Compounds Involved in the Invasive Characteristics of Lantana camara
"> Figure 1
<p>Stand and leaves of <span class="html-italic">L. camara</span>.</p> "> Figure 2
<p>Flowers and fruits of <span class="html-italic">L. camara</span>.</p> "> Figure 3
<p>The compounds involved in the defense function against herbivore mammals.</p> "> Figure 4
<p>The compounds involved in the defense function against herbivorous insects.</p> "> Figure 5
<p>The compounds involved in the defense function against parasitic nematodes.</p> "> Figure 6
<p>The compounds involved in the defense function against pathogenic fungi and bacteria.</p> "> Figure 7
<p>The compounds involved in the allelopathy.</p> "> Figure 8
<p>Action mechanisms of the compounds discussed in this paper. These compounds are involved in the hepathoxic, insecticidal, nematocidal, fungicidal, and allelopathic activity of <span class="html-italic">L. camara</span>. Purple arrow: direct action; blue arrow: secondary and tertiary action.</p> ">
Abstract
:1. Introduction
2. Defense Compounds Against Herbivore Mammals
3. Defense Compounds Against Herbivorous Insects
4. Defense Compounds Against Parasitic Nematodes
5. Defense Compounds Against Pathogenic Fungi and Bacteria
6. Compounds Involved in Allelopathy
7. Contributions of the Compounds to the Invasive Characteristics of L. camara
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kew Royal Botanical Gardens Kew. Lantana camara L. Available online: https://powo.science.kew.org/taxon/325686-2 (accessed on 20 December 2024).
- CABI Compendium. Lantana camara (Lantana). Available online: https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.29771 (accessed on 20 December 2024).
- Global Invasive Species Database. Species Profile: Lantana camara. Available online: http://www.iucngisd.org/gisd/species.php?sc=56 (accessed on 20 December 2024).
- Weeds Australia—Profiles Lantana camara L. Available online: https://weeds.org.au/profiles/lantana-common-kamara/ (accessed on 20 December 2024).
- Sharma, G.P.; Raghubanshi, A.S.; Singh, J.S. Lantana invasion: An overview. Weed Biol. Manag. 2005, 5, 157–165. [Google Scholar] [CrossRef]
- Priyanka, N.; Joshi, P.K. A review of Lantana camara studies in India. Int. J. Sci. Res. Publ. 2013, 3, 1–11. [Google Scholar]
- Bhagwat, S.A.; Breman, E.; Thekaekara, T.; Thornton, T.F.; Willis, K.J. A battle lost? Report on two centuries of invasion and management of Lantana camara L. in Australia, India and South Africa. PLoS ONE 2012, 7, e32407. [Google Scholar] [CrossRef] [PubMed]
- Day, M.D.; Zalucki, M.P. Lantana camara Linn. (Verbenaceae). In Biological Control of Tropical Weeds Using Arthropods; Reeder, M.M., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 211–246. [Google Scholar]
- Sundaram, B.; Hiremath, A.J. Lantana camara invasion in a heterogeneous landscape: Patterns of spread and correlation with changes in native vegetation. Biol. Invasions 2012, 14, 1127–1141. [Google Scholar] [CrossRef]
- Negi, G.C.; Sharma, S.; Vishvakarma, S.C.; Samant, S.S.; Maikhuri, R.K.; Prasad, R.C.; Palni, L.M. Ecology and use of Lantana camara in India. Bot. Rev. 2019, 85, 109–130. [Google Scholar] [CrossRef]
- Vardien, W.; Richardson, D.M.; Foxcroft, L.C.; Thompson, G.D.; Wilson, J.R.U.; Le Roux, J.J. Invasion dynamics of Lantana camara L. (sensu lato) in South Africa. S. Afr. J. Bot. 2012, 81, 81–94. [Google Scholar] [CrossRef]
- Taylor, S.; Kumar, L.; Reid, N. Impacts of climate change and land-use on the potential distribution of an invasive weed: A case study of Lantana camara in Australia. Weed Res. 2012, 52, 391–401. [Google Scholar] [CrossRef]
- IUCN. 100 of the World’s Worst Invasive Alien Species. Available online: https://portals.iucn.org/library/sites/library/files/documents/2000-126.pdf (accessed on 20 December 2024).
