Personalization of the Immunosuppressive Treatment in Renal Transplant Recipients: The Great Challenge in “Omics” Medicine
<p>Tissue localization of major polymorphic enzymes involved in metabolism and disposition of immunosuppressive drugs. TAC: Tacrolimus; mTOR-I: mammalian target of rapamycin (mTOR) inhibitors; CsA: Cyclosporin A; MPA: Micophenolic acid; MMF: Mycophenolate mofetil; AZA: Azathioprine.</p> "> Figure 2
<p>Mechanisms of action and targets of immunosuppressive drugs used in renal transplantation. MPA: Micophenolic acid; MMF: Mycophenolate mofetil.</p> "> Figure 3
<p>Prospective employment of pharmacogenetics and pharmacogenomics research strategies.</p> ">
Abstract
:1. Ensuring Long-Term Graft Survival in Renal Transplantation: A Matter of Adequate Immunosuppression
2. Understanding the Genetic Influence in Drug Response: A First Step to Personalize Immunosuppressive Treatment in Renal Transplantation
2.1. Calcineurin Inhibitors (CNIs)
2.2. Mycophenolate Mofetil (MMF)
2.3. Mammalian Target of Rapamycin Inhibitors (mTOR-Is)
2.4. Azathioprine (AZA)
Drug | Gene | Polymorphism | Biological Effect | Clinical Effect | References |
---|---|---|---|---|---|
Tacrolimus (TAC) | CYP3A5 | CYP3A5*3 (6986A>G) | Reduction of CYP3A5 activity | Reduced TAC dose requirement | [24,25,26,27] |
CYP3A4 | CYP3A4*22 | Reduction of CYP3A4 activity | Reduced TAC dose requirement | [31,32] | |
CYP3A4*1B (392A>G) | Increment of CYP3A4 activity | Increased TAC dose requirement | [33] | ||
ABCB1 | 3435C>T | Altered ABCB1 activity | Influence on TAC dose requirement is uncertain | [29,38,39,40,41,42,43] | |
1236C>T | [38,39,40,41,42,43] | ||||
2677G>T/A | [38,39,40,41,42,43] | ||||
Ciclosporin (CsA) | ABCB1 | 3435C>T | Reduction of ABCB1 activity | Increased CsA intracellular concentration; TT variant is associated with CsA nephrotoxicity and long-term graft survival | [48,50,51,52,53,54,55,56] |
Mycophenolate mofetil/Mycophenolic acid (MMF/MPA) | UGT1A9 | 2152C>T275T>A | Increment of UGT1A9 activity | Increased risk of acute rejection | [66] |
UGT1A9*3 | Reduction of UGT1A9 activity | Influence on MPA pharmacokinetics | [64,65] | ||
IMPDH-1 | rs2278293 | Most likely associated with an increment of IMPDH activity | Probably associated with the incidence of biopsy-proven acute rejection | [80,82] | |
rs2278294 | |||||
IMPDH-2 | 3757T>C | Increment of IMPDH activity | No association with rejection risk | [84] | |
Sirolimus (SRL) | CYP3A5 | CYP3A5*3 | Reduction of CYP3A5 activity | Reduced SRL dose requirement | [89,90] |
CYP3A4 | CYP3A4*1B (392A>G) | Increment of CYP3A4 activity | Increased SRL dose requirement | [89] | |
ABCB1 | 3435C>T | Reduction of ABCB1 activity | Patients 3435CT/TT have increased SRL concenttration:dose ratio | [95] | |
Everolimus (EVR) | CYP3A5 | CYP3A5*3 | Reduction of CYP3A5 activity | No impact on EVR pharmacokinetics | [92] |
Azathioprine (AZA) | TPMT | TPMT*2 | Reduction of TPMT activity | High risk of myelotoxicity | [113,114,115,116,117,118] |
TPMT*3A | |||||
TPMT*3B | |||||
TPMT*3C |
3. Pharmacogenomics: Looking to the Polygenetic Influence in the Response to Drug Therapy
4. Research on New Therapeutic Targets for Immunosuppression
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Jofre, R.; Lopez-Gomez, J.M.; Moreno, F.; Sanz-Guajardo, D.; Valderrabano, F. Changes in quality of life after renal transplantation. Am. J. Kidney Dis. 1998, 32, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Karlberg, I.; Nyberg, G. Cost-effectiveness in studies of renal transplantation. Int. J. Technol. Assess. Health Care 1995, 11, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Schnuelle, P.; Lorenz, D.; Trede, M.; van der Woude, F.J. Impact of renal cadaveric transplantation on survival in end-stage renal failure: Evidence for reduced mortality risk compared with hemodialysis during long-term follow-up. J. Am. Soc. Nephrol. 1998, 9, 2135–2141. [Google Scholar] [PubMed]
- Tonelli, M.; Wiebe, N.; Knoll, G.; Bello, A.; Browne, S.; Jadhav, D.; Klarenbach, S.; Gill, J. Systematic review: Kidney transplantation compared with dialysis in clinically relevant outcomes. Am. J. Transplant. 2011, 11, 2093–2109. [Google Scholar] [CrossRef] [PubMed]
- Rezzani, R.; Rodella, L.; Bianchi, R. Early metabolic changes in peripheral blood cells of renal transplant recipients treated with cyclosporine A. Int. J. Immunopharmacol. 1999, 21, 455–462. [Google Scholar] [CrossRef] [PubMed]
- U.S. Renal Data System. USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2013. [Google Scholar]
