Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis
"> Figure 1
<p>Venn diagrams of total identified proteins and dysregulated proteins. (<b>A</b>) Total proteins identified from three cases in tumor or adjacent tissues respectively. One thousand seven hundred forty-four proteins identified appear in both tumor and adjacent tissues; (<b>B</b>) The number of proteins with more than twofold differential expression in three cases, respectively, and the number of proteins shared in two or three cases.</p> "> Figure 2
<p>The hierarchical heatmap of 146 dysregulated proteins analyzed by Ingenuity Pathway Analysis (IPA)<b>.</b> The major boxes represent specific family or category of related functions. The smaller squares within the major boxes represent the number of proteins. Each individual square represent a specific protein. Colored squares indicate protein predicted state: increasing (orange), or decreasing (blue). Darker colors indicate higher absolute Z-scores.</p> "> Figure 3
<p>The functional annotation of dysregulated proteins was analyzed by Protein Analysis Through Evolutionary Relationships (PANTHER), Database for Annotation, Visualization and Integrated Discovery (DAVID), STRING and Reactome. (<b>A</b>) Protein Classes; (<b>B</b>) Biological Process; and (<b>C</b>) Molecular Function of 146 dysregulated proteins were summarized in a pie chart by PANTHER; (<b>D</b>) Molecular function; and (<b>E</b>) Biological process based on the 65 upregulated proteins were depicted in a bar graph by DAVID; (<b>F</b>) Pathway analysis of 146 dysregulated proteins was indicated by PANTHER, DAVID, STRING and Reactome. For each category, the percentage or <span class="html-italic">p</span>-value of dysregulated proteins is indicated.</p> "> Figure 4
<p>Protein-protein interactions (Evidence Mode) of dysregulated proteins were predicted by STRING. (<b>A</b>) Protein-protein interaction network formed with 146 dysregulated proteins. The three possible systematic dynamic clusters were indicated in red circles; (<b>B</b>) The network predicted 65 upregulated proteins. Some important proteins dispersed and located in the keynotes were marked with a red box. Different line colors represent the types of evidence for the association.</p> "> Figure 4 Cont.
<p>Protein-protein interactions (Evidence Mode) of dysregulated proteins were predicted by STRING. (<b>A</b>) Protein-protein interaction network formed with 146 dysregulated proteins. The three possible systematic dynamic clusters were indicated in red circles; (<b>B</b>) The network predicted 65 upregulated proteins. Some important proteins dispersed and located in the keynotes were marked with a red box. Different line colors represent the types of evidence for the association.</p> "> Figure 5
<p>Expression levels of hnRNPs and YBX-1 in GC and adjacent tissues. (<b>A</b>) qRT-PCR (<span class="html-italic">n</span> = 10) results showing the mRNA expression of hnRNPs and YBX-1. The ratio below the dotted line represented down-expression in GC tissues; otherwise represented up-expression in GC tissues; (<b>B</b>) Western blots (<span class="html-italic">n</span> = 10) of hnRNPs and YBX-1. N represent adjacent tissue and T represent tumor tissue; (<b>C</b>) Grayscale scanning of western blots bands. The ratio was compared to β-actin and statistically analyzed. Significance of differences between GC and adjacent tissues are displayed by ** <span class="html-italic">p</span>-value < 0.01 or * <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 6
