Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands
<p>Fluorescence (left) and absorption (right) spectra of <b>1</b> (<b>a</b>) and <b>2</b> (<b>b</b>) (5 μM) in CH<sub>3</sub>CN/H<sub>2</sub>O (3/1, <span class="html-italic">v</span>/<span class="html-italic">v</span>) with different metal ions (400 μM), respectively.</p> ">
<p>Photos of chemosensor <b>1</b> (5 μM) in CH<sub>3</sub>CN/H<sub>2</sub>O (3/1, <span class="html-italic">v</span>/<span class="html-italic">v</span>) upon addition of 80 equiv of Cu<sup>2+</sup>, Fe<sup>3+</sup>, and Hg<sup>2+</sup> ions, respectively.</p> ">
<p>Changes of the fluorescence spectra of (<b>a</b>) chemosensor 1 and (<b>b</b>) chemosensor 2 (5 μM, λ<sub>ex</sub> = 510 nm) in CH<sub>3</sub>CN/H<sub>2</sub>O (3/1, <span class="html-italic">v</span>/<span class="html-italic">v</span>) upon addition of increasing amounts of Fe<sup>3+</sup> (0–370 μM, left) and Hg<sup>2+</sup> (0–400 μM, right), respectively. Inset: Spectrofluorimetric titration curves ((<b>a</b>) λ<sub>em</sub> =580 nm and (<b>b</b>) λ<sub>em</sub> = 590 nm) for a 1:1 complex according to <a href="#FD1" class="html-disp-formula">Equation 1</a>. The data are fitted to a curve with a correlation coefficient of (<b>a</b>) <span class="html-italic">R</span><sup>2</sup> = 0.9952, <span class="html-italic">R</span><sup>2</sup> = 0.9972 and (<b>b</b>) <span class="html-italic">R</span><sup>2</sup> = 0.9945, <span class="html-italic">R</span><sup>2</sup> = 0.9983.</p> ">
<p>Fluorescence response of chemosensor 1 (5.0 μM, λ<sub>ex</sub> = 510 nm and λ<sub>em</sub> = 580 nm) (<b>a</b>) in CH<sub>3</sub>CN/buffer (pH = 7.0) (95/5, <span class="html-italic">v</span>/<span class="html-italic">v</span>) upon addition of 40 equiv of Fe<sup>3+</sup>, Hg<sup>2+</sup>, and Cu<sup>2+</sup> ions, respectively, and (<b>b</b>) in different fractions of HEPES buffer (0.02 M, pH = 7.0) upon addition of 40 equiv of Fe<sup>3+</sup>, Hg<sup>2+</sup>, and Cu<sup>2+</sup> ions, respectively. The responses for Fe<sup>3+</sup> are below 0.05 in the different fractions of HEPES buffer.</p> ">
<p>Changes of the fluorescence spectra of chemosensor <b>1</b> (5 μM, λ<sub>ex</sub> = 510 nm) in CH<sub>3</sub>CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, <span class="html-italic">v</span>/<span class="html-italic">v</span>) upon addition of increasing amounts of Hg<sup>2+</sup> (0–50 μM). Inset: Fluorescence intensity of <b>1</b> at 580 nm (5 μM, λ<sub>ex</sub> = 510 nm) in CH<sub>3</sub>CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, <span class="html-italic">v</span>/<span class="html-italic">v</span>) <span class="html-italic">vs</span> the concentration of Hg<sup>2+</sup> ions.</p> ">
<p>Bar profiles of fluorescence intensity for chemosensor <b>1</b> (5 μM, λ<sub>ex</sub> = 510 nm) in CH<sub>3</sub>CN/HEPES (95/5, <span class="html-italic">v</span>/<span class="html-italic">v</span>) upon addition of 10 equiv of various metal ions as perchlorates.</p> ">
<p>Fluorescence intensity of <b>1</b> at 580 nm (5 μM, λ<sub>ex</sub> = 510 nm) in CH<sub>3</sub>CN/H<sub>2</sub>O (95/5, <span class="html-italic">v</span>/<span class="html-italic">v</span>) (<b>a</b>) with and without Hg<sup>2+</sup> ion (50 μM) as a function of pH and (<b>b</b>) upon addition of Hg<sup>2+</sup> ion (50 μM) over time.</p> ">
