Mechanistic Study of L-Rhamnose Monohydrate Dehydration Using Terahertz Spectroscopy and Density Functional Theory
<p>Molecular structure diagrams of L-rhamnose (<b>a</b>) and rhamnose monohydrate (<b>b</b>), and unit cell diagrams of L-rhamnose (<b>c</b>) and L-rhamnose monohydrate (<b>d</b>). The white, gray, and red spheres represent hydrogen (H) atoms, carbon (C) atoms, and oxygen (O) atoms, respectively. ABC represents the unit cell parameters.</p> "> Figure 2
<p>THz experimental absorption spectra and error bars of L-rhamnose (<b>a</b>) and L-rhamnose monohydrate (<b>b</b>) at 25 °C.</p> "> Figure 3
<p>Comparison between experimental and calculated Raman spectra of L-rhamnose (<b>a</b>) and L-rhamnose monohydrate (<b>b</b>). Spectra are vertically offset for clarity.</p> "> Figure 4
<p>Comparison of PXRD experiment and calculated diffraction patterns of L-rhamnose (<b>a</b>) and L-rhamnose monohydrate (<b>b</b>) (with vertical spectral shift for clarity).</p> "> Figure 5
<p>(<b>a</b>) THz spectra of L-rhamnose monohydrate at different temperatures (spectra are vertically offset for clarity); (<b>b</b>) TGA curve of L-rhamnose monohydrate.</p> "> Figure 6
<p>THz spectra of L-rhamnose monohydrate at different times at 100 °C (for clarity, the spectra are vertically shifted).</p> "> Figure 7
<p>Experimental (<b>a</b>) and calculated (<b>b</b>) THz spectra, and vibrational modes of L-rhamnose at 2.13 THz (<b>c</b>) and 2.44 THz (<b>d</b>). ABC represents the unit cell parameters, and the green arrow indicates the vibrational direction at the corresponding THz frequency.</p> "> Figure 8
<p>Experimental (<b>a</b>) and calculated (<b>b</b>) THz spectra, and vibrational modes of L-rhamnose monohydrate at 2.12 THz (<b>c</b>), 2.38 THz (<b>d</b>), and 2.68 THz (<b>e</b>). ABC represents the unit cell parameters, and the green arrow indicates the vibrational direction at the corresponding THz frequency.</p> "> Figure 9
<p>Schematic diagram of THz-TDS system optical path.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solid THz Absorption Spectra of L-Rhamnose and Its Monohydrate
2.2. Raman Spectra of L-Rhamnose and L-Rhamnose Monohydrate
2.3. PXRD of L-Rhamnose and L-Rhamnose Monohydrate
2.4. Evolution of THz Spectra During Dehydration Process
2.5. Molecular Dynamic Calculation
3. Materials and Experiments
3.1. Sample Preparation
3.2. THz-TDS System
3.3. Raman Spectroscopy Measurement
3.4. PXRD Measurement
4. Methods and Calculations
4.1. Absorption Coefficient
4.2. Simulation Calculation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagstaff, B.A.; Zorzoli, A.; Dorfmueller, H.C. NDP-rhamnose biosynthesis and rhamnosyltransferases: Building diverse glycoconjugates in nature. Biochem. J. 2021, 478, 685–701. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Ma, Z.; Wei, M.; Liu, J.; Li, D.; Zhang, H.; Wang, P.G.; Chen, M. L-rhamnose enhances the immunogenicity of melanoma-associated antigen A3 for stimulating antitumor immune responses. Bioconjugate Chem. 2016, 27, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Lombardo, S.A.; Herner, D.N.; Talan, R.S.; Wall, K.A.; Sucheck, S.J. Synthesis of a single-molecule L-rhamnose-containing three-component vaccine and evaluation of antigenicity in the presence of anti-L-rhamnose antibodies. J. Am. Chem. Soc. 2010, 132, 17236–17246. [Google Scholar] [CrossRef]
- Dhaked, D.K.; Divya, M.B.; Guruprasad, L. A structural and functional perspective on the enzymes of Mycobacterium tuberculosis involved in the L-rhamnose biosynthesis pathway. Prog. Biophys. Mol. Biol. 2018, 145, 52–64. [Google Scholar] [CrossRef]
- Jackson, E.L.; Hudson, C.S. Two forms of anhydrous L-rhamnose and a new method for the preparation of crystalline β-tetraacetyl-L-rhamnose. J. Am. Chem. Soc. 1937, 59, 1076–1078. [Google Scholar] [CrossRef]
