Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces
<p>(<b>A</b>) Sketch of titanium disc and coating pattern; (<b>B</b>–<b>D</b>) Secondary ion mass spectrometry images (image size: 500 µm × 500 µm); (<b>B</b>) Total ion image at the border between coated (bright yellow) and uncoated areas; and (<b>C</b>,<b>D</b>) secondary ion mass spectrometry (SIMS) images of the coated area for different ions.</p> "> Figure 2
<p>Adhesion of bacteria on pure (<b>left</b>) and previously covered surfaces (<b>right</b>) without polymer coating (<span class="html-italic">E. coli</span> used as example)—confocal laser scanning microscopy (CLSM) pictures and quantified data. Scale bar = 100 μm.</p> "> Figure 3
<p>Adhesion of different bacterial species (<b>A</b> = <span class="html-italic">E. coli</span>; <b>B</b> = <span class="html-italic">P. aeruginosa</span>; <b>C</b> = <span class="html-italic">S. sanguinis</span>; <b>D</b> = <span class="html-italic">S. mutans</span>; <b>E</b> = <span class="html-italic">S. aureus</span>; <b>F</b> = <span class="html-italic">S. epidermidis</span>) on titanium discs coated with VP:DMMEP 30:70 (<b>right</b>) relative to the uncoated control (<b>left</b>)—CLSM pictures and quantified data (<b>*</b> <span class="html-italic">p</span> < 0.05). Scale bar = 100 μm.</p> "> Figure 3 Cont.
<p>Adhesion of different bacterial species (<b>A</b> = <span class="html-italic">E. coli</span>; <b>B</b> = <span class="html-italic">P. aeruginosa</span>; <b>C</b> = <span class="html-italic">S. sanguinis</span>; <b>D</b> = <span class="html-italic">S. mutans</span>; <b>E</b> = <span class="html-italic">S. aureus</span>; <b>F</b> = <span class="html-italic">S. epidermidis</span>) on titanium discs coated with VP:DMMEP 30:70 (<b>right</b>) relative to the uncoated control (<b>left</b>)—CLSM pictures and quantified data (<b>*</b> <span class="html-italic">p</span> < 0.05). Scale bar = 100 μm.</p> "> Figure 4
<p>Border region between uncoated (left side of each picture) and coated areas (right side of each picture) of titanium discs after seeding with <span class="html-italic">E. coli</span> (<b>A</b>), <span class="html-italic">S. sanguinis</span> (<b>B</b>) and <span class="html-italic">S. aureus</span> (<b>C</b>). Scale bar = 100 μm.</p> "> Figure 5
<p>Quantification and visualization (SEM) of adhered human gingival fibroblasts on titanium discs coated with VP:DMMEP 30:70 (<b>B</b> = 24 h; <b>D</b> = 72 h) in relation to the uncoated control (<b>A</b> = 24 h; <b>C</b> = 72 h)—SEM pictures and quantified data (<b>*</b> <span class="html-italic">p</span> < 0.05). Scale bar = 100 μm.</p> "> Figure 6
<p>Quantification and visualization (SEM) of adhered human dermis fibroblasts on titanium discs coated with VP:DMMEP 30:70 (<b>B</b> = 24 h; <b>D</b> = 72 h) in relation to the uncoated control (<b>A</b> = 24 h; <b>C</b> = 72 h)—SEM pictures and quantified data (<b>*</b> <span class="html-italic">p</span> < 0.05). Scale bar = 100 μm.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Implementation of a Semi-Coated Test Model
2.2. Copolymer Coating
Coating Method | Sample | Layer Thickness (nm) | Contact Angle (°) | |
---|---|---|---|---|
θadv | θrec | |||
semi-coated | VP:DMMEP 30:70 | 5.0 ± 0.6 | 68 ± 2 | 48 ± 6 |
titanium area of semi-coated sample | 2.0 ± 0.1 | 66 ± 2 | 45 ± 4 | |