- Adhikari, P.; Lee, Y.H.; Adhikari, P.; Poudel, A.; Choi, S.H.; Yun, J.Y.; Lee, D.H.; Park, Y.S.; Hong, S.H. Global invasion risk assessment of Lantana camara, a highly invasive weed, under future environmental change. Glob. Ecol. Conserv. 2024, 55, e03212. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Peng, S.; Zobel, K. Climate warming may facilitate invasion of the exotic shrub Lantana camara. PLoS ONE 2014, 9, e105500. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Sarkar, M.S.; Adhikari, B.S.; Rawat, G.S. Ageratina adenophora and Lantana camara in Kailash Sacred Landscape, India: Current distribution and future climatic scenarios through modeling. PLoS ONE 2021, 16, e0239690. [Google Scholar] [CrossRef]
- Kohli, R.K.; Dogra, K.S.; Batish, D.R.; Singh, H.P. Impact of invasive plants on the structure and composition of natural vegetation of northwestern Indian Himalayas. Weed Technol. 2004, 18, 1296–1300. [Google Scholar] [CrossRef]
- Dogra, K.S.; Kohli, R.K.; Sood, S.K. An assessment and impact of three invasive species in the Shivalik hills of Himachal Pradesh, India. Int. J. Biodivers. Conserv. 2009, 1, 4–10. [Google Scholar]
- Gooden, B.; French, K.; Turner, P.J. Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia. For. Ecol. Manag. 2009, 257, 960–967. [Google Scholar] [CrossRef]
- Paudel, C.K.; Tiwari, A.; Baniya, C.B.; Shrestha, B.B.; Jha, P.K. High impacts of invasive weed Lantana camara on plant community and soil physicochemical properties across habitat types in Central Nepal. Forests 2024, 15, 1427. [Google Scholar] [CrossRef]
- Iqbal, I.M.; Balzter, H.; Shabbir, A. Mapping Lantana camara and Leucaena leucocephala in protected areas of Pakistan: A geo-spatial approach. Remote Sens. 2023, 15, 1020. [Google Scholar] [CrossRef]
- Fandohan, A.B.; Koko, I.K.E.D.; Avocevou-Ayisso, C.; Gouwakinnou, G.N.; Savi, M.K.; Assogbadjo, A.E.; Kakai, R.G. Lantana camara (verbenaceae): A potential threat to the effectiveness of protected areas to conserve flora and fauna in Benin. Agron. Afr. 2015, 27, 115–126. [Google Scholar]
- Le Maitre, D.C.; Versfeld, D.B.; Chapman, R.A. The impact of invading alien plants on water resources in South Africa: A preliminary assessment. Water Res. Comm. 2000, 26, 397–408. [Google Scholar]
- Raphela, T.D.; Duffy, K. The Impact of Lantana camara on Invertebrates and plant species of the Groenkloof Nature Reserve, South Africa. Zool. Stud. 2002, 61, 33. [Google Scholar]
- Osunkoya, O.O.; Perrett, C. Lantana camara L. (Verbenaceae) invasion effects on soil physicochemical properties. Biol. Fertil. Soils 2011, 47, 349–355. [Google Scholar] [CrossRef]
- Ruwanza, S.; Shackleton, C.M. Effects of the invasive shrub, Lantana camara, on soil properties in the Eastern Cape, South Africa. Weed Biol. Manag. 2016, 16, 67–79. [Google Scholar] [CrossRef]
- te Beest, M.; Le Roux, J.J.; Richardson, D.M.; Brysting, A.K.; Suda, J.; Kubešová, M.; Pyšek, P. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012, 109, 19–45. [Google Scholar] [CrossRef]
- Swarbrick, J.T.; Willson, B.W.; Hannan-Jones, M.A. The biology of Australian weeds 25. Lantana camara L. Plant Prot. Q. 1995, 10, 82. [Google Scholar]
- Samways, M.J.; Caldwell, P.M.; Osborn, R. Ground-living invertebrate assemblages in native, planted and invasive vegetation in South Africa. Agric. Ecosys. Environ. 1995, 59, 19–32. [Google Scholar] [CrossRef]