<p>Representative immunohistochemical staining for sectioned formalin fixed GC and adjacent tissues. Specific antibodies of Anti-hnRNPA2B1 (Santa Cruz, TX, USA), Anti-hnRNPD (Proteintech, Chicago, IL, USA), Anti-hnRNPL (Santa Cruz) and Anti-YBX-1 (Santa Cruz) were hybridized respectively. IHC results showed that the morphology of tubular glands disappeared in cancer sections when compared to adjacent tissues. Cancer sections have stronger and higher density nuclei staining, high ratios of nucleus/cytoplasmic area, different shaped nuclei including megakaryocytes and polykaryocytes (arrows). Weak cytoplasmic staining were only seen in hnRNPA2B1, hnRNPD and YBX-1 hybridized normal sections. The magnification is 400×; scale bar: 20 μm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Overall Protein Changes Identified by Label-Free Quantitative Strategy
2.2. Functional Annotation of Proteins between GC and Adjacent Tissues
Disease and Disorder | No. of Molecules | p-Value | Protein Names |
---|---|---|---|
Cancer | 117 | 2.62 × 10−11–2.63 × 10−3 | ANPEP, ANXA1, ATP2A2, ATP4A, CBX3, HNRNPA2B1, HNRNPC, HNRNPL, HSP90AB1, ILF2, NPM1, RAN, SNRPF, VIM, YBX1, … |
Gastrointestinal Disease | 99 | 2.62 × 10−11–2.98 × 10−3 | ANPEP, ANXA1, FN1, HNRNPA2B1, HNRNPC, HNRNPL, HPX, NPM1, RAN, SFN, SNRPF, TAGLN, VIM, WARS, YBX1, … |
Function | No. of Molecules | p-Value | Protein Names |
---|---|---|---|
Cellular Growth and Proliferation | 78 | 4.95 × 10−13–2.42 × 10−3 | ACAT1, HNRNPA2B1, HNRNPC, HNRNPD, HNRNPL, HNRNPR, HPX, HRG, HSP90AB1, HSPB1, LF2, NPM1, RAN, VIM, YBX1, … |
Nucleic Acid Metabolism | 25 | 7.36 × 10−12-1.83 × 10−3 | ACAA2, ATP2A2, ATP4A, ATP4B, CS, CYCS, EIF4A3, HMGCL, PNP, PPA1, SET,SOD1, TYMP, VCP, VDAC1, … |
Small Molecule Biochemistry | 36 | 7.36 × 10−12–3.02 × 10−3 | ANXA1, ATP2A2, ATP4A, ATP4B, CMPK1, CYCS, EIF4A3, MT-ATP6, PNP, PPA1, SET, SOD1, TYMP, VCP, VDAC1, … |
Cell Death and Survival | 74 | 1.98 × 10−10–2.53 × 10−3 | ACAT1, CCT2, CFH, CP, CTNNB1, CYCS, DPYSL3, EZR, F13A1, FGG, FN1, HNRNPC, NPM1, VIM, YBX1, … |
Cellular Movement | 52 | 5.38 × 10−9–2.97 × 10−3 | ACTN4, ANXA1, CNN1, CTNNB1, DPYSL3, FN1, HNRNPA2B1, HNRNPL, HRG, HSP90AB1, NPM1, SFN, VIM, WARS, YBX1, … |
2.3. Validation of Dysregulated hnRNPA2B1, hnRNPD, hnRNPL and YBX-1 by Nano-LC-MS/MS, qRT-PCR and Western Blot
2.4. Expression and Distribution Detection of hnRNPA2B1, hnRNPD, hnRNPL and YBX-1 by Immunohistochemistry
3. Discussion
4. Experimental Section
4.1. Clinical Tissue Samples
4.2. Protein Preparation
4.3. In-Solution Tryptic Digestion
4.4. SDS-PAGE and in-Gel Tryptic Digestion
4.5. Nano-LC-MS/MS Analysis
4.6. Label-Free Quantification
4.7. Bioinformatics Analysis
4.8. Validation of Dysregulated Proteins by qRT-PCR, Western Blot and Immunohistochemistry
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, 359–386. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, H.; Nouso, K.; Tanaka, T.; Miyahara, K.; Morimoto, Y.; Dohi, C.; Matsubara, T.; Okada, H.; Yamamoto, K. Droplet digital PCR measurement of HER2 in patients with gastric cancer. Br. J. Cancer 2015, 112, 1652–1655. [Google Scholar] [CrossRef] [PubMed]
- Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N.D.; Kamangar, F. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomark. Prev. 2014, 23, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, R.; Song, S.; Lee, J.S.; Yao, Y.; Wei, Q.; Ajani, J.A. Gastric cancer-molecular and clinical dimensions. Nat. Rev. Clin. Oncol. 2013, 10, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Raufi, A.; Klempner, S.J. Targeted therapy for gastric cancer: Molecular pathways and ongoing investigations. Biochim. Biophys. Acta 2014, 1846, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Lin, W.C.; Tsai, K.W. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev. Mol. Med. 2014. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, D.; Guo, C. Serum biomarker screening for the diagnosis of early gastric cancer using SELDI-TOF-MS. Mol. Med. Rep. 2012, 5, 1531–1535. [Google Scholar] [PubMed]
