Lack of Association between Hepatitis C Virus core Gene Variation 70/91aa and Insulin Resistance
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. Insulin Resistance and Associated Factors
2.3. Substitution of Hepatitis C core Amino Acids 70 and 91 versus Insulin Resistance Development and Laboratorial Data
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Laboratorial Data
4.3. Extraction of Viral RNA, Amplification of the Core Region by RT-PCR, and Sequence Analysis
4.4. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Uraki, S.; Tameda, M.; Sugimoto, K.; Shiraki, K.; Takei, Y.; Nobori, T.; Ito, M. Substitution in amino acid 70 of hepatitis C virus core protein changes the adipokine profile via toll like receptor 2/4 signaling. PLoS ONE 2015, 29, e0131346. [Google Scholar] [CrossRef] [PubMed]
- CDC. Hepatitis C Information for Health Professionals; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2008. Available online: http://www.cdc.gov/hepatitis/HCV/index.htm (accessed on 25 January 2017).
- Wong, R.J.; Gish, R.G. Metabolic manifestations and complications associated with chronic hepatitis C virus infection. J. Gastroenterol. Hepatol. 2016, 12, 293–299. [Google Scholar]
- Cannon, C.P. Mixed dyslipidemia, metabolic syndrome, diabetes mellitus, and cardiovascular disease: Clinical implications. Am. J. Cardiol. 2008, 102, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Lavanchy, D. The global burden of hepatitis C. Liver Int. 2009, 29, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Alter, M.J.; Mast, E.E.; Moyer, L.A.; Margolis, H.S. Hepatitis C. Infect. Dis. Clin. N. Am. 1998, 12, 13–26. [Google Scholar] [CrossRef]
- Parvaiz; Parvaiz, F.; Manzoor, S.; Tariq, H.; Javed, F.; Fatima, K.; Qadri, I. Hepatitis C virus infection: Molecular pathways to insulin resistance. Virol. J. 2011, 8, 474. [Google Scholar] [CrossRef]
- Hung, C.H.; Lee, C.M.; Lu, S.N. Hepatitis C virus associated insulin resistance: Pathogenic mechanisms and clinical implications. Expert Rev. Anti Infect Ther. 2011, 9, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Akuta, N.; Suzuki, F.; Hirakawa, M.; Kawamura, Y.; Yatsuji, H.; Sezaki, H.; Suzuki, Y.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; et al. Amino acid substitutions in the hepatitis C virus core region of genotype 1b are the important predictor of severe insulin resistance in patients without cirrhosis and diabetes mellitus. J. Med. Virol. 2009, 81, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Akuta, N.; Suzuki, F.; Hirakawa, M.; Kawamura, Y.; Sezaki, H.; Suzuki, Y.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; Saitoh, S.; et al. Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis. Hepatology 2007, 46, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- El-Shamy, A.; Shindo, M.; Shoji, I.; Deng, L.; Okuno, T.; Hotta, H. Polymorphisms of the core, NS3, and NS5A proteins of hepatitis C virus genotype 1b associate with development of hepatocellular carcinoma. Hepatology 2013, 58, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, S.; Imazeki, F.; Fukai, K.; Fujiwara, K.; Arai, M.; Kanda, T.; Yonemitsu, Y.; Yokosuka, O. Association between mutations in the core region of hepatitis C virus genotype 1 and hepatocellular carcinoma development. J. Hepatol. 2010, 52, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Akuta, N.; Suzuki, F.; Hirakawa, M.; Kawamura, Y.; Sezaki, H.; Suzuki, Y.