- Nanjappa, H.V.; Saravanane, P.; Ramachandrappa, B.K. Biology and management of Lantana camara L.—A review. Agric. Rev. 2005, 26, 272–280. [Google Scholar]
- Aravind, N.A.; Rao, D.; Ganeshaiah, K.N.; Shaanker, R.U.; Poulsen, J.G. Impact of the invasive plant, Lantana camara, on bird assemblages at Malé Mahadeshwara Reserve Forest, South India. Trop. Ecol. 2010, 51, 325–338. [Google Scholar]
- Raphela, T.D.; Duffy, K.J. Effects of the density of invasive Lantana camara plants on the biodiversity of large and small mammals in the Groenkloof Nature Reserve (GNR) in South Africa. Biology 2023, 12, 296. [Google Scholar] [CrossRef]
- Berry, Z.C.; Wevill, K.; Curran, T.J. The invasive weed Lantana camara increases fire risk in dry rainforest by altering fuel beds. Weed Res. 2011, 51, 525–533. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Witt, A.B.; Aool, W.; Pratt, C.F. Distribution of the invasive alien weed, Lantana camara, and its ecological and livelihood impacts in eastern Africa. Afr. J. Range Forage Sci. 2017, 34, 1–11. [Google Scholar] [CrossRef]
- Kamath, M.K. A review of biological control of insect pests and noxious weeds in Fiji (1969–1978). Fiji Agric. J. 1979, 41, 55–72. [Google Scholar]
- Cock, M.J.W.; Godfray, H.C.J. Biological control of Lantana camara L. in the Philippines. J. Plant Prot. Trop. 1985, 2, 61–63. [Google Scholar]
- Habeck, D.H. The case for biological control of lantana in Florida citrus groves. Proc. Florida State Hortic. Soc. 1976, 89, 17–18. [Google Scholar]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. A Geographic Atlas of World Weeds; Krieger Publishing Company: Malabar, FL, USA, 1991; pp. 1–391. [Google Scholar]
- Swarbrick, J.T.; Willson, B.W.; Hannan-Jones, M.A. Lantana camara L. In The Biology of Australian Weeds; Panetta, F.D., Groves, R.H., Shepherd, R.C.H., Eds.; R.G. and F.J. Richardson: Melbourne, Australia, 1998; pp. 119–140. [Google Scholar]
- Graaff, J.L. Lantana camara, the plant and some methods for its control. S. Afr. For. J. 1986, 136, 26–30. [Google Scholar] [CrossRef]
- Love, A.; Babu, S.; Babu, C.R. Management of Lantana, an invasive alien weed, in forest ecosystems of India. Curr. Sci. 2009, 97, 1421–1429. [Google Scholar]
- Gentle, C.B.; Duggin, J.A. Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecol. 1997, 132, 85–95. [Google Scholar] [CrossRef]
- Ray, A.; Quader, S. Genetic diversity and population structure of Lantana camara in India indicates multiple introductions and gene flow. Plant Biol. 2014, 16, 651–658. [Google Scholar] [CrossRef]
- Goyal, N.; Sharma, G.P. Lantana camara L. (sensu lato): An enigmatic complex. NeoBiota 2015, 25, 15–26. [Google Scholar]
- Mack, R.N.; Simberloff, D.; Lonsdale, W.M.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemology, global consequences and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Ntalo, M.; Ravhuhali, K.E.; Moyo, B.; Hawu, O.; Msiza, N.H. Lantana camara: Poisonous species and a potential browse species for goats in Southern Africa—A review. Sustainability 2022, 14, 751. [Google Scholar] [CrossRef]
- Ghisalberti, E.L. Lantana camara L. (Verbenaceae). Fitoterapia 2000, 71, 467–486. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.P.; Sharma, S.; Pattabhi, V.; Mahato, S.B.; Sharma, P.D. A review of the hepatotoxic plant Lantana camara. Crit. Rev. Toxicol. 2007, 37, 313–352. [Google Scholar] [CrossRef]
- Sousa, E.O.; Costa, J.G. Genus Lantana: Chemical aspects and biological activities. Rev. Bras. Farmacogn. 2012, 22, 1115–1180. [Google Scholar] [CrossRef]