- Piazuelo, M.B.; Correa, P. Gastric cancer: Overview. Colomb. Med 2013, 44, 192–201. [Google Scholar] [PubMed]
- Uppal, D.S.; Powell, S.M. Genetics/genomics/proteomics of gastric adenocarcinoma. Gastroenterol. Clin. N. Am. 2013, 42, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Deyati, A.; Younesi, E.; Hofmann-Apitius, M.; Novac, N. Challenges and opportunities for oncology biomarker discovery. Drug Discov. Today 2013, 18, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.C. Proteomics technologies and challenges. Genom. Proteom. Bioinform. 2007, 5, 77–85. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Sallam, R.M. Proteomics in cancer biomarkers discovery: Challenges and applications. Dis. Markers 2015, 2015, 321370. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.; Cagney, G. An overview of label-free quantitation methods in proteomics by mass spectrometry. Methods Mol. Biol. 2010, 604, 273–283. [Google Scholar] [PubMed]
- Megger, D.A.; Bracht, T.; Meyer, H.E.; Sitek, B. Label-free quantification in clinical proteomics. Biochim. Biophys. Acta 2013, 1834, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Marcus, K.; Sitek, B.; Waldera-Lupa, D.M.; Poschmann, G.; Meyer, H.E.; Stühler, K. Application of Label-Free Proteomics for Differential Analysis of Lung Carcinoma Cell Line A549. In Quantitative Methods in Proteomics; Marcus, K., Ed.; Humana Press: New York, NY, USA, 2012; pp. 241–248. [Google Scholar]
- Atrih, A.; Mudaliar, M.A.; Zakikhani, P.; Lamont, D.J.; Huang, J.T.; Bray, S.E.; Barton, G.; Fleming, S.; Nabi, G. Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling. Br. J. Cancer 2014, 110, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chung, M.C. The gastric fluid proteome as a potential source of gastric cancer biomarkers. J. Proteom. 2013, 90, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Huang, H.C.; Juan, H.F. Discovery of biomarkers for gastric cancer: A proteomics approach. J. Proteom. 2012, 75, 3081–3097. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.W.; Tseng, C.W.; Chien, C.W.; Huang, H.C.; Ku, W.C.; Lee, S.J.; Chen, Y.J.; Juan, H.F. Quantitative proteomics reveals diverse roles of miR-148a from gastric cancer progression to neurological development. J. Proteome Res. 2013, 12, 3993–4004. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013, 41, D377–D386. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Croft, D.; Mundo, A.F.; Haw, R.; Milacic, M.; Weiser, J.; Wu, G.; Caudy, M.; Garapati, P.; Gillespie, M.; Kamdar, M.R.; et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014, 42, D472–D477. [Google Scholar] [CrossRef] [PubMed]
- Iuga, C.; Seicean, A.; Iancu, C.; Buiga, R.; Sappa, P.K.; Volker, U.; Hammer, E. Proteomic identification of potential prognostic biomarkers in resectable pancreatic ductal adenocarcinoma. Proteomics 2014, 14, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, D.H.; Hwang, S.I.; Wu, L.; Han, D.K. Role of spectral counting in quantitative proteomics. Expert Rev. Proteom. 2010, 7, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Aquino, P.F.; Fischer, J.S.; Neves-Ferreira, A.G.; Perales, J.; Domont, G.B.; Araujo, G.D.; Barbosa, V.C.; Viana, J.; Chalub, S.R.; Lima, D.S.A.; et al. Are gastric cancer resection margin proteomic profiles more similar to those from controls or tumors? J. Proteome Res. 2012, 11, 5836–5842. [Google Scholar] [CrossRef] [PubMed]