completely coated | VP:DMMEP 30:70 | 5.1 ± 1.4 | 64 ± 3 | 43 ± 2 |
uncoated | pure titanium | 3–7 c | 33 a | 22 a |
84 b | 64 b |
2.3. Antibacterial Activity
2.4. Adhesion, Proliferation, and Morphology of Human Fibroblasts
3. Experimental Section
3.1. Polymer Synthesis
3.2. Preparation of Titanium Surfaces
3.3. Surface Coating and Characterization
3.4. Antibacterial Testing
3.5. Adhesion and Proliferation of Human Cells
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stickler, D.J.; McLean, R.J.C. Biomaterials associated infections: The scale of the problem. Cells Mater. 1995, 5, 167–182. [Google Scholar]
- Francolini, I.; Donelli, G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 2010, 59, 227–238. [Google Scholar] [PubMed]
- Quirynen, M.; de Soete, M.; van Steenberghe, D. Infectious risks for oral implants: A review of the literature. Clin. Oral Implants Res. 2002, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Perka, C.; Haas, N. Periprosthetic infection. Chirurg 2011, 82, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S. Effect of antibacterials on biofilms. Am. J. Infect. Control 2008, 36, S175.e.9–S175.e.11. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Gidalevitz, D.; Ishitsuka, Y.; Muresan, A.S.; Konovalov, O.; Waring, A.J.; Lehrer, R.I.; Lee, K.Y. Interaction of antimicrobial peptide protegrin with biomembranes. Proc. Natl. Acad. Sci. USA 2003, 100, 6302–6307. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; DeGrado, W.F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 2005, 127, 4128–4129. [Google Scholar] [CrossRef] [PubMed]
- Pfaffenroth, C.; Winkel, A.; Dempwolf, W.; Gamble, L.J.; Castner, D.G.; Stiesch, M.; Menzel, H. Self-assembled antimicrobial and biocompatible copolymer films on titanium. Macromol. Biosci. 2011, 11, 1515–1525. [Google Scholar] [PubMed]
- Calliess, T.; Sluszniak, M.; Winkel, A.; Pfaffenroth, C.; Dempwolf, W.; Heuer, W.; Menzel, H.; Windhagen, H.; Stiesch, M. Antimicrobial surface coatings for a permanent percutaneous passage in the concept of osseointegrated extremity prosthesis. Biomed. Tech. 2012, 57, 467–471. [Google Scholar] [CrossRef]
- De Gatica, N.L.H.; Jones, G.L.; Gardella, J.A., Jr. Surface characterization of titanium alloys sterilized for biomedical applications. Appl. Surf. Sci. 1993, 68, 107–121. [Google Scholar] [CrossRef]
- Textor, M.; Sittig, C.; Frauchiger, V.; Tosatti, S.; Brunette, D. Properties and biological significance of natural oxide films on titanium and its alloys. In Titanium in Medicine; Springer: Berlin/Heidelberg, Germany, 2001; pp. 171–230. [Google Scholar]
- Berbari, E.F.; Hanssen, A.D.; Duffy, M.C.; Steckelberg, J.M.; Ilstrup, D.M.; Harmsen, W.S.; Osmon, D.R. Risk factors for prosthetic joint infection: Case-control study. Clin. Infect. Dis. 1998, 27, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Ringenberg, L.; Winkel, A.; Kufelt, O.; Behrens, P.; Stiesch, M.; Heuer, W. The effectiveness of poly-(4-vinyl-N-hexylpyridiniumbromide) as an antibacterial implant coating: An in vitro study. Int. J. Dent. 2011. [Google Scholar] [CrossRef]
- Bucolo, M.; Carnazza, S.; Fortuna, L.; Frasca, M.; Guglielmino, S.; Marietta, G.; Satriano, C. Self-organization and emergent models in bacterial adhesion on engineered polymer surfaces. In Proceedings of the IEEE International Symposium on Circuits and Systems, Vancouver, UK, 23–26 May 2004; p. III689.