- Cornell, L.D.; Colvin, R.B. Chronic allograft nephropathy. Curr. Opin. Nephrol. Hypertens. 2005, 14, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Racusen, L.C.; Regele, H. The pathology of chronic allograft dysfunction. Kidney Int. Suppl. 2010, 119, S27–S32. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, P.I. Humoral theory of transplantation. Am. J. Transplant. 2003, 3, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Mauiyyedi, S.; Colvin, R.B. Humoral rejection in kidney transplantation: New concepts in diagnosis and treatment. Curr. Opin. Nephrol. Hypertens. 2002, 11, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.B.; Schneeberger, E.E.; Pascual, M.A.; Saidman, S.L.; Williams, W.W.; Tolkoff-Rubin, N.; Cosimi, A.B.; Colvin, R.B. Complement activation in acute humoral renal allograft rejection: Diagnostic significance of C4D deposits in peritubular capillaries. J. Am. Soc. Nephrol. 1999, 10, 2208–2214. [Google Scholar] [PubMed]
- Mauiyyedi, S.; Crespo, M.; Collins, A.B.; Schneeberger, E.E.; Pascual, M.A.; Saidman, S.L.; Tolkoff-Rubin, N.E.; Williams, W.W.; Delmonico, F.L.; Cosimi, A.B.; et al. Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification. J. Am. Soc. Nephrol. 2002, 13, 779–787. [Google Scholar] [PubMed]
- Mauiyyedi, S.; Pelle, P.D.; Saidman, S.; Collins, A.B.; Pascual, M.; Tolkoff-Rubin, N.E.; Williams, W.W.; Cosimi, A.A.; Schneeberger, E.E.; Colvin, R.B. Chronic humoral rejection: Identification of antibody-mediated chronic renal allograft rejection by C4D deposits in peritubular capillaries. J. Am. Soc. Nephrol. 2001, 12, 574–582. [Google Scholar] [PubMed]
- Regele, H.; Böhmig, G.A.; Habicht, A.; Gollowitzer, D.; Schillinger, M.; Rockenschaub, S.; Watschinger, B.; Kerjaschki, D.; Exner, M. Capillary deposition of complement split product C4D in renal allografts is associated with basement membrane injury in peritubular and glomerular capillaries: A contribution of humoral immunity to chronic allograft rejection. J. Am. Soc. Nephrol. 2002, 13, 2371–2380. [Google Scholar] [CrossRef] [PubMed]
- Theruvath, T.P.; Saidman, S.L.; Mauiyyedi, S.; Delmonico, F.L.; Williams, W.W.; Tolkoff-Rubin, N.; Collins, A.B.; Colvin, R.B.; Cosimi, A.B.; Pascual, M. Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. Transplantation 2001, 72, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, A.; Sawe, J. Pharmacokinetics and therapeutic drug monitoring of immunosuppressants. Ther. Drug Monit. 1995, 17, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med. 2003, 348, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.E.; Relling, M.V. Moving towards individualized medicine with pharmacogenomics. Nature 2004, 429, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.E.; Johnson, J.A. Pharmacogenomics: The inherited basis for interindividual differences in drug response. Annu. Rev. Genomics Hum. Genet. 2001, 2, 9–39. [Google Scholar] [CrossRef] [PubMed]
- Zaza, G.; Tomei, P.; Granata, S.; Boschiero, L.; Lupo, A. Monoclonal antibody therapy and renal transplantation: Focus on adverse effects. Toxins 2014, 6, 869–891. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Luo, C.; Hogan, P.G. Transcription factors of the NFAT family: Regulation and function. Annu. Rev. Immunol. 1997, 15, 707–747. [Google Scholar] [CrossRef] [PubMed]
- Kamdem, L.K.; Streit, F.; Zanger, U.M.; Brockmöller, J.; Oellerich, M.; Armstrong, V.W.; Wojnowski, L. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin. Chem. 2005, 51, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Vincent, S.H.; Karanam, B.V.; Painter, S.K.; Chiu, S.H. In vitro metabolism of FK-506 in rat, rabbit, and human liver microsomes: Identification of a major metabolite and of cytochrome P450 3A as the major enzymes responsible for its metabolism. Arch. Biochem. Biophys. 1992, 294, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Macphee, I.A.; Fredericks, S.; Tai, T.; Syrris, P.; Carter, N.D.; Johnston, A.; Goldberg, L.; Holt, D.W. Tacrolimus pharmacogenetics: Polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002, 74, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Thervet, E.; Anglicheau, D.; King, B.; Schlageter, M.H.; Cassinat, B.; Beaune, P.; Legendre, C.; Daly, A.K. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003, 76, 1233–1235. [Google Scholar] [CrossRef] [PubMed]
- Haufroid, V.; Mourad, M.; van Kerckhove, V.; Wawrzyniak, J.; de Meyer, M.; Eddour, D.C.; Malaise, J.; Lison, D.; Squifflet, J.P.; Wallemacq, P. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004, 14, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, P.A.; Oetting, W.S.; Brearley, A.M.; Leduc, R.; Guan, W.; Schladt, D.; Matas, A.J.; Lamba, V.; Julian, B.A.; Mannon, R.B.; et al. Novel polymorphisms associated with tacrolimus trough concentrations: Results from a multicenter kidney transplant consortium. Transplantation 2011, 91, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; Bouamar, R.; Elens, L.; van Schaik, R.H.; van Gelder, T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin. Pharmacokinet. 2014, 53, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Haufroid, V.; Wallemacq, P.; VanKerckhove, V.; Elens, L.; de Meyer, M.; Eddour, D.C.; Malaise, J.; Lison, D.; Mourad, M. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: Guidelines from an experimental study. Am. J. Transplant. 2006, 6, 2706–2713. [Google Scholar] [CrossRef] [PubMed]