- Shah, M.; Alharby, H.F.; Hakeem, K.R. Lantana camara: A comprehensive review on phytochemistry, ethnopharmacology and essential oil composition. Lett. Appl. Nanobiosci. 2020, 9, 1199–1207. [Google Scholar]
- Kumar, R.; Guleria, N.; Deeksha, M.G.; Kumari, N.; Kumar, R.; Jha, A.K.; Parmar, N.; Ganguly, P.; de Aguiar Andrade, E.H.; Ferreira, O.O.; et al. From an invasive weed to an insecticidal agent: Exploring the potential of Lantana camara in insect management strategies—A review. Int. J. Mol. Sci. 2024, 25, 12788. [Google Scholar] [CrossRef]
- Khan, M.; Srivastava, S.K.; Syamasundar, K.V.; Singh, M.; Naqvi, A.A. Chemical composition of leaf and flower essential oil of Lantana camara from India. Flavour Fragr. J. 2002, 17, 75–77. [Google Scholar] [CrossRef]
- Kalita, S.; Kumar, G.; Karthik, L.; Rao, K.V.B. A review on medicinal properties of Lantana camara Linn. Res. J. Pharm. Technol. 2012, 5, 711–715. [Google Scholar]
- Reddy, N.M. Lantana camara Linn. Chemical constituents and medicinal properties: A review. Sch. Acad. J. Pharm. 2013, 2, 445–448. [Google Scholar]
- Quinn, J.C.; Kessell, A.; Weston, L.A. Secondary plant products causing photosensitization in grazing herbivores: Their structure, activity and regulation. Int. J. Mol. Sci. 2014, 15, 1441–1465. [Google Scholar] [CrossRef]
- Tokarnia, C.H.; Döbereiner, J.; Lazzari, A.A.; Peixoto, P.V. Intoxicação por Lantana spp. (Verbenaceae) em bovinos nos Estados de Mato Grosso e Rio de Janeiro. Pesq. Vet. Bras. 1984, 4, 129–141. [Google Scholar]
- Sharma, O.P.; Dawra, R.K.; Makkar, H.P.S. Effect of polymorphic crystal forms of lantana toxins on icterogenic action in guinea pigs. Toxicol. Lett. 1988, 42, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.P.; Makkar, H.P.; Dawra, R.K. A review of the noxious plant Lantana camara. Toxicon 1988, 26, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Oliveira, L.G.; Schild, C.O.; Boabaid, F.; Lucas, M.; Buroni, F.; Castro, M.B.; Riet-Correa, F. Lantana camara poisoning in cattle that took refuge during a storm in a forest invaded by this plant. Toxicon 2023, 229, 107124. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.H.V.; Suffredini, I.B.; Romoff, P.; Lago, J.H.G.; Bernardi, M.M. Toxicity of apolar and polar Lantana camara L. crude extracts in mice. Res. Vet. Sci. 2011, 90, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Nellis, D.W. Poisonous Plants and Animals of Florida and the Caribbean; Pineapple Press Inc.: Sarasota, FL, USA, 1997; pp. 1–416. [Google Scholar]
- Sharma, S.; Sharma, O.P.; Singh, B.; Bhat, T.K. Biotransformation of lantadenes, the pentacyclic triterpenoid hepatotoxins of lantana plant, in guinea pig. Toxicon 2000, 38, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Pattabhi, V.; Sukumar, N.; Sharma, O.P. Crystal structure of lantadene A, the major triterpenoid from Lantana camara, red variety. Acta Crystallogr. 1991, 47, 810–812. [Google Scholar]
- Ji Netha, M.; Rufes, C.; Sadasivan, C.; Pattabhi, V.; Sharma, O.P. Molecular structure of lantadene B & C, triterpenoids of Lantana camara, red variety: Lantadene B, 22β- angeloyloxy-3-oxoolean-12-en-28oic acid; lantadene C, 22β(S)-2-methylbutanoyloxy-3- oxoolean-12-en-28-oic acid. J. Crystallogr. Spectrosc. Res. 1993, 23, 469–472. [Google Scholar]
- Kabaleeswaran, V.; Rajan, S.S.; Pattabhi, V.; Sharma, O.P. Crystal structure of angeloyloxy-oleanolic acid (reduced lantadene A) C35H54O5. Z. Kristallogr. 1996, 211, 411–412. [Google Scholar] [CrossRef]
