaza, G.R.; Elices, M.; Marsano, E.; Carnasciali, M.M.; Freddi, G. Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers. J. Polym. Sci. B Polym. Phys. 2007, 45, 2568–2579. [Google Scholar] [CrossRef]
- Zuo, B.; Liu, L.; Wu, Z. Effect on properties of regenerated silk fibroin fiber coagulated with aqueous methanol/ethanol. J. Appl. Polym. Sci. 2007, 106, 53–59. [Google Scholar] [CrossRef]
- Frydrych, M.; Greenhalgh, A.; Vollrath, F. Artificial spinning of natural silk threads. Sci. Rep. 2019, 9, 15428. [Google Scholar] [CrossRef]
- Wöltje, M.; Kölbel, A.; Aibibu, D.; Cherif, C. A Fast and Reliable Process to Fabricate Regenerated Silk Fibroin Solution from Degummed Silk in 4 Hours. Int. J. Mol. Sci. 2021, 22, 10565. [Google Scholar] [CrossRef] [PubMed]
- Addis, K.T.; Raina, S.K. Dissolution Properties of Silk Cocoon Shells and Degummed Fibers from African Wild Silkmoths. Pak. J. Biol. Sci. 2013, 16, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- ISO 1993-5:2009; Biological Evaluation of Medical Devices: Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Lock, R.L. Process for Making Silk Fibroin Fibers. U.S. Patent 5,252,285, 12 October 1993. [Google Scholar]
- Laity, P.R.; Holland, C. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective. Biomacromolecules 2016, 17, 2662–2671. [Google Scholar] [CrossRef]
- Laity, P.R.; Holland, C. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks. Int. J. Mol. Sci. 2016, 17, 1812. [Google Scholar] [CrossRef]
- Moriya, M.; Roschzttardtz, F.; Nakahara, Y.; Saito, H.; Masubuchi, Y.; Asakura, T. Rheological properties of native silk fibroins from domestic and wild silkworms, and flow analysis in each spinneret by a finite element method. Biomacromolecules 2009, 10, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.; Terry, A.E.; Porter, D.; Vollrath, F. Comparing the rheology of native spider and silkworm spinning dope. Nat. Mater. 2006, 5, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Allardyce, B.J.; Rajkhowa, R.; Hegh, D.; Qin, S.; Usman, K.A.S.; Mota-Santiago, P.; Zhang, J.; Lynch, P.; Wang, X.; et al. Toughening Wet-Spun Silk Fibers by Silk Nanofiber Templating. Macromol. Rapid Commun. 2022, 43, e2100891. [Google Scholar] [CrossRef]
- Terry, A.E.; Knight, D.P.; Porter, D.; Vollrath, F. pH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm. Biomacromolecules 2004, 5, 768–772. [Google Scholar] [CrossRef]
- Holland, C.; Terry, A.E.; Porter, D.; Vollrath, F. Natural and unnatural silks. Polymer 2007, 48, 3388–3392. [Google Scholar] [CrossRef]
- Laity, P.R.; Gilks, S.E.; Holland, C. Rheological behaviour of native silk feedstocks. Polymer 2015, 67, 28–39. [Google Scholar] [CrossRef]
- Boulet-Audet, M.; Holland, C.; Gheysens, T.; Vollrath, F. Dry-Spun Silk Produces Native-Like Fibroin Solutions. Biomacromolecules 2016, 17, 3198–3204. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef] [PubMed]
- Wilms, C.; Seide, G.; Gries, T. The relationship between process technology, structure development and fibre properties in modern carbon fibre production. Chem. Eng. Trans. 2013, 32, 1609–1614. [Google Scholar] [CrossRef]
- Morris, E.; Weisenberger, M.; Rice, G. Properties of PAN Fibers Solution Spun into a Chilled Coagulation Bath at High Solvent Compositions. Fibers 2015, 3, 560–574. [Google Scholar] [CrossRef]
- Moskowitz, J.D.; Jackson, M.B.; Tucker, A.; Cook, J.D. Evolution of polyacrylonitrile precursor fibers and the effect of stretch profile in wet spinning. J. Appl. Polym. Sci. 2021, 138, 50967. [Google Scholar] [CrossRef]
- Ha, S.-W.; Tonelli, A.E.; Hudson, S.M. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 2005, 6, 1722–1731. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, Q.; Yue, X.; Zuo, B.; Qin, M.; Li, F.; Kaplan, D.L.; Zhang, X. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent. Acta Biomater. 2015, 12, 139–145. [Google Scholar] [CrossRef]
- Fang, G.; Huang, Y.; Tang, Y.; Qi, Z.; Yao, J.; Shao, Z.; Chen, X. Insights into Silk Formation Process: Correlation of Mechanical Properties and Structural Evolution during Artificial Spinning of Silk Fibers. ACS Biomater. Sci. Eng. 2016, 2, 1992–2000. [Google Scholar] [CrossRef]