- Tiller, J.C.; Sprich, C.; Hartmann, L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J. Control. Release 2005, 103, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Goldfinger, Y.; Natan, M.; Sukenik, C.N.; Banin, E.; Kronenberg, J. Biofilm prevention on cochlear implants. Cochlear Implants Int. 2014, 15, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zhang, Z.; Chen, S.; Bryers, J.D.; Jiang, S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, 4192–4199. [Google Scholar] [CrossRef] [PubMed]
- Jeyachandran, Y.L.; Narayandass, S.K.; Mangalaraj, D.; Bao, C.Y.; Martin, P.J. The effect of surface composition of titanium films on bacterial adhesion. Biomed. Mater. 2006, 1, L1–L5. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.N.; Yang, C.Z.; Cooper, S.L. Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials 1997, 18, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Bouloussa, O.; Rondelez, F.; Semetey, V. A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem. Commun. 2008, 8, 951–953. [Google Scholar] [CrossRef]
- Jose, B.; Antoci, V.; Zeiger, A.R.; Wickstrom, E.; Hickok, N.J. Vancomycin covalently bonded to titanium beads kills staphylococcus aureus. Chem. Biol. 2005, 12, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Mai, L.; Wang, D.; Zhang, S.; Xie, Y.; Huang, C.; Zhang, Z. Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Appl. Surf. Sci. 2010, 257, 974–978. [Google Scholar] [CrossRef]
- Wach, J.Y.; Bonazzi, S.; Gademann, K. Antimicrobial surfaces through natural product hybrids. Angew. Chem. Int. Ed. 2008, 47, 7123–7126. [Google Scholar] [CrossRef]
- Gozzelino, G.; Lisanti, C.; Beneventi, S. Quaternary ammonium monomers for UV crosslinked antibacterial surfaces. Colloids Surf. A 2013, 430, 21–28. [Google Scholar] [CrossRef]
- Karamdoust, S.; Yu, B.; Bonduelle, C.; Liu, Y.; Davidson, G.; Stojcevic, G.; Yang, J.; Lau, W.; Gillies, E. Preparation of antibacterial surfaces by hyperthermal hydrogen induced cross-linking of polymer thin films. J. Mater. Chem. 2012, 22, 4881–4889. [Google Scholar] [CrossRef]
- Romeo, E.; Ghisolfi, M.; Carmagnola, D. Peri-implant diseases: A systematic review of the literature. Minerva Stomatol. 2004, 53, 215–230. [Google Scholar] [PubMed]
- Rompen, E.; Domken, O.; Degidi, M.; Pontes, A.E.; Piattelli, A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: A literature review. Clin. Oral Implants Res. 2006, 17, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Reich, U.; Fadeeva, E.; Warnecke, A.; Paasche, G.; Müller, P.; Chichkov, B.; Stöver, T.; Lenarz, T.; Reuter, G. Directing neuronal cell growth on implant material surfaces by microstructuring. J. Biomed. Mater. Res. B 2012, 100, 940–947. [Google Scholar] [CrossRef]
- Palaiologou, A.A.; Yukna, R.A.; Moses, R.; Lallier, T.E. Gingival, dermal, and periodontal ligament fibroblasts express different extracellular matrix receptors. J. Periodontol. 2001, 72, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Bressy-Brondino, C.; Boutevin, B.; Hervaud, Y.; Gaboyard, M. Adhesive and anticorrosive properties of poly(vinylidene fluoride) powders blended with phosphonated copolymers on galvanized steel plates. J. Appl. Polym. Sci. 2002, 83, 2277–2287. [Google Scholar] [CrossRef]
- Heuer, W.; Winkel, A.; Kohorst, P.; Lutzke, A.; Pfaffenroth, C.; Menzel, H.; Bach, F.W.; Volk, J.; Leyhausen, G.; Stiesch, M. Assessment of the cytocompatibility of poly-(N-hexylvinylpyridinium) used as an antibacterial implant coating. Adv. Eng. Mater. 2010, 12, B609–B617. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkel, A.; Dempwolf, W.; Gellermann, E.; Sluszniak, M.; Grade, S.; Heuer, W.; Eisenburger, M.; Menzel, H.; Stiesch, M. Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces. Int. J. Mol. Sci. 2015, 16, 4327-4342. https://doi.org/10.3390/ijms16024327
Winkel A, Dempwolf W, Gellermann E, Sluszniak M, Grade S, Heuer W, Eisenburger M, Menzel H, Stiesch M. Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces. International Journal of Molecular Sciences. 2015; 16(2):4327-4342. https://doi.org/10.3390/ijms16024327
Chicago/Turabian StyleWinkel, Andreas, Wibke Dempwolf, Eva Gellermann, Magdalena Sluszniak, Sebastian Grade, Wieland Heuer, Michael Eisenburger, Henning Menzel, and Meike Stiesch. 2015. "Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces" International Journal of Molecular Sciences 16, no. 2: 4327-4342. https://doi.org/10.3390/ijms16024327
APA StyleWinkel, A., Dempwolf, W., Gellermann, E., Sluszniak, M., Grade, S., Heuer, W., Eisenburger, M., Menzel, H., & Stiesch, M. (2015). Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces. International Journal of Molecular Sciences, 16(2), 4327-4342. https://doi.org/10.3390/ijms16024327