An iRGD Based Strategy to Study Electrochemically the Species Inside a Cell
<p>Electrochemical impedance spectra (Nyquist plots) of the DNA modified electrode (I) before and (II) after its incubation with (<b>a</b>) 22Rv1 cells which were treated with both 100 μM iRGD and 50 μM doxorubicin, or (<b>b</b>) 50 μM doxorubicin. Curve (III) is the case of further treatment with cell lysis buffer; Test solution: 1 M KNO<sub>3</sub> containing 5 mM Fe(CN)<sub>6</sub><sup>3−/4−</sup>. Biasing potential: 0.222 V. Amplitude: 5 mV. Frequency range: 0.1 Hz to 100 kHz.</p> ">
<p>Cyclic voltammograms for a 50 mM Tris-HCl buffer (pH 7.4) obtained at the DNA-modified electrode after its incubation with 22Rv1 cells which were previously pretreated by (<b>a</b>) 50 μM doxorubicin and (I) 0 μM, (II) 20 μM, (III) 100 μM iRGD, or (<b>b</b>) 100 μM iRGD and (I) 0 μM, (II) 50 μM, (III) 100 μM doxorubicin. Scan rate: 100 mV s<sup>−1</sup>.</p> ">
<p>(<b>a</b>) Cyclic voltammogram for a 50 mM Tris-HCl buffer (pH 7.4) obtained at the bare gold electrode after its incubation with 22Rv1 cells which were previously pretreated by 50 μM doxorubicin and 100 μM iRGD; (<b>b</b>) Cyclic voltammogram for a 50 mM Tris-HCl buffer (pH 7.4) obtained at the DNA-modified electrode after its incubation with 22Rv1 cells which were previously pretreated by 50 μM doxorubicin and 100 μM control peptide with its sequence LRRASLGGGGC; (<b>c</b>) Cyclic voltammogram for a 50 mM Tris-HCl buffer (pH 7.4) obtained at the DNA-modified electrode after its incubation with 293T cells which were previously pretreated by 50 μM doxorubicin and 100 μM iRGD.</p> ">
<p>Schematic illustration of the electrical communication between the inner part of cells and an electrode.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Preparation of the DNA Modified Electrode
3.3. Cell Culture
3.4. Cytotoxicity Assays
3.5. Electrochemical Measurements
4. Conclusions
Acknowledgments
References
- Lebedev, N.; Trammell, S.A.; Tsoi, S.; Spano, A.; Kim, J.H.; Xu, J.; Twigg, M.E.; Schnur, J.M. Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode. Langmuir 2008, 24, 8871–8876. [Google Scholar]
- Peng, Y.; Jiang, D.; Su, L.; Zhang, L.; Yan, M.; Du, J.; Lu, Y.; Liu, Y.N.; Zhou, F. Mixed monolayers of ferrocenylalkanethiol and encapsulated horseradish peroxidase for sensitive and durable electrochemical detection of hydrogen peroxide. Anal. Chem 2009, 81, 9985–9992. [Google Scholar]
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol 2003, 21, 1192–1199. [Google Scholar]
- Zhang, J.; Song, S.; Wang, L.; Pan, D.; Fan, C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc 2007, 2, 2888–2895. [Google Scholar]
- Matsumoto, A.; Sato, N.; Kataoka, K.; Miyahara, Y. Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J. Am. Chem. Soc 2009, 131, 12022–12023. [Google Scholar]
- Wischerhoff, E.; Uhlig, K.; Lankenau, A.; Borner, H.G.; Laschewsky, A.; Duschl, C.; Lutz, J.F. Controlled cell adhesion on PEG-based switchable surfaces. Angew. Chem. Int. Ed. Engl 2008, 47, 5666–5668. [Google Scholar]
- Du, D.; Cai, J.; Ju, H.; Yan, F.; Chen, J.; Jiang, X.; Chen, H. Construction of a biomimetic zwitterionic interface for monitoring cell proliferation and apoptosis. Langmuir 2005, 21, 8394–8399. [Google Scholar]
- Liu, T.; Zhu, W.; Yang, X.; Chen, L.; Yang, R.; Hua, Z.; Li, G. Detection of apoptosis based on the interaction between annexin V and phosphatidylserine. Anal. Chem 2009, 81, 2410–2413. [Google Scholar]
- Xiao, H.; Liu, L.; Meng, F.; Huang, J.; Li, G. Electrochemical approach to detect apoptosis. Anal. Chem 2008, 80, 5272–5275. [Google Scholar]
- Meng, F.; Yang, J.; Liu, T.; Zhu, X.; Li, G. Electric communication between the inner part of a cell and an electrode: the way to look inside a cell. Anal. Chem 2009, 81, 9168–9171. [Google Scholar]
- Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009, 16, 510–520. [Google Scholar]
- Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Greenwald, D.R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010, 328, 1031–1035. [Google Scholar]
- Swift, L.P.; Rephaeli, A.; Nudelman, A.; Phillips, D.R.; Cutts, S.M. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res 2006, 66, 4863–4871. [Google Scholar]
- Jiang, H.; Wang, X.M. Highly sensitive detection of daunorubicin based on carbon nanotubes-drug supramolecular interaction. Electrochem. Commun 2009, 11, 126–129. [Google Scholar]
- Rao, G.M.; Begleiter, A.; Lown, J.W.; Plambeck, J.A. Electrochemical studies of antitumor antibiotics. II. Polarographic and cyclic voltammetric studies of mitomycin C. J. Electrochem. Soc 1977, 124, 199–202. [Google Scholar]
- Yau, H.C.; Chan, H.L.; Yang, M. Electrochemical properties of DNA-intercalating doxorubicin and methylene blue on n-hexadecylmercaptan-doped 5′-thiol-labeled DNA-modified gold electrodes. Biosens. Bioelectron 2003, 18, 873–879. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ning, L.; Li, X.; Ding, X.; Yin, Y.; Li, G. An iRGD Based Strategy to Study Electrochemically the Species Inside a Cell. Int. J. Mol. Sci. 2012, 13, 10424-10431. https://doi.org/10.3390/ijms130810424
Ning L, Li X, Ding X, Yin Y, Li G. An iRGD Based Strategy to Study Electrochemically the Species Inside a Cell. International Journal of Molecular Sciences. 2012; 13(8):10424-10431. https://doi.org/10.3390/ijms130810424
Chicago/Turabian StyleNing, Limin, Xiaoxi Li, Xiaorong Ding, Yongmei Yin, and Genxi Li. 2012. "An iRGD Based Strategy to Study Electrochemically the Species Inside a Cell" International Journal of Molecular Sciences 13, no. 8: 10424-10431. https://doi.org/10.3390/ijms130810424
APA StyleNing, L., Li, X., Ding, X., Yin, Y., & Li, G. (2012). An iRGD Based Strategy to Study Electrochemically the Species Inside a Cell. International Journal of Molecular Sciences, 13(8), 10424-10431. https://doi.org/10.3390/ijms130810424