- MacPhee, I.A.; Holt, D.W. A pharmacogenetic strategy for immunosuppression based on the CYP3A5 genotype. Transplantation 2008, 85, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011, 11, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Elens, L.; Bouamar, R.; Hesselink, D.A.; Haufroid, V.; van der Heiden, I.P.; van Gelder, T.; van Schaik, R.H. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin. Chem. 2011, 57, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Tavira, B.; Coto, E.; Díaz-Corte, C.; Ortega, F.; Arias, M.; Torres, A.; Díaz, J.M.; Selgas, R.; López-Larrea, C.; Campistol, J.M.; et al. Pharmacogenetics of tacrolimus after renal transplantation: Analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes. Clin. Chem. Lab. Med. 2011, 49, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Shchepotina, E.G.; Vavilin, V.A.; Goreva, O.B.; Lyakhovich, V.V. Some mutations of exon-7 in cytochrome P450 gene 3A4 and their effect on 6-β-hydroxylation of cortisol. Bull. Exp. Biol. Med. 2006, 141, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Sata, F.; Sapone, A.; Elizondo, G.; Stocker, P.; Miller, V.P.; Zheng, W.; Raunio, H.; Crespi, C.L.; Gonzalez, F.J. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clin. Pharmacol. Ther. 2000, 67, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.E.; McLeod, H.L. Pharmacogenomics-drug disposition, drug targets, and side effects. N. Engl. J. Med. 2003, 348, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Kroetz, D.L.; Pauli-Magnus, C.; Hodges, L.M.; Huang, C.C.; Kawamoto, M.; Johns, S.J.; Stryke, D.; Ferrin, T.E.; DeYoung, J.; Taylor, T.; et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003, 13, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, N.; Satoh, S.; Tada, H.; Li, Z.; Ohyama, C.; Sato, K.; Suzuki, T.; Habuchi, T.; Kato, T. Influence of CYP3A5 and MDR1(ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 2004, 78, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Tsuchiya, N.; Satoh, S.; Kagaya, H.; Li, Z.; Sato, K.; Miura, M.; Suzuki, T.; Kato, T.; Habuchi, T. Impact of CYP3A5 and MDR1(ABCB1)C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant. Proc. 2005, 37, 1730–1732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Z.H.; Zheng, J.M.; Chen, Z.H.; Tang, Z.; Chen, J.S.; Li, L.S. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin. Transplant. 2005, 19, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.N.; Barama, A.; Poirier, C.; Vinet, B.; Roger, M. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet. Genomics 2006, 16, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Mourad, M.; Wallemacq, P.; de Meyer, M.; Brandt, D.; van Kerkhove, V.; Malaise, J.; Chaïb Eddour, D.; Lison, D.; Haufroid, V. The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relation to renal function. Clin. Chem. Lab. Med. 2006, 44, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, D.R.; de Jonge, H.; Naesens, M.; Lerut, E.; Verbeke, K.; Vanrenterghem, Y. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin. Pharmacol. Ther. 2007, 82, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin. Pharmacokinet. 2010, 49, 141–175. [Google Scholar] [CrossRef] [PubMed]
- Bouamar, R.; Hesselink, D.A.; van Schaik, R.H.; Weimar, W.; Macphee, I.A.; de Fijter, J.W.; van Gelder, T. Polymorphisms in CYP3A5, CYP3A4, and ABCB1 are not associated with cyclosporine pharmacokinetics nor with cyclosporine clinical end points after renal transplantation. Ther. Drug Monit. 2011, 33, 178–184. [Google Scholar] [PubMed]
- Hesselink, D.A.; van Schaik, R.H.; van der Heiden, I.P.; van der Werf, M.; Gregoor, P.J.; Lindemans, J.; Weimar, W.; van Gelder, T. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. 2003, 74, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Llaudó, I.; Colom, H.; Giménez-Bonafé, P.; Torras, J.; Caldés, A.; Sarrias, M.; Cruzado, J.M.; Oppenheimer, F.; Sánchez-Plumed, J.; Gentil, M.Á.; et al. Do drug transporter (ABCB1) SNPs and P-glycoprotein function influence cyclosporine and macrolides exposure in renal transplant patients? Results of the pharmacogenomic substudy within the symphony study. Transpl. Int. 2013, 26, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Crettol, S.; Venetz, J.P.; Fontana, M.; Aubert, J.D.; Ansermot, N.; Fathi, M.; Pascual, M.; Eap, C.B. Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients. Pharmacogenet. Genomics 2008, 18, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Falck, P.; Asberg, A.; Guldseth, H.; Bremer, S.; Akhlaghi, F.; Reubsaet, J.L.; Pfeffer, P.; Hartmann, A.; Midtvedt, K. Declining intracellular T-lymphocyte concentration of cyclosporine a precedes acute rejection in kidney transplant recipients. Transplantation 2008, 85, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Naesens, M.; Lerut, E.; de Jonge, H.; van Damme, B.; Vanrenterghem, Y.; Kuypers, D.R. Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J. Am. Soc. Nephrol. 2009, 20, 2468–2480. [Google Scholar] [CrossRef] [PubMed]