- Uen, Y.H.; Lin, K.Y.; Sun, D.P.; Liao, C.C.; Hsieh, M.S.; Huang, Y.K.; Chen, Y.W.; Huang, P.H.; Chen, W.J.; Tai, C.C.; et al. Comparative proteomics, network analysis and post-translational modification identification reveal differential profiles of plasma Con A-bound glycoprotein biomarkers in gastric cancer. J. Proteom. 2013, 83, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Cui, S.J.; Xu, L.L.; Chen, S.J.; Yao, J.; Jiang, Y.H.; Peng, G.; Fang, C.Y.; Yang, P.Y.; Liu, F. Filamin C, a dysregulated protein in cancer revealed by label-free quantitative proteomic analyses of human gastric cancer cells. Oncotarget 2015, 6, 1171–1189. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.D.; Wang, C.S.; Huang, Y.H.; Chien, K.Y.; Liang, Y.; Chen, W.J.; Lin, K.H. Overexpression of CLIC1 in human gastric carcinoma and its clinicopathological significance. Proteomics 2007, 7, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Muhlmann, G.; Ofner, D.; Zitt, M.; Muller, H.M.; Maier, H.; Moser, P.; Schmid, K.W.; Zitt, M.; Amberger, A. 14–3-3 sigma and p53 expression in gastric cancer and its clinical applications. Dis. Markers 2010, 29, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Kuramitsu, Y.; Baron, B.; Yoshino, S.; Zhang, X.; Tanaka, T.; Yashiro, M.; Hirakawa, K.; Oka, M.; Nakamura, K. Proteomic differential display analysis shows up-regulation of 14-3-3 sigma protein in human scirrhous-type gastric carcinoma cells. Anticancer Res. 2010, 30, 4459–4465. [Google Scholar] [PubMed]
- Kocevar, N.; Odreman, F.; Vindigni, A.; Grazio, S.F.; Komel, R. Proteomic analysis of gastric cancer and immunoblot validation of potential biomarkers. World J. Gastroenterol. 2012, 18, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Ye, Y.; Liang, B.; Xu, F.; Zhang, H.; Zhang, Y.; Peng, J.; Shen, D.; Cui, Z.; Zhang, Z.; et al. Proteomics-based identification of a group of apoptosis-related proteins and biomarkers in gastric cancer. Int. J. Oncol. 2011, 38, 375–383. [Google Scholar] [PubMed]
- Liu, Z.; Chen, L.; Zhang, X.; Xu, X.; Xing, H.; Zhang, Y.; Li, W.; Yu, H.; Zeng, J.; Jia, J. RUNX3 regulates vimentin expression via miR-30a during epithelial-mesenchymal transition in gastric cancer cells. J. Cell Mol. Med. 2014, 18, 610–623. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Li, W.; Zhang, M. The function of the RNA-binding protein hnRNP in cancer metastasis. J. Cancer Res. Ther. 2013, 9, S129–S134. [Google Scholar] [PubMed]
- Carpenter, B.; MacKay, C.; Alnabulsi, A.; MacKay, M.; Telfer, C.; Melvin, W.T.; Murray, G.I. The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim. Biophys. Acta 2006, 1765, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Lum, J.H.; Cheung, B.P.; Wong, M.S.; Butt, Y.K.; Tam, M.F.; Chan, W.Y.; Chow, C.; Hui, P.K.; Kwok, F.S.; et al. Identification of the heterogeneous nuclear ribonucleoprotein A2/B1 as the antigen for the gastrointestinal cancer specific monoclonal antibody MG7. Proteomics 2005, 5, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Jing, G.J.; Xu, D.H.; Shi, S.L.; Li, Q.F.; Wang, S.Y.; Wu, F.Y.; Kong, H.Y. Aberrant expression and localization of hnRNP-A2/B1 is a common event in human gastric adenocarcinoma. J. Gastroenterol. Hepatol. 2011, 26, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Siveke, J.T. The increasing diversity of KRAS signaling in pancreatic cancer. Gastroenterology 2014, 147, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Barcelo, C.; Etchin, J.; Mansour, M.R.; Sanda, T.; Ginesta, M.M.; Sanchez-Arevalo, L.V.; Real, F.X.; Capella, G.; Estanyol, J.M.; Jaumot, M.; et al. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells. Gastroenterology 2014, 147, 882–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouble, A.; Grazide, S.; Meggetto, F.; Mercier, P.; Delsol, G.; Morello, D. A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res. 2002, 62, 1489–1495. [Google Scholar] [PubMed]