- Zhu, Z.; Kikuchi, Y.; Kojima, K.; Tamura, T.; Kuwabara, N.; Nakamura, T.; Asakura, T. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms. J. Biomater. Sci. Polym. Ed. 2010, 21, 395–411. [Google Scholar] [CrossRef]
- Wöltje, M.; Böbel, M. Natural biodegradable medical polymers: Silk. In Science and Principles of Biodegradable and Bioresorbable Medical Polymers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 351–376. ISBN 9780081003725. [Google Scholar]
- Ling, S.; Qi, Z.; Knight, D.P.; Shao, Z.; Chen, X. Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 2011, 12, 3344–3349. [Google Scholar] [CrossRef]
- Drnovšek, N.; Kocen, R.; Gantar, A.; Drobnič-Košorok, M.; Leonardi, A.; Križaj, I.; Rečnik, A.; Novak, S. Size of silk fibroin β-sheet domains affected by Ca2. J. Mater. Chem. B 2016, 4, 6597–6608. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Huang, H.; Zeng, J.; Liu, Z.; Tong, X.; Li, Z.; Zhao, H.; Dai, F. Effect of Different Additives in Diets on Secondary Structure, Thermal and Mechanical Properties of Silkworm Silk. Materials 2018, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, S.; Zhang, Q.; Yeerken, T.; Yu, W. Secondary structure transformation and mechanical properties of silk fibers by ultraviolet irradiation and water. Text. Res. J. 2019, 89, 2802–2812. [Google Scholar] [CrossRef]
- Lefèvre, T.; Rousseau, M.-E.; Pézolet, M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 2007, 92, 2885–2895. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, J.; Jordan, J.S.; Wang, X.; Henning, R.W.; Yarger, J.L. Structural Comparison of Various Silkworm Silks: An Insight into the Structure-Property Relationship. Biomacromolecules 2018, 19, 906–917. [Google Scholar] [CrossRef]
- Carissimi, G.; Baronio, C.M.; Montalbán, M.G.; Víllora, G.; Barth, A. On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids: An Infrared Spectroscopy Study. Polymers 2020, 12, 1294. [Google Scholar] [CrossRef]
- ISO 5079:2020; Textile Fibres—Determination of Breaking Force and Elongation at Break of Individual Fibres. International Organization for Standardization: Geneva, Switzerland, 2020.
Fibroin | NSF | RSF |
---|---|---|
β-turn | 4.9 ± 1.6 | 4.4 ± 0.8 |
random coil and/or helix | 50.7 ± 4.1 | 55.6 ± 5.4 |
β-sheet | 44.4 ± 5.6 | 40.0 ± 6.1 |
Fibroin | Solvent | Coagulant | Draw Ratio | Strength (MPa) | Strain (%) | Young’s Modulus (GPa) | Ø (µm) | Strength Per % Fibroin (MPa) | Ref. |
---|---|---|---|---|---|---|---|---|---|
RSF 15 w/v | H2O | (NH4)2SO4 | 4 | 260 | 78.9 | 13,2 | 17.3 | [14] | |
RSF 13 w/w | H2O | (NH4)2SO4 | 4 | 98 | 58.9 | 4.4 | 25 | 7.5 | [15] |
RSF 17 w/w | NMMO-H2O | Methanol | 5.3 | 360 | 3.9 | 13.7 | 32 | 21.2 | [17] |
RSF 17 w/w | NMMO-H2O | Ethanol | 2.8 | 127 | 12.7 | 5.3 | 73 | 10.16 | [18] |
RSF 10 w/w | HFIP | Ethanol | 102.5 | 25 | 49.1 | 10.3 | [19] | ||
RSF 32 w/w | H2O | PEG, Citrate buffer | 9 | 98 | 52 | 2.2 | 71 | 3.1 | [16] |
RSF 4 w/v | HFIP | Ethanol, PEG, CH3COONH4 | 3.1 | 257 | 13.9 | 13.2 | 43.3 | 64.2 | |
NSF 6.4 w/w | CH3COONH4 | PEG, CH3COONH4 | 15 | 350 | 17.6 | 13.8 | 25 | 54.7 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wöltje, M.; Isenberg, K.L.; Cherif, C.; Aibibu, D. Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein. Int. J. Mol. Sci. 2023, 24, 13492. https://doi.org/10.3390/ijms241713492
Wöltje M, Isenberg KL, Cherif C, Aibibu D. Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein. International Journal of Molecular Sciences. 2023; 24(17):13492. https://doi.org/10.3390/ijms241713492
Chicago/Turabian StyleWöltje, Michael, Kristin L. Isenberg, Chokri Cherif, and Dilbar Aibibu. 2023. "Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein" International Journal of Molecular Sciences 24, no. 17: 13492. https://doi.org/10.3390/ijms241713492
APA StyleWöltje, M., Isenberg, K. L., Cherif, C., & Aibibu, D. (2023). Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein. International Journal of Molecular Sciences, 24(17), 13492. https://doi.org/10.3390/ijms241713492