- Hauser, I.A.; Schaeffeler, E.; Gauer, S.; Scheuermann, E.H.; Wegner, B.; Gossmann, J.; Ackermann, H.; Seidl, C.; Hocher, B.; Zanger, U.M.; et al. ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J. Am. Soc. Nephrol. 2005, 16, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, D.; Ruggenenti, P.; Baldelli, S.; Motterlini, N.; Gotti, E.; Sandrini, S.; Salvadori, M.; Segoloni, G.; Rigotti, P.; Donati, D.; et al. ABCB1 genotypes predict cyclosporine-related adverse events and kidney allograft outcome. J. Am. Soc. Nephrol. 2009, 20, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- Woillard, J.B.; Rerolle, J.P.; Picard, N.; Rousseau, A.; Guillaudeau, A.; Munteanu, E.; Essig, M.; Drouet, M.; le Meur, Y.; Marquet, P. Donor P-gp polymorphisms strongly influence renal function and graft loss in a cohort of renal transplant recipients on cyclosporine therapy in a long-term follow-up. Clin. Pharmacol. Ther. 2010, 88, 95–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joy, M.S.; Nickeleit, V.; Hogan, S.L.; Thompson, B.D.; Finn, W.F. Calcineurin inhibitor-induced nephrotoxicity and renal expression of P-glycoprotein. Pharmacotherapy 2005, 25, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Anglicheau, D.; Pallet, N.; Rabant, M.; Marquet, P.; Cassinat, B.; Méria, P.; Beaune, P.; Legendre, C.; Thervet, E. Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int. 2006, 70, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; Bouamar, R.; van Gelder, T. The pharmacogenetics of calcineurin inhibitor-related nephrotoxicity. Ther. Drug Monit. 2010, 32, 387–393. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, M.; Haufroid, V.; Elens, L.; Fusaro, F.; Patrono, D.; de Pauw, L.; Kanaan, N.; Goffin, E.; Mourad, M. Donor age and ABCB1 1199G>A genetic polymorphism are independent factors affecting long-term renal function after kidney transplantation. J. Surg. Res. 2012, 178, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Thervet, E.; Loriot, M.A.; Barbier, S.; Buchler, M.; Ficheux, M.; Choukroun, G.; Toupance, O.; Touchard, G.; Alberti, C.; le Pogamp, P.; et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther. 2010, 87, 721–726. [Google Scholar] [PubMed]
- Allison, A.C.; Eugui, E.M. The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin. Immunopathol. 1993, 14, 353–380. [Google Scholar] [CrossRef] [PubMed]
- Ting, L.S.; Partovi, N.; Levy, R.D.; Riggs, K.W.; Ensom, M.H. Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and ACYl glucuronide metabolites in stable thoracic transplant recipients. Ther. Drug Monit. 2008, 30, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.G.; Rigby, R.J.; Taylor, P.J.; Jones, C.E.; Allen, J.; Franzen, K.; Falk, M.C.; Nicol, D. The kinetics of mycophenolic acid and its glucuronide metabolite in adult kidney transplant recipients. Clin. Pharmacol. Ther. 1999, 66, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kriesche, H.U.; Shaw, L.M.; Korecka, M.; Kaplan, B. Pharmacokinetics of mycophenolic acid in renal insufficiency. Ther. Drug Monit. 2000, 22, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Girard, H.; Court, M.H.; Bernard, O.; Fortier, L.C.; Villeneuve, L.; Hao, Q.; Greenblatt, D.J.; von Moltke, L.L.; Perussed, L.; Guillemette, C. Identification of common polymorphisms in the promoter of the UGT1A9 gene: Evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 2004, 14, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, D.R.; Naesens, M.; Vermeire, S.; Vanrenterghem, Y. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin. Pharmacol. Ther. 2005, 78, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; van Gelder, T. Genetic and nongenetic determinants of between-patient variability in the pharmacokinetics of mycophenolic acid. Clin. Pharmacol. Ther. 2005, 78, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Van Schaik, R.H.; van Agteren, M.; de Fijter, J.W.; Hartmann, A.; Schmidt, J.; Budde, K.; Kuypers, D.; le Meur, Y.; van der Werf, M.; Mamelok, R.; van Gelder, T. UGT1A9 −275T>A/−2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin. Pharmacol. Ther. 2009, 86, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, E.; Delage, R.; Benoit-Biancamano, M.O.; Caron, P.; Bernard, O.; Couture, F.; Guillemette, C. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin. Pharmacol. Ther. 2007, 81, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fructuoso, A.I.; Maestro, M.L.; Calvo, N.; Viudarreta, M.; Pérez-Flores, I.; Veganzone, S.; de la Orden, V.; Ortega, D.; Arroyo, M.; Barrientos, A. The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant. Proc. 2009, 41, 2313–2316. [Google Scholar] [CrossRef] [PubMed]