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; Saitoh, S.; et al. Amino acid substitution in HCV core/NS5A region and genetic variation near IL28B gene affect treatment efficacy to interferon plus ribavirin combination therapy. Intervirology 2012, 55, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Akuta, N.; Suzuki, F.; Hirakawa, M.; Kawamura, Y.; Yatsuji, H.; Sezaki, H.; Suzuki, Y.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; et al. Association of amino acid substitution pattern in core protein of hepatitis C virus genotype 2a high viral load and virological response to interferon-ribavirin combination therapy. Intervirology 2009, 52, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Akuta, N.; Suzuki, F.; Hirakawa, M.; Kawamura, Y.; Yatsuji, H.; Sezaki, H.; Suzuki, Y.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; et al. Amino acid substitutions in the hepatitis C virus core region of genotype 1b affect very early viral dynamics during treatment with telaprevir, peginterferon, and ribavirin. J. Med. Virol. 2010, 82, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Akuta, N.; Suzuki, F.; Hirakawa, M.; Kawamura, Y.; Yatsuji, H.; Sezaki, H.; Suzuki, Y.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; et al. Amino acid substitution in HCV core region and genetic variation near the IL28B gene affect viral dynamics during telaprevir, peginterferon and ribavirin treatment. Intervirology 2012, 55, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Sumida, Y.; Kanemasa, K.; Hara, T.; Inada, Y.; Sakai, K.; Imai, S.; Yoshida, N.; Yasui, K.; Itoh, Y.; Okanoue, T.; et al. Impact of amino acid substitutions in hepatitis C virus genotype 1b core region on liver steatosis and glucose tolerance in non-cirrhotic patients without overt diabetes. J. Gastroenterol. Hepatol. 2011, 26, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Saito, K.; Ait-Goughoulte, M.; Meyer, K.; Ray, R.B.; Ray, R. Hepatitis C virus core protein upregulates serine phosphorylation of insulin receptor substrate-1 and impairs the downstream Akt/protein kinase B signaling pathway for insulin resistance. J. Virol. 2008, 82, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Meyer, K.; Mazumdar, B.; Ray, RB.; Ray, R. Hepatitis C virus differentially modulates activation of forkhead transcription factors and insulin-induced metabolic gene expression. J. Virol. 2010, 84, 5936–5946. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.K.; Shrivastava, S.; Meyer, K.; Ray, R.B.; Ray, R. Hepatitis C virus activates the mTOR/S6K1 signaling pathway in inhibiting IRS-1 function for insulin resistance. J. Virol. 2012, 86, 6315–6322. [Google Scholar] [CrossRef] [PubMed]
- Hori, M.; Kitamura, A.; Kiyama, M.; Imano, H.; Yamagishi, K.; Cui, R.; Umesawa, M.; Muraki, I.; Okada, T.; Sankai, T.; et al. Fifty-year time trends in blood pressures, body mass index and their relations in a Japanese community: The Circulatory Risk in Communities Study (CIRCS). J. Atheroscler Thromb. 2016. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.S.; da Silva Junior, C.T.; Ferreira, B.S.; da Silva, F.D.; Silva, P.S.; Xavier, A.R. Prevalence of underweight, overweight, and obesity among 2, 162 Brazilian school adolescents. Indian J. Endocrinol. Metab. 2016, 20, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.Y.; Huang, J.F.; Hsieh, M.Y.; Hou, N.J.; Lin, Z.Y.; Chen, S.C.; Hsieh, M.Y.; Wang, L.Y.; Chang, W.Y.; Chuang, W.L.; et al. Insulin resistance predicts response to peginterferon- /ribavirin combination therapy in chronic hepatitis C patients. J. Hepatol. 