- Sharma, O.P.; Vaid, J.; Pattabhi, V.; Bhutani, K.K. Biological action of lantadene C, a new hepatotoxicant from Lantana camara var. aculeala. J. Biochem. Toxicol. 1992, 7, 73–79. [Google Scholar] [CrossRef]
- Sharma, O.P.; Dawra, R.K. Effect of lantana toxicity on canalicular plasma membrane of guinea pig liver. Chem. Biol. Interact. 1984, 49, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.F.; Medeiros, H.C.; Maioli, M.A.; Lima, M.C.; Rocha, B.A.; da Costa, F.B.; Curti, C.; Groppo, M.; Mingatto, F.E. Comparative effects of lantadene A and its reduced metabolite on mitochondrial bioenergetics. Toxicon 2010, 55, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, X.; Zhou, Y.; Wang, X.; Yu, Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target. Ther. 2022, 7, 196. [Google Scholar] [CrossRef] [PubMed]
- Keane, R.M.; Crawley, M.L. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Blossey, B.; Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants—A hypothesis. J. Ecol. 1995, 83, 887–889. [Google Scholar] [CrossRef]
- Muller-Scharer, H.; Schaffner, U.; Steinger, T. Evolution in invasive plants: Implications for biological control. Trends Ecol. Evol. 2004, 19, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Mack, R.M. Predicting the identity and fate of plant invaders: Emergent and emerging approaches. Biol. Conserv. 1996, 78, 107–121. [Google Scholar] [CrossRef]
- Chengxu, W.; Mingxing, Z.; Xuhui, C.; Bo, Q. Review on allelopathy of exotic invasive plants. Procedia Eng. 2011, 18, 240–246. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Invasive Characteristics and Impacts of Ambrosia trifida. Agronomy 2024, 14, 2868. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. The impact and invasive mechanisms of Pueraria montana var. lobata, one of the world’s worst alien species. Plants 2023, 12, 3066. [Google Scholar] [PubMed]
- Kato-Noguchi, H.; Kurniadie, D. The invasive mechanisms of the noxious alien plant species Bidens pilosa. Plants 2024, 13, 356. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Invasive characteristics of Robinia pseudoacacia and its impacts on the species diversity. Diversity 2024, 16, 773. [Google Scholar] [CrossRef]
- Palmer, W.A.; Pullen, K.R. The phytophagous arthropods associated with Lantana camara, L. hirsuta, L. urticifolia, and L. urticoides (Verbenaceae) in North America. Biol. Control 1995, 5, 54–72. [Google Scholar] [CrossRef]
- Palmer, W.A.; Pullen, K.R. The host range of Falconia intermedia (Distant) (Hemiptera: Miridae): A potential biological control agent for Lantana camara L. (Verbenaceae). Proc. Entomol. Soc. Wash. 1998, 100, 633–635. [Google Scholar]
- Baars, J.R.; Urban, A.J.; Hill, M.P. Biology, host range, and risk assessment supporting release in Africa of Falconia intermedia (Heteroptera: Miridae), a new biocontrol agent for Lantana camara. Biol. Control 2003, 28, 282–292. [Google Scholar] [CrossRef]
- Day, M.D.; McAndrew, T.D. The biology and host range of Falconia intermedia (Distant) (Hemiptera: Miridae), a potential biological control agent for Lantana camara L. (Verbenaceae) in Australia. Biocontrol Sci. Technol. 2003, 13, 13–22. [Google Scholar] [CrossRef]
- Baars, J.R.; Neser, S. Past and present initiatives on the biological control of Lantana camara (Verbenaceae) in South Africa. Afr. Entomol. Mem. 1999, 1, 21–33. [Google Scholar]