- Tang, Y.; Xia, X.; Zhu, Z.; Zhang, X.; Yang, B. Terahertz spectroscopic study of the dehydration process and hydrogen bonding network of DL-glutamic acid and its monohydrate. J. Mol. Struct. 2024, 1313, 138610. [Google Scholar] [CrossRef]
- Pudipeddi, M.; Serajuddin, A.T. Trends in solubility of polymorphs. J. Pharm. Sci. 2005, 94, 929–939. [Google Scholar] [CrossRef]
- Elder, J.P. Thermophysical characterization studies of pharmaceutical hydrates. Thermochim. Acta 1994, 234, 153–164. [Google Scholar] [CrossRef]
- Shimanovich, R.; Cooke, M.; Peterson, M.L. A rapid approach to the preliminary assessment of the physical stability of pharmaceutical hydrates. J. Pharm. Sci. 2012, 101, 4013–4017. [Google Scholar] [CrossRef]
- Yang, B.; Li, Y.; Lei, J.; Cai, M.; Hu, Z.; Shen, Y.; Deng, X. Dehydration kinetics and mechanism of the stable isonicotinamide hydrate revealed by terahertz spectroscopy and DFT calculation. Int. J. Pharm. 2023, 638, 122893. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Shen, X. Preliminary study on discrimination of transgenic cotton seeds using terahertz time-domain spectroscopy. Food Sci. Nutr. 2020, 8, 5426–5433. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Chen, Y.; Chen, W.; Guo, H.; Wu, Q.; Li, M. Tunable broadband-narrowband and dual-broadband terahertz absorber based on a hybrid metamaterial vanadium dioxide and graphene. Micromachines 2023, 14, 201. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Liu, Y.; Chen, Q.; Fu, Y.; Cui, T.J. Applications of terahertz spectroscopy in the detection and recognition of substances. Front. Phys. 2022, 10, 869537. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, L.; Peng, R.-Y. Research progress in the effects of terahertz waves on biomacromolecules. Mil. Med. Res. 2021, 8, 28. [Google Scholar] [CrossRef]
- Komandin, G.A.; Porodinkov, O.E.; Nozdrin, V.S.; Musina, G.R.; Chernomyrdin, N.V.; Zaytsev, K.I.; Spektor, I.E. Temperature evolution of the dielectric response of α-lactose monohydrate in the THz frequency range. Opt. Spectrosc. 2020, 128, 752–758. [Google Scholar] [CrossRef]
- Takahashi, M.; Ishikawa, Y. Terahertz vibrations of crystalline α-D-glucose and the spectral change in mutual transitions between the anhydride and monohydrate. Chem. Phys. Lett. 2015, 642, 29–34. [Google Scholar] [CrossRef]
- Zhang, B.; Li, S.; Wang, C.; Zou, T.; Pan, T.; Zhang, J.; Xu, Z.; Ren, G.; Zhao, H. Terahertz spectroscopic investigation of gallic acid and its monohydrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 190, 40–46. [Google Scholar] [CrossRef]
- Yan, H.; Fan, W.; Chen, X.; Liu, L.; Wang, H.; Jiang, X. Terahertz signatures and quantitative analysis of glucose anhydrate and mixture. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119825. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Lin, L.; Cheng, L.; Li, X.; Yang, B. Terahertz spectroscopy detection of L-lysine hydrate dehydration process. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 329, 125502. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Liu, J.; Ling, D.; Deng, X.; Liu, B.; Li, R.; Wei, D. Terahertz spectroscopy detection of lithium citrate tetrahydrate and its dehydration kinetics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120470. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, H.; Yang, Z.; Tang, M.; Zhang, M.; Du, C.; Cui, H.-L.; Wei, D. Transformation and dehydration kinetics of methylene blue hydrates detected by terahertz time-domain spectroscopy. RSC Adv. 2017, 7, 41667–41674. [Google Scholar] [CrossRef]
- Zou, T.; Li, S.; Pan, T.; Zhang, B.; Yu, Z.; Li, X.; Zhang, J.; Zhao, H. Terahertz spectra of ninhydrin and indane-1,2,3-trione. J. Infrared Millim. Terahertz Waves 2017, 38, 896–908. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, X.; Zhu, Z.; Yang, B. Vibrational modes optimization and terahertz time-domain spectroscopy of L-lysine and L-lysine hydrate. J. Mol. Struct. 2021, 1232, 129952. [Google Scholar] [CrossRef]