2009, 50, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Everhart, J.E.; Wright, E.C. Association of gamma-glutamyltransferase (GGT) activity with treatment and clinical outcomes in chronic hepatitis C (HCV). Hepatology 2012, 57, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Schuch, N.J.; Garcia, V.C.; Martini, L.A. Vitamina D e doenças endocrinometabólicas. Arq. Bras. Endocrinol. Metabol. 2009, 53, 625–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeitz, U.; Weber, K.; Soegiarto, D.W.; Wolf, E.; Balling, R.; Erben, R.G. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003, 17, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Bland, R.; Markovic, D.; Hills, C.E.; Hughes, S.V.; Chan, S.L.; Squires, P.E.; Hewison, M. Expression of 25-hydroxivitamin D3-alpha-hydroxylase in pancreatic islets. J. Steroid Biochem. Mol. Biol. 2004, 89, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Melo-Villar, L.; Lampe, E.; de Almeida, A.J.; de Scalioni, L.P.; Lewis-Ximenez, L.L.; Miguel, J.C.; Del Campo, J.A.; Ranchal, I.; Villela-Nogueira, C.A.; Romero-Gomez, M. Hypovitaminosis D and its relation to demographic and laboratory data among hepatitis C patients. Ann. Hepatol. 2016, 15, 139–140. [Google Scholar]
- Martins, P.P.; Lampe, E.; Lewis-Ximenez, L.L.; de Souza, P.S.; Fernandes, C.A.; Villar, L.M. Performance of molecular methods for hepatitis C virus diagnosis: Usefulness among chronic cases and during the course of infection. Clin. Lab. 2013, 59, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
Variable | Value |
---|---|
Age (years) | 54.84 (±10.88) |
Gender | |
Female | 55 (59.8%) |
Male | 37 (40.2%) |
25(OH)D ng/mL | 27.82 (±12.29) |
HCV RNA IU/mL | 6.51 × 106 (7.2 × 101–3.06 × 108) |
Log10 HCV RNA IU/mL | 5.81 (1.86–7.49) |
Blood pressure | 99.03 (±18.52) |
Glucose ng/mL | 92.84 (±13.51) |
AST IU/mL | 72.15 (±44.04) |
ALT IU/mL | 73.51 (±58.76) |
VLDL mg/dL | 18.96 (±7.80) |
LDL mg/dL | 105.500 (98–1069) |
γGT IU/mL | 94.25 (±77.66) |
Insulin µU/mL | 13.43 (±12.28) |
HOMA | 3.08 (±2.74) |
TSH mIU/L | 1.63 (0.07–11.49) |
Hemoglobin g/dL | 14.04 (±1.27) |
Hematócrit (%) | 41.65 (±3.60) |
Phosphatase IU/mL | 136.21 (±75.66) |
Platelets103/mm | 187.13 (±72.72) |
Sustained virological response (SVR) | |
Without SVR | 20 (21.7%) |
With SVR | 20 (21.7%) |
No treatment | 52 (56.5%) |
Genotype | |
1a | 23 (25%) |
1b | 59 (64.1%) |
3 | 10 (10.9%) |
25(OH)D * | |
<20 | 21 (22.8%) |
≥20 | 70 (76.1%) |
Homeostatic model assessment(HOMA) | |
<2 | 52 (56.5%) |
≥2 | 40 (43.5%) |
Fibrosis algorithm | |
Low | 25 (54.3%) |
High | 67 (72.8%) |
Variable | Homeostatic Model Assessment (HOMA) | Bivariate Analysis p Value | Multivariate Analysis p (CI) | |
---|---|---|---|---|
<2 | ≥2 | |||
Age (years) | 52.42 (±11.49) | 56.71 (±10.13) | 0.061 | − |
Gender | ||||
Female | 32 (61.54%) | 23 (57.5%) | 0.695 | − |
Male | 20 (38.46%) | 17 (42.5%) | ||
25(OH)D ng/mL | 28.43 (±10.92) | 27.35 (±13.35) | 0.681 | − |
HCV RNA IU/mL | 6.51 × 106 (7.2 × 101–1.3× 107) | 2.13 × 106 (1.34 × 102–3.06 × 107) | 0.335 | − |
Log10 HCV RNA IU/mL | 5.52 (±1.32) | 5.26 (±1.47) | 0.335 | − |
Glucose ng/mL | 93.26 (±12.96) | 92.61 (±14.04) | 0.820 | − |
AST IU/mL | 62.69 (±40.05) | 79.43 (±45.93) | 0.033 | 0.358 (0.989–1.030) |
ALT IU/mL | 71.02 (±57.35) | 75.42 (±60.32) | 0.795 | − |