- Heshula, L.U.P.; Hill, M.P. The effect of Lantana camara leaf quality on the performance of Falconia intermedia. BioControl 2011, 56, 925–933. [Google Scholar] [CrossRef]
- Heshula, L.U.P.; Hill, M.P. The effect of sap-sucking by Falconia intermedia (Hemiptera: Miridae) on the emission of volatile organic compounds from the leaves of Lantana camara varieties. Afr. Entomol. 2014, 22, 210–213. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; van Loon, J.J.A.; Dicke, M. Insect-Plant Biology, 2nd ed.; Oxford University Press: Oxford, UK, 2006; pp. 1–440. [Google Scholar]
- Gatehouse, J.A. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol. 2002, 156, 145–169. [Google Scholar] [CrossRef]
- Southwood, S.R. Insects and the plant surface. In Plant Surfaces and Insects—An Overview; Juniper, B., Southwood, R., Eds.; Edward Arnold Press: London, UK, 1986; pp. 1–22. [Google Scholar]
- Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant surfaces: Structures and functions for biomimetic innovations. Nano-Micro Lett. 2017, 9, 1–40. [Google Scholar] [CrossRef]
- Kollner, T.G.; Held, M.; Lenk, C.; Hiltpold, I.; Turlings, T.C.; Gershenzon, J.; Degenhardt, J. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 2008, 20, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.A.; Erb, M.; Duployer, M.; Zwahlen, C.; Doyen, G.R.; Turlings, T.C. Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol. 2012, 194, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xin, Z.; Li, J.; Hu, L.; Lou, Y.; Lu, J. (E)-β-caryophyllene functions as a host location signal for the rice white-backed planthopper Sogatella furcifera. Physiol. Mol. Plant Pathol. 2015, 91, 106–112. [Google Scholar] [CrossRef]
- Khan, M.; Mahmood, A.; Alkhathlan, H.Z. Characterization of leaves and flowers volatile constituents of Lantana camara growing in central region of Saudi Arabia. Arab. J. Chem. 2016, 9, 764–774. [Google Scholar] [CrossRef]
- Aartsma, Y.; Bianchi, F.J.; van der Werf, W.; Poelman, E.H.; Dicke, M. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. New Phytol. 2017, 216, 1054–1063. [Google Scholar] [CrossRef]
- Dicke, M.; Baldwin, I.T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends Plant Sci. 2010, 15, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Agawall, A.A. Future direction in the study of induced response to herbivory. Entomol. Exp. Appl. 2005, 115, 97–105. [Google Scholar] [CrossRef]
- Kasmara, H.; Melanie, M.; Nurfajri, D.A.; Hermawan, W.; Panatarani, C. The toxicity evaluation of prepared Lantana camara nano extract against Spodoptera litura (Lepidoptera: Noctuidae). In Proceedings of the 1st International Conference and Exhibition on Powder Technology, Jatinangor, Indonesia, 8–9 August 2017; AIP Publishing: Melville, NY, USA, 2017; p. 030046. [Google Scholar]
- Melanie, M.; Hermawan, W.; Kasmara, H.; Panatarani, C. Physicochemical characterizations and insecticidal properties of Lantana camara leaf ethanolic extract with powder application. In Proceedings of the 2nd International Conference and Exhibition on Powder Technology, Surakarta, Indonesia, 20–21 August 2019; AIP Publishing: Melville, NY, USA, 2020; p. 04002. [Google Scholar]
- Kayesth, S.; Gupta, K.K. Impact of Lantana camara hexane extract on survival, growth and development of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoriedae). Acta Ecol. Sin. 2018, 38, 187–192. [Google Scholar] [CrossRef]