- Trojanowicz, B.; Brodauf, L.; Sekulla, C.; Lorenz, K.; Finke, R.; Dralle, H.; Hoang-Vu, C. The role of AUF1 in thyroid carcinoma progression. Endocr. Relat. Cancer 2009, 16, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Kosnopfel, C.; Sinnberg, T.; Schittek, B. Y-box binding protein 1—A prognostic marker and target in tumour therapy. Eur. J. Cell Biol. 2014, 93, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Lasham, A.; Print, C.G.; Woolley, A.G.; Dunn, S.E.; Braithwaite, A.W. YB-1: Oncoprotein, prognostic marker and therapeutic target? Biochem. J. 2013, 449, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Yu, Y.; Yip, G.W.; Baeg, G.H.; Thike, A.A.; Lim, T.K.; Tan, P.H.; Matsumoto, K.; Bay, B.H. Y-box binding protein 1 is correlated with lymph node metastasis in intestinal-type gastric cancer. Histopathology 2015, 66, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, K.Y.; Li, Z.; Liu, Y.P.; Izumi, H.; Yamada, S.; Uramoto, H.; Nakayama, Y.; Ito, K.; Kohno, K. Y-box binding protein 1 expression in gastric cancer subtypes and association with cancer neovasculature. Clin. Transl. Oncol. 2015, 17, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Kan, H.; Murakami, Y.; Ureshino, H.; Watari, K.; Kawahara, A.; Kage, M.; Hattori, S.; Ono, M.; Kuwano, M. Y-box binding protein-1 contributes to both HER2/ErbB2 expression and lapatinib sensitivity in human gastric cancer cells. Mol. Cancer Ther. 2013, 12, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wu, F.; Ding, S.; Sun, L.; Liu, Z.; Ding, K.; Lu, J. Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol. 2015, 36, 939–951. [Google Scholar] [CrossRef] [PubMed]
- UniProtKB. Available online: http://www.uniprot.org/ (accessed on 10 November 2015).
- Theron, L.; Gueugneau, M.; Coudy, C.; Viala, D.; Bijlsma, A.; Butler-Browne, G.; Maier, A.; Bechet, D.; Chambon, C. Label-free quantitative protein profiling of vastus lateralis muscle during human aging. Mol. Cell. Proteom. 2014, 13, 283–294. [Google Scholar] [CrossRef] [PubMed]
- PANTHER 9.0. Available online: http://www.pantherdb.org (accessed on 10 November 2015).
- Ingenuity Pathway Analysis (IPA). Available online: http://www.ingenuity.com/ (accessed on 10 November 2015).
- STRING (version 9.1). Available online: http://www.string-db.org/ (accessed on 10 November 2015).
- Reactome. Available online: http://www.reactome.org/ (accessed on 10 November 2015).
- Database for Annotation, Visualization and Integrated Discovery (DAVID, Bioinformatics Resources 6.7). Available online: http://david.abcc.ncifcrf.gov/ (accessed on 10 November 2015).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, P.; Wang, Q.; Wang, W.; Jing, R.; Wang, W.; Wang, F.; Azadzoi, K.M.; Yang, J.-H.; Yan, Z. Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis. Int. J. Mol. Sci. 2016, 17, 69. https://doi.org/10.3390/ijms17010069
Dai P, Wang Q, Wang W, Jing R, Wang W, Wang F, Azadzoi KM, Yang J-H, Yan Z. Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis. International Journal of Molecular Sciences. 2016; 17(1):69. https://doi.org/10.3390/ijms17010069
Chicago/Turabian StyleDai, Peng, Qin Wang, Weihua Wang, Ruirui Jing, Wei Wang, Fengqin Wang, Kazem M. Azadzoi, Jing-Hua Yang, and Zhen Yan. 2016. "Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis" International Journal of Molecular Sciences 17, no. 1: 69. https://doi.org/10.3390/ijms17010069
APA StyleDai, P., Wang, Q., Wang, W., Jing, R., Wang, W., Wang, F., Azadzoi, K. M., Yang, J.-H., & Yan, Z. (2016). Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis. International Journal of Molecular Sciences, 17(1), 69. https://doi.org/10.3390/ijms17010069