- Baldelli, S.; Merlini, S.; Perico, N.; Nicastri, A.; Cortinovis, M.; Gotti, E.; Remuzzi, G.; Cattaneo, D. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 2007, 8, 1127–1141. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, T.; van Schaik, R.H.; Hesselink, D.A. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat. Rev. Nephrol. 2014, 10, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Picard, N.; Yee, S.W.; Woillard, J.B.; Lebranchu, Y.; le Meur, Y.; Giacomini, K.M.; Marquet, P. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin. Pharmacol. Ther. 2010, 87, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouamar, R.; Hesselink, D.A.; van Schaik, R.H.; Weimar, W.; van der Heiden, I.P.; de Fijter, J.W.; Kuypers, D.R.; van Gelder, T. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients. Pharmacogenet. Genomics 2012, 22, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, P.A.; Schladt, D.; Oetting, W.S.; Leduc, R.; Guan, W.; Matas, A.J.; Lamba, V.; Mannon, R.B.; Julian, B.A.; Israni, A.; et al. Genetic determinants of mycophenolate-related anemia and leukopenia after transplantation. Transplantation 2011, 91, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Woillard, J.B.; Rerolle, J.P.; Picard, N.; Rousseau, A.; Drouet, M.; Munteanu, E.; Essig, M.; Marquet, P.; le Meur, Y. Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: The significant role of the UGT1A8*2 variant allele. Br. J. Clin. Pharmacol. 2010, 69, 675–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Agteren, M.; Armstrong, V.W.; van Schaik, R.H.; de Fijter, H.; Hartmann, A.; Zeier, M.; Budde, K.; Kuypers, D.; Pisarski, P.; le Meur, Y.; et al. AcylMPAG plasma concentrations and mycophenolic acid-related side effects in patients undergoing renal transplantation are not related to the UGT2B7–840G>A gene polymorphism. Ther. Drug Monit. 2008, 30, 439–444. [Google Scholar] [PubMed]
- Prausa, S.E.; Fukuda, T.; Maseck, D.; Curtsinger, K.L.; Liu, C.; Zhang, K.; Nick, T.G.; Sherbotie, J.R.; Ellis, E.N.; Goebel, J.; et al. UGT genotype may contribute to adverse events following medication with mycophenolate mofetil in pediatric kidney transplant recipients. Clin. Pharmacol. Ther. 2009, 85, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Digits, J.A.; Hedstrom, L. Species-specific inhibition of inosine 5'-monophosphate dehydrogenase by mycophenolic acid. Biochemistry 1999, 38, 15388–15397. [Google Scholar] [CrossRef] [PubMed]
- McPhillips, C.C.; Hyle, J.W.; Reines, D. Detection of the mycophenolate-inhibited form of IMP dehydrogenase in vivo. Proc. Natl. Acad. Sci. USA 2004, 101, 12171–12176. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.L.; Gearry, R.B.; Barclay, M.L.; Kennedy, M.A. IMPDH1 promoter mutations in a patient exhibiting azathioprine resistance. Pharmacogenomics J. 2007, 7, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.W.; Zeevi, A.; Webber, S.A.; Girnita, D.M.; Selby, R.; Fu, J.; Shah, T.; Pravica, V.; Hutchinson, I.V.; et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin. Pharmacol. Ther. 2008, 83, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Glander, P.; Hambach, P.; Braun, K.P.; Fritsche, L.; Giessing, M.; Mai, I.; Einecke, G.; Waiser, J.; Neumayer, H.H.; Budde, K. Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am. J. Transplant. 2004, 4, 2045–2051. [Google Scholar] [CrossRef] [PubMed]
- Kagaya, H.; Miura, M.; Saito, M.; Habuchi, T.; Satoh, S. Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic Clin. Pharmacol. Toxicol. 2010, 107, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Sombogaard, F.; van Schaik, R.H.; Mathot, R.A.; Budde, K.; van der Werf, M.; Vulto, A.G.; Weimar, W.; Glander, P.; Essioux, L.; van Gelder, T. Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T>C polymorphism. Pharmacogenet. Genomics 2009, 19, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Grinyó, J.; Vanrenterghem, Y.; Nashan, B.; Vincenti, F.; Ekberg, H.; Lindpaintner, K.; Rashford, M.; Nasmyth-Miller, C.; Voulgari, A.; Spleiss, O.; Truman, M.; et al. Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl. Int. 2008, 21, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Harwood, S.M.; Döhler, B.; Opelz, G.; Yaqoob, M.M. Inosine monophosphate dehydrogenase polymorphisms and renal allograft outcome. Transplantation 2012, 94, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Gabardi, S.; Baroletti, S.A. Everolimus: A proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy 2010, 30, 1044–1056. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, W.; Serkova, N.; Hausen, B.; Morris, R.E.; Benet, L.Z.; Christians, U. Comparison of the in vitro metabolism of the macrolide immunosuppressants sirolimus and RAD. Transplant. Proc. 2001, 33, 514–515. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.; Guengerich, F.P.; Yun, C.H.; Christians, U.; Sewing, K.F. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab. Dispos. 1992, 20, 753–761. [Google Scholar] [PubMed]