- Ganesan, T.; Subban, M.; Leslee, D.B.C.; Kuppannan, S.B.; Seedevi, P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers. Biorefin. 2024, 14, 14547–14558. [Google Scholar] [CrossRef]
- Belles, X.; Martin, D.; Piulachs, M.D. The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu. Rev. Entomol. 2005, 50, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Marchal, E.; Hult, E.F.; Tobe, S.S. Characterization of the juvenile hormone pathway in the viviparous cockroach, Diploptera punctata. PLoS ONE 2015, 10, e0117291. [Google Scholar] [CrossRef] [PubMed]
- Kayesth, S.; Kumar, S.; Shazad, M.; Gupta, K.K. Effects of hexane extract of Lantana camara leaves on reproductive bioactivities of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoreidae). Acta Ecol. Sin. 2020, 40, 247–253. [Google Scholar] [CrossRef]
- Nea, F.; Kambiré, D.A.; Genva, M.; Tanoh, E.A.; Wognin, E.L.; Martin, H.; Brostaux, Y.; Tomi, F.; Lognay, G.C.; Tonzibo, Z.F.; et al. Composition, seasonal variation, and biological activities of Lantana camara essential oils from Côte d’Ivoire. Molecules 2020, 25, 2400. [Google Scholar] [CrossRef]
- Ogunsina, O.O.; Oladimeji, M.O.; Lajide, L. Insecticidal action of hexane extracts of three plants against bean weevil, Callosobruchus maculatus (F.) and maize weevil, Sitophilus zeamais Motsch. J. Ecol. Nat. Environ. 2011, 3, 23–28. [Google Scholar]
- Ayalew, A.A. Insecticidal activity of Lantana camara extract oil on controlling maize grain weevils. Toxicol. Res. Appl. 2020, 4, 2397847320906491. [Google Scholar] [CrossRef]
- Zoubiri, S.; Baaliouamer, A. Chemical composition and insecticidal properties of Lantana camara L. leaf essential oils from Algeria. J. Essent. Oil Res. 2012, 24, 377–383. [Google Scholar] [CrossRef]
- Saxena, R.C.; Dixit, O.P.; Harshan, V. Insecticidal action of Lantana camara against Callosobruchus chinensis (Coleoptera: Bruchidae). J. Stored Prod. Res. 1992, 28, 279–281. [Google Scholar] [CrossRef]
- Aisha, K.; Visakh, N.U.; Pathrose, B.; Mori, N.; Baeshen, R.S.; Shawer, R. Extraction, chemical composition and insecticidal activities of Lantana camara Linn. leaf essential oils against Tribolium castaneum, Lasioderma serricorne and Callosobruchus chinensis. Molecules 2024, 29, 344. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Hu, X.P. Antitermitic effect of the Lantana camara plant on subterranean termites (Isoptera: Rhinotermitidae). Insect Sci. 2010, 17, 427–433. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Power, A.G. Release of invasive plants from fungal and viral pathogens. Nature 2003, 421, 625–627. [Google Scholar] [CrossRef]
- Lambert, K.; Bekal, S. Introduction to Plant-Parasitic Nematodes. The Plant Health Instructor. Available online: https://www.apsnet.org/edcenter/disandpath/nematode/intro/Pages/IntroNematodes.aspx (accessed on 20 December 2024).
- den Akker, S.E. Plant–nematode interactions. Curr. Opin. Plant Biol. 2021, 62, 102035. [Google Scholar]
- Pires, D.; Vicente, C.S.L.; Menéndez, E.; Faria, J.M.S.; Rusinque, L.; Camacho, M.J.; Inácio, M.L. The fight against plant-parasitic nematodes: Current status of bacterial and fungal biocontrol agents. Pathogens 2022, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Akhter, G.; Zafar, A.; Khan, W.; Jamshed, M. In vitro nemato-toxic potential of some leaf extracts on juvenile mortality of Meloidogyne incognita race-3. Arch. Phytopathol. Plant Prot. 2018, 51, 399–407. [Google Scholar] [CrossRef