<p>Synthesis of chemosensors <b>1</b> and <b>2</b>.</p> ">
<p>Structure of chemosensors <b>1</b> and <b>2</b>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General
3.2. Equipment
3.3. Synthesis of 1 and 2
3.3.1. General Procedure for the Synthesis of 1 and 2
3.4. Absorption and Fluorescence Measurements
4. Conclusions
Supplementary Information
ijms-13-16822-s001.pdfAcknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References and Notes
- Miller, J.R.; Rowland, J.; Lechler, P.J.; Desilets, M.; Hsu, L.C. Dispersal of mercury-contaminated sediments by geomorphic processes, Sixmile Canyon, Nevada, USA: Implications to site characterization and remediation of fluvial environments. Water Air Soil Pollut 1996, 86, 373–388. [Google Scholar]
- Tchounwou, P.B.; Ayensu, W.K.; Ninashvili, N.; Sutton, D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol 2003, 18, 149–175. [Google Scholar]
- Zhan, X.-Q.; Qian, Z.-H.; Zheng, H.; Su, B.-Y.; Lan, Z.; Xu, J.-G. Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II). Chem. Commun. 2008, 1859–1861. [Google Scholar]
- Huang, J.; Xu, Y.; Qian, X. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: A NS2-containing receptor. J. Org. Chem 2009, 74, 2167–2170. [Google Scholar]
- Wu, J.-S.; Hwang, I.-C.; Kim, K.S.; Kim, J.S. Rhodamine-based Hg2+ selective chemodosimeter in aqueous solution: Fluorescent off-on. Org. Lett 2007, 9, 907–910. [Google Scholar]
- Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J.-G. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: Design of rhodamine B thiohydrazide for recognition of Hg2+ in aqueous solution. Org. Lett 2006, 8, 859–861. [Google Scholar]
- Lee, M.H.; Wu, J.-S.; Lee, J.W.; Jung, J.H.; Kim, J.S. Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org. Lett 2007, 9, 2501–2504. [Google Scholar]
- Ko, S.-K.; Yang, Y.-K.; Tae, J.; Shin, I. In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J. Am. Chem. Soc 2006, 128, 14150–14155. [Google Scholar]
- Yang, H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; Yi, T.; Huang, C. Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Org. Lett 2007, 9, 4729–4732. [Google Scholar]
- Soh, J.H.; Swamy, K.M.K.; Kim, S.K.; Kim, S.; Lee, S.H.; Yoon, J. Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Lett 2007, 48, 5966–5969. [Google Scholar]
- Huang, W.; Song, C.; He, C.; Lv, G.; Hu, X.; Zhu, X.; Duan, C. Recognition preference of rhodamine-thiospirolactams for mercury(II) in aqueous solution. Inorg. Chem 2009, 48, 5061–5072. [Google Scholar]
- Chen, X.; Nam, S.-W.; Jou, M.J.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J. Hg2+ selective fluorescent and colorimetric sensor: Its crystal structure and application to bioimaging. Org. Lett 2008, 10, 5235–5238. [Google Scholar]
- Rode, A.B.; Kim, J.; Kim, S.-H.; Gupta, G.; Hong, I.S. A highly selective chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. Tetrahedron Lett 2012, 53, 2571–2574. [Google Scholar]
- Han, R.; Yang, X.; Zhang, D.; Fan, M.; Ye, Y.; Zhao, Y. A bis(rhodamine)-based highly sensitive and selective fluorescent chemosensor for Hg(II) in aqueous media. New J. Chem 2012, 36, 1961–1965. [Google Scholar]
- Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org. Lett 2006, 8, 2863–2866. [Google Scholar]
- Duan, Y.L.; Shi, Y.G.; Chen, J.H.; Wu, X.H.; Wang, G.K.; Zhou, Y.; Zhang, J.F. 1,8-Naphthyridine modified rhodamine B derivative and Cu2+ complex: Colorimetric sensing of thiols in aqueous media. Tetrahedron Lett 2012, 53, 6544–6547. [Google Scholar]
- Kim, Y.-R.; Kim, H.J.; Kim, J.S.; Kim, H. Rhodamine-based “turn-on” fluorescent chemodosimeter for Cu(II) on ultrathin platinum films as molecular switches. Adv. Mater 2008, 20, 4428–4432. [Google Scholar]
- Kwon, J.Y.; Jang, Y.J.; Lee, Y.J.; Kim, K.M.; Seo, M.S.; Nam, W.; Yoon, J. A highly selective fluorescent chemosensor for Pb2+. J. Am. Chem. Soc 2005, 127, 10107–10111. [Google Scholar]
- Weerasinghe, A.J.; Schmiesing, C.; Sinn, E. Highly sensitive and selective reversible sensor for the detection of Cr3+. Tetrahedron Lett 2009, 50, 6407–6410. [Google Scholar]
- Weerasinghe, A.J.; Schmiesing, C.; Varaganti, S.; Ramakrishna, G.; Sinn, E. Single- and multiphoton turn-on fluorescent Fe3+ sensors based on bis(rhodamine). J. Phys. Chem. B 2010, 114, 9413–9419. [Google Scholar]
- Chen, X.; Pradhan, T.; Wang, F.; Kim, J.S.; Yoon, J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev 2012, 112, 1910–1956. [Google Scholar]
- Kim, H.N.; Lee, M.H.; Kim, H.J.; Kim, J.S.; Yoon, J. A new trend in rhodamine-based chemosensors: Application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 2008, 37, 1465–1472. [Google Scholar]
- Zhang, J.F.; Kim, J.S. Small-molecule fluorescent chemosensors for Hg2+ ion. Jpn. Soc. Anal. Chem 2009, 25, 1271–1281. [Google Scholar]
- The Fe3+ complexes show a huge absorbance at short wavelength probably due to scattering.
- Connors, K.A. Binding Constants: The Measurement of Molecular Complex Stability; Wiley-Interscience: New York, NY, USA, 1987; pp. 59–65. [Google Scholar]
- Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: New York, NY, USA, 2002; p. 339. [Google Scholar]
- Ks cannot be determined in this Hg2+ concentration range.
- Skoog, D.A.; Holler, F.J.; Nieman, A. Principles of Instrumental Analysis, 5th ed; Saunders: New York, NY, USA, 2000; pp. 20–21. [Google Scholar]
- Yang, X.-F.; Guo, X.-Q.; Zhao, Y.-B. Novel spectrofluorimetric method for the determination of sulfite with rhodamine B hydrazide in a micellar medium. Anal. Chim. Acta 2002, 456, 121–128. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, X.; Iqbal, M.; Huskens, J.; Verboom, W. Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands. Int. J. Mol. Sci. 2012, 13, 16822-16832. https://doi.org/10.3390/ijms131216822
Wang X, Iqbal M, Huskens J, Verboom W. Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands. International Journal of Molecular Sciences. 2012; 13(12):16822-16832. https://doi.org/10.3390/ijms131216822
Chicago/Turabian StyleWang, Xuemei, Mudassir Iqbal, Jurriaan Huskens, and Willem Verboom. 2012. "Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands" International Journal of Molecular Sciences 13, no. 12: 16822-16832. https://doi.org/10.3390/ijms131216822
APA StyleWang, X., Iqbal, M., Huskens, J., & Verboom, W. (2012). Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands. International Journal of Molecular Sciences, 13(12), 16822-16832. https://doi.org/10.3390/ijms131216822