- Anglicheau, D.; le Corre, D.; Lechaton, S.; Laurent-Puig, P.; Kreis, H.; Beaune, P.; Legendre, C.; Thervet, E. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am. J. Transplant. 2005, 5, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Le Meur, Y.; Djebli, N.; Szelag, J.C.; Hoizey, G.; Toupance, O.; Rérolle, J.P.; Marquet, P. CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin. Pharmacol. Ther. 2006, 80, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Mourad, M.; Mourad, G.; Wallemacq, P.; Garrigue, V.; van Bellingen, C.; van Kerckhove, V.; de Meyer, M.; Malaise, J.; Eddour, D.C.; Lison, D.; et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation 2005, 80, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Picard, N.; Rouguieg-Malki, K.; Kamar, N.; Rostaing, L.; Marquet, P. CYP3A5 genotype does not influence everolimus in vitro metabolism and clinical pharmacokinetics in renal transplant recipients. Transplantation 2011, 91, 652–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renders, L.; Frisman, M.; Ufer, M.; Mosyagin, I.; Haenisch, S.; Ott, U.; Caliebe, A.; Dechant, M.; Braun, F.; Kunzendorf, U.; et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin. Pharmacol. Ther. 2007, 81, 228–234. [Google Scholar] [CrossRef]
- Woillard, J.B.; Kamar, N.; Coste, S.; Rostaing, L.; Marquet, P.; Picard, N. Effect of CYP3A4*22, POR*28, and PPARA rs4253728 on sirolimus in vitro metabolism and trough concentrations in kidney transplant recipients. Clin. Chem. 2013, 59, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Sam, W.J.; Chamberlain, C.E.; Lee, S.J.; Goldstein, J.A.; Hale, D.A.; Mannon, R.B.; Kirk, A.D.; Hon, Y.Y. Associations of ABCB1 3435C>T and IL-10–1082G>A polymorphisms with long-term sirolimus dose requirements in renal transplant patients. Transplantation 2011, 92, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razzak, Z.; Loyer, P.; Fautrel, A.; Gautier, J.C.; Corcos, L.; Turlin, B.; Beaune, P.; Guillouzo, A. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol. Pharmacol. 1993, 44, 707–715. [Google Scholar] [PubMed]
- Bertilsson, P.M.; Olsson, P.; Magnusson, K.E. Cytokines influence mRNA expression of cytochrome P450 3A4 and MDRI in intestinal cells. J. Pharm. Sci. 2001, 90, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Sam, W.J.; Chamberlain, C.E.; Lee, S.J.; Goldstein, J.A.; Hale, D.A.; Mannon, R.B.; Kirk, A.D.; Hon, Y.Y. Associations of ABCB1 and IL-10 genetic polymorphisms with sirolimus-induced dyslipidemia in renal transplant recipients. Transplantation 2012, 94, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Zaza, G.; Tomei, P.; Ria, P.; Granata, S.; Boschiero, L.; Lupo, A. Systemic and nonrenal adverse effects occurring in renal transplant patients treated with mTOR inhibitors. Clin. Dev. Immunol. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Zaza, G.; Granata, S.; Tomei, P.; Masola, V.; Gambaro, G.; Lupo, A. mTOR inhibitors and renal allograft: Yin and Yang. J. Nephrol. 2014, 27, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Clamers, A.H.; Knight, P.R. Atkinson MR: 6-thiopurines as substrates and inhibitors of purine oxidases: A pathway for conversion of azathioprine into 6-thiouric acid without release of 6-mercaptopurine. Aust. J. Exp. Biol. Med. Sci. 1969, 47, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Fink, D.; Aebi, S.; Howell, S.B. The role of DNA mismatch repair in drug resistance. Clin. Cancer Res. 1998, 4, 1–6. [Google Scholar] [PubMed]
- Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur. J. Clin. Pharmacol. 1992, 43, 329–339. [Google Scholar] [CrossRef] [PubMed]
- McLeod, H.L.; Krynetski, E.Y.; Relling, M.V.; Evans, W.E. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 2000, 14, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Fabre, M.A.; Jones, D.C.; Bunce, M.; Morris, P.J.; Friend, P.J.; Welsh, K.I.; Marshall, S.E. The impact of thiopurine S-methyltransferase polymorphisms on azathioprine dose 1 year after renal transplantation. Transpl. Int. 2004, 17, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Weinshilboum, R.M.; Sladek, S.L. Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 1980, 32, 651–662. [Google Scholar] [PubMed]
- Yates, C.R.; Krynetski, E.Y.; Loennechen, T.; Fessing, M.Y.; Tai, H.L.; Pui, C.H.; Relling, M.V.; Evans, W.E. Molecular diagnosis of thiopurine S-methyltransferase deficiency: Genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. 1997, 126, 608–614. [Google Scholar] [CrossRef] [PubMed]