VLDL mg/dL | 19.33 (±8.85) | 18.69 (±6.98) | 0.785 | − |
LDL mg/dL | 111.62 (28.7–996) | 104.75 (40–155.40) | 0.024 | 0.509 (0.975–1.013) |
γGT IU/mL | 78.44 (±71.07) | 106.42 (±77.49) | 0.024 | 0.217 (0.997–1.014) |
TSH mIU/L | 2.25 (±1.83) | 1.86 (±1.55) | 0.194 | − |
Hemoglobin g/dL | 13.79 (±1.38) | 14.23 (±1.16) | 0.101 | − |
Hematocrit (%) | 41.53 (±4.05) | 41.75 (±3.26) | 0.767 | − |
Phosphatase IU/mL | 136.40 (±90.64) | 136.07 (±77.17) | 0.985 | − |
Platelets103/mm | 195.03 (±78.06) | 181.07 (±68.48) | 0.365 | − |
Sustained virological response (SVR) | ||||
Without SVR | 7 (17.5%) | 13 (25%) | 0.568 | − |
With SVR | 8 (20%) | 12 (23.08) | ||
No treatment | 25 (62.50%) | 27 (51.92) | ||
Genotype | ||||
1a | 9 (22.5%) | 14 (26.92%) | 0.839 | − |
1b | 27 (67.5%) | 32 (61.54%) | ||
3 | 4 (10%) | 6 (11.54%) | ||
25(OH)D * | ||||
<20 | 7 (17.50%) | 14 (27.45%) | 0.263 | − |
≥20 | 33 (82.5%) | 37 (72.55%) | ||
Fibrosis algori thm | ||||
Low | 17 (42.5%) | 8 (15.38%) | 0.004 | 0.065 (0.106–1.070) |
High | 23 (57.50%) | 44 (84.62%) |
Variable | Total N (%) | HOMA <2 | ≥2 | Bivariate Analysis p Value |
---|---|---|---|---|
Any mutation in 70aa | ||||
Wild type | 50 (54.3%) | 23 (57.5%) | 27 (51.92%) | 0.594 |
Mutant | 42 (45.7%) | 17 (42.5%) | 25 (48.08%) | |
70Q | ||||
Wild type | 63 (68.5%) | 28 (70%) | 35 (67.31%) | 0.783 |
Mutant | 29 (31.5%) | 12 (30%) | 17 (32.69%) | |
70R | ||||
Wild type | 83 (90.2%) | 37 (92.50%) | 46 (88.46%) | 0.518 |
Mutant | 9 (9.8%) | 3 (7.50%) | 6 (11.54%) | |
Any mutation in 91aa | ||||
Wild type | 78 (84.8%) | 34 (85%) | 44 (84.62%) | 0.959 |
Mutant | 14 (15.2%) | 6 (15%) | 8 (15.38%) | |
Any mutation in 70 and 91aa | ||||
Wild type | 87 (94.6%) | 39 (97.5%) | 48 (92.31%) | 0.276 |
Mutant | 5 (5.4%) | 1 (2.50%) | 4 (7.69%) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalioni, L.D.P.; Da Silva, A.P.; Miguel, J.C.; Espírito Santo, M.P.d.; Marques, V.A.; Brandão-Mello, C.E.; Villela-Nogueira, C.A.; Lewis-Ximenez, L.L.; Lampe, E.; Villar, L.M. Lack of Association between Hepatitis C Virus core Gene Variation 70/91aa and Insulin Resistance. Int. J. Mol. Sci. 2017, 18, 1444. https://doi.org/10.3390/ijms18071444
Scalioni LDP, Da Silva AP, Miguel JC, Espírito Santo MPd, Marques VA, Brandão-Mello CE, Villela-Nogueira CA, Lewis-Ximenez LL, Lampe E, Villar LM. Lack of Association between Hepatitis C Virus core Gene Variation 70/91aa and Insulin Resistance. International Journal of Molecular Sciences. 2017; 18(7):1444. https://doi.org/10.3390/ijms18071444
Chicago/Turabian StyleScalioni, Letícia De Paula, Allan Peres Da Silva, Juliana Custódio Miguel, Márcia Paschoal do Espírito Santo, Vanessa Alves Marques, Carlos Eduardo Brandão-Mello, Cristiane Alves Villela-Nogueira, Lia Laura Lewis-Ximenez, Elisabeth Lampe, and Livia Melo Villar. 2017. "Lack of Association between Hepatitis C Virus core Gene Variation 70/91aa and Insulin Resistance" International Journal of Molecular Sciences 18, no. 7: 1444. https://doi.org/10.3390/ijms18071444
APA StyleScalioni, L. D. P., Da Silva, A. P., Miguel, J. C., Espírito Santo, M. P. d., Marques, V. A., Brandão-Mello, C. E., Villela-Nogueira, C. A., Lewis-Ximenez, L. L., Lampe, E., & Villar, L. M. (2017). Lack of Association between Hepatitis C Virus core Gene Variation 70/91aa and Insulin Resistance. International Journal of Molecular Sciences, 18(7), 1444. https://doi.org/10.3390/ijms18071444