- Chen, L.; Ren, G.; Liu, L.; Zhou, L.; Li, S.; Zhu, Z.; Zhang, J.; Zhang, W.; Li, Y.; Zhang, W.; et al. Probing lattice vibration of alkali halide crystals by broadband terahertz spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 254, 119671. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.A.; Burgess, L.; Ruggiero, M.T. The necessity of periodic boundary conditions for the accurate calculation of crystalline terahertz spectra. Phys. Chem. Chem. Phys. 2021, 23, 20038–20051. [Google Scholar] [CrossRef]
- Zong, S.; Ren, G.; Li, S.; Zhang, B.; Zhang, J.; Qi, W.; Han, J.; Zhao, H. Terahertz time-domain spectroscopy of L-histidine hydrochloride monohydrate. J. Mol. Struct. 2018, 1157, 486–491. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Y.; Shu, J.; Yan, B.; Peng, B.; Qian, S.; Su, B.; Zhang, C. Exploring terahertz spectral characteristics of L-sorbose and D-melibiose in solid and liquid states. iScience 2023, 27, 108602. [Google Scholar] [CrossRef]
- Wang, H.; Shi, W.; Hou, L.; Wang, Z.; Wu, M.; Li, C.; Li, C. Effect of THz spectra of L-arginine molecules by the combination of water molecules. iScience 2022, 25, 103788. [Google Scholar] [CrossRef]
- Sengupta, R.; Adhiya, A.; Sekhar, K.S.R.; Kaur, R. Measurement of complex dielectric constant using optical method. IEEE Trans. Instrum. Meas. 2018, 68, 1814–1820. [Google Scholar] [CrossRef]
- Takagi, S.; Jeffrey, G.A. A neutron diffraction refinement of the crystal structure of α-L-rhamnose monohydrate. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1978, 34, 2551–2555. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef]
- Kovács, P.; Tran, F.; Blaha, P.; Madsen, G.K.H. Comparative study of the PBE and SCAN functionals: The particular case of alkali metals. J. Chem. Phys. 2019, 150, 164119. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [PubMed]
- Tkatchenko, A. Current understanding of van der Waals interactions in computational materials science. J. Chem. Phys. 2015, 146, 034106. [Google Scholar] [CrossRef]
- Kendrick, J.; Burnett, A.D. Exploring the reliability of DFT calculations of the infrared and terahertz spectra of sodium peroxodisulfate. J. Infrared Millim. Terahertz Waves 2019, 41, 382–413. [Google Scholar] [CrossRef]
Sample | Exp. (THz) | Cal. (THz) | Vibration Mode Description |
---|---|---|---|
L-rhamnose | 2.11 | 2.13 | twisting of -CH3 and asymmetric stretching of -OH |
2.46 | 2.44 | in plane oscillation of -OH and -O- | |
L-rhamnose monohydrate | 2.11 | 2.12 | oscillation of water molecules, stretching of -OH on the interstitial C atom, and slight oscillation of -O- |
2.43 | 2.38 | swing of H atom on -OH | |
2.66 | 2.68 | collective vibration of molecules and the translation of water molecules |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, B.; Hou, Z.; Zhao, Y.; Su, B.; Zhang, C.; Li, K. Mechanistic Study of L-Rhamnose Monohydrate Dehydration Using Terahertz Spectroscopy and Density Functional Theory. Molecules 2025, 30, 1189. https://doi.org/10.3390/molecules30051189
Yan B, Hou Z, Zhao Y, Su B, Zhang C, Li K. Mechanistic Study of L-Rhamnose Monohydrate Dehydration Using Terahertz Spectroscopy and Density Functional Theory. Molecules. 2025; 30(5):1189. https://doi.org/10.3390/molecules30051189
Chicago/Turabian StyleYan, Bingxin, Zeyu Hou, Yuhan Zhao, Bo Su, Cunlin Zhang, and Kai Li. 2025. "Mechanistic Study of L-Rhamnose Monohydrate Dehydration Using Terahertz Spectroscopy and Density Functional Theory" Molecules 30, no. 5: 1189. https://doi.org/10.3390/molecules30051189
APA StyleYan, B., Hou, Z., Zhao, Y., Su, B., Zhang, C., & Li, K. (2025). Mechanistic Study of L-Rhamnose Monohydrate Dehydration Using Terahertz Spectroscopy and Density Functional Theory. Molecules, 30(5), 1189. https://doi.org/10.3390/molecules30051189