- McLeod, H.L.; Siva, C. The thiopurine S-methyltransferase gene locus—Implication for clinical pharmacogenomics. Pharmacogenomics 2002, 3, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Krynetski, E.Y.; Evans, W.E. Genetic polymorphism of thiopurine S-methyltransferase: Molecular mechanisms add clinical importance. Pharmacology 2000, 61, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Krynetski, E.Y.; Schuetz, J.D.; Galpin, A.J.; Pui, C.H.; Relling, M.V.; Evans, W.E. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc. Natl. Acad. Sci. USA 1995, 92, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.L.; Krynetski, E.Y.; Yates, C.R.; Loennechen, T.; Fessing, M.Y.; Krynetskaia, N.F.; Evans, W.E. Thiopurine S-methyltransferase deficiency: Two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am. J. Hum. Genet. 1996, 58, 694–702. [Google Scholar] [PubMed]
- Schaeffeler, E.; Fischer, C.; Brockmeier, D.; Wernet, D.; Moerike, K.; Eichelbaum, M.; Zanger, U.M.; Schwab, M. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 2004, 14, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.E.; Hon, Y.Y.; Bomgaars, L.; Coutre, S.; Holdsworth, M.; Janco, R.; Kalwinsky, D.; Keller, F.; Khatib, Z.; Margolin, J.; et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J. Clin. Oncol. 2001, 19, 2293–2301. [Google Scholar] [PubMed]
- Evans, W.E. Thiopurine S-methyltransferase: A genetic polymorphism that affects a small number of drugs in a big way. Pharmacogenetics 2002, 12, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Black, A.J.; McLeod, H.L.; Capell, H.A.; Powrie, R.H.; Matowe, L.K.; Pritchard, S.C.; Collie-Duguid, E.S.; Reid, D.M. Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann. Intern. Med. 1998, 129, 716–718. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Hancock, M.L.; Rivera, G.K.; Sandlund, J.T.; Ribeiro, R.C.; Krynetski, E.Y.; Pui, C.H.; Evans, W.E. Mercaptopurine therapy intolerance related to heterozygosity at the thiopurine methyltransferase gene locus. J. Natl. Cancer Inst. 1999, 91, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Ishioka, S.; Hiyama, K.; Sato, H.; Yamanishi, Y.; McLeod, H.L.; Kumagai, K.; Maeda, H.; Yamakido, M. Thiopurine methyltransferase genotype and the toxicity of azathioprine in Japanese. Intern. Med. 1999, 38, 944–947. [Google Scholar] [CrossRef] [PubMed]
- Kurzawski, M.; Dziewanowski, K.; Gawrońska-Szklarz, B.; Domański, L.; Droździk, M. The impact of thiopurine S-methyltransferase polymorphism on azathioprine-induced myelotoxicity in renal transplant recipients. Ther. Drug Monit. 2005, 27, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Dervieux, T.; Médard, Y.; Baudouin, V.; Maisin, A.; Zhang, D.; Broly, F.; Loirat, C.; Jacqz-Aigrain, E. Thiopurine methyltransferase activity and its relationship to the occurrence of rejection episodes in paediatric renal transplant recipients treated with azathioprine. Br. J. Clin. Pharmacol. 1999, 48, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Thervet, E.; Anglicheau, D.; Toledano, N.; Houllier, A.M.; Noel, L.H.; Kreis, H.; Beaune, P.; Legendre, C. Long-term results of TPMT activity monitoring in azathioprine-treated renal allograft recipients. J. Am. Soc. Nephrol. 2001, 12, 170–176. [Google Scholar] [PubMed]
- Thompson, A.J.; Newman, W.G.; Elliott, R.A.; Roberts, S.A.; Tricker, K.; Payne, K. The cost-effectiveness of a pharmacogenetic test: A trial-based evaluation of TPMT genotyping for azathioprine. Value Health 2014, 17, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Hicks, J.K.; et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 2011, 89, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, H.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [PubMed]
- Trent, R.J. Pathology practice and pharmacogenomics. Pharmacogenomics 2010, 11, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Squassina, A.; Manchia, M.; Manolopoulos, V.G.; Artac, M.; Lappa-Manakou, C.; Karkabouna, S.; Mitropoulos, K.; del Zompo, M.; Patrinos, G.P. Realities and expectations of pharmacogenomics and personalized medicine: Impact of translating genetic knowledge into clinical practice. Pharmacogenomics 2010, 11, 1149–1167. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. Pharmacogenomics in clinical practice: Reality and expectations. Pharm. Ther. 2011, 36, 412–450. [Google Scholar]
- Gage, B.F.; Lesko, L.J. Pharmacogenetics of warfarin: Regulatory, scientific, and clinical issues. J. Thromb. Thrombolysis 2008, 25, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, F.; Ratain, M.J. Pharmacogenetics of irinotecan: Clinical perspectives on the utility of genotyping. Pharmacogenomics 2006, 7, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Guidance for industry. Pharmacogenomic Data Submission (PDF Document in Internet). 2005. Available online: http://www.fda.gov/Cber/gdlns/pharmdtasub.htm (accessed on 29 February 2008).
- Klein, T.E.; Chang, J.T.; Cho, M.K.; Easton, K.L.; Fergerson, R.; Hewett, M.; Lin, Z.; Liu, Y.; Liu, S.; Oliver, D.E.; et al. Integrating genotype and phenotype information: An overview of the PharmGKB project. Pharmacogenetics Research Network and Knowledge Base. Pharmacogenomics J. 2001, 1, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Rhead, B.; Karolchik, D.; Kuhn, R.M.; Hinrichs, A.S.; Zweig, A.S.; Fujita, P.A.; Diekhans, M.; Smith, K.E.; Rosenbloom, K.R.; Raney, B.J.; et al. The UCSC genome browser database: Update 2010. Nucleic Acids Res. 2009, 38, D613–D619. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668–D672. [Google Scholar] [CrossRef] [PubMed]
- Luciano, J.S. PAX of mind for pathway researchers. Drug Discov. Today 2005, 10, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Gurwitz, D.; Weizman, A.; Rehavi, M. Education: Teaching pharmacogenomics to prepare future physicians and researchers for personalized medicine. Trends Pharmacol. Sci. 2003, 24, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Frueh, F.W.; Goodsaid, F.; Rudman, A.; Huang, S.M.; Lesko, L.J. The need for education in pharmacogenomics: A regulatory perspective. Pharmacogenomics J. 2005, 5, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zou, F.; Wright, F.A. Practical FDR-based sample size calculations in microarray experiments. Bioinformatics 2005, 21, 3264–3272. [Google Scholar] [CrossRef] [PubMed]
- Swen, J.J.; Nijenhuis, M.; de Boer, A.; Grandia, L.; Maitland-van der Zee, A.H.; Mulder, H.; Rongen, G.A.; van Schaik, R.H.; Schalekamp, T.; Touw, D.J.; et al. Pharmacogenetics: From bench to byte—an update of guidelines. Clin. Pharmacol. Ther. 2011, 89, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, P.A.; Schladt, D.; Israni, A.; Oetting, W.S.; Lin, Y.C.; Leduc, R.; Guan, W.; Lamba, V.; Matas, A.J. DeKAF Investigators. Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: Results from a kidney transplant consortium. Transplantation 2012, 93, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Sarwal, M.; Chua, M.S.; Kambham, N.; Hsieh, S.C.; Satterwhite, T.; Masek, M.; Salvatierra, O. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med. 2003, 349, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Brouard, S.; Mansfield, E.; Braud, C.; Li, L.; Giral, M.; Hsieh, S.C.; Baeten, D.; Zhang, M.; Ashton-Chess, J.; Braudeau, C.; et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc. Natl. Acad. Sci. USA 2007, 104, 15448–15453. [Google Scholar] [CrossRef] [PubMed]
- Yabu, J.M.; Vincenti, F. Kidney transplantation: The ideal immunosuppression regimen. Adv. Chronic Kidney Dis. 2009, 16, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Newell, K.A.; Asare, A.; Kirk, A.D.; Gisler, T.D.; Bourcier, K.; Suthanthiran, M.; Burlingham, W.J.; Marks, W.H.; Sanz, I.; Lechler, R.I.; et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Investig. 2010, 120, 1836–1847. [Google Scholar] [CrossRef] [PubMed]
- Dell’Oglio, M.P.; Zaza, G.; Rossini, M.; Divella, C.; Pontrelli, P.; Verrienti, R.; Rutigliano, M.; Ditonno, P.; Stifanelli, P.; Ancona, N.; et al. The anti-fibrotic effect of mycophenolic acid-induced neutral endopeptidase. J. Am. Soc. Nephrol. 2010, 21, 2157–2168. [Google Scholar] [CrossRef] [PubMed]
- Zaza, G.; Rascio, F.; Pontrelli, P.; Granata, S.; Stifanelli, P.; Accetturo, M.; Ancona, N.; Gesualdo, L.; Lupo, A.; Grandaliano, G. Karyopherins: Potential biological elements involved in the delayed graft function in renal transplant recipients. BMC Med. Genomics 2014, 7. [Google Scholar] [CrossRef]
- Soderholm, J.F.; Bird, S.L.; Kalab, P.; Sampathkumar, Y.; Hasegawa, K.; Uehara-Bingen, M.; Weis, K.; Heald, R. Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem. Biol. 2011, 6, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, K.M.; Sivakumaran, H.; Heaton, S.M.; Harrich, D.; Jans, D.A. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem. J. 2012, 443, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, K.M.; Rawlinson, S.M.; Hearps, A.C.; Jans, D.A. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. J. Biomol. Screen. 2011, 16, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Kainz, A.; Perco, P.; Mayer, B.; Soleiman, A.; Steininger, R.; Mayer, G.; Mitterbauer, C.; Schwarz, C.; Meyer, T.W.; Oberbauer, R. Gene-expression profiles and age of donor kidney biopsies obtained before transplantation distinguish medium term graft function. Transplantation 2007, 83, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Saint-Mezard, P.; Berthier, C.C.; Zhang, H.; Hertig, A.; Kaiser, S.; Schumacher, M.; Wieczorek, G.; Bigaud, M.; Kehren, J.; Rondeau, E.; et al. Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection. Transpl. Int. 2009, 22, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Vogenberg, F.R.; Barash, C.I.; Pursel, M. Personalized medicine: Part 2: Ethical, legal, and regulatory issues. Pharm. Ther. 2010, 35, 624–642. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaza, G.; Granata, S.; Tomei, P.; Dalla Gassa, A.; Lupo, A. Personalization of the Immunosuppressive Treatment in Renal Transplant Recipients: The Great Challenge in “Omics” Medicine. Int. J. Mol. Sci. 2015, 16, 4281-4305. https://doi.org/10.3390/ijms16024281
Zaza G, Granata S, Tomei P, Dalla Gassa A, Lupo A. Personalization of the Immunosuppressive Treatment in Renal Transplant Recipients: The Great Challenge in “Omics” Medicine. International Journal of Molecular Sciences. 2015; 16(2):4281-4305. https://doi.org/10.3390/ijms16024281
Chicago/Turabian StyleZaza, Gianluigi, Simona Granata, Paola Tomei, Alessandra Dalla Gassa, and Antonio Lupo. 2015. "Personalization of the Immunosuppressive Treatment in Renal Transplant Recipients: The Great Challenge in “Omics” Medicine" International Journal of Molecular Sciences 16, no. 2: 4281-4305. https://doi.org/10.3390/ijms16024281
APA StyleZaza, G., Granata, S., Tomei, P., Dalla Gassa, A., & Lupo, A. (2015). Personalization of the Immunosuppressive Treatment in Renal Transplant Recipients: The Great Challenge in “Omics” Medicine. International Journal of Molecular Sciences, 16(2), 4281-4305. https://doi.org/10.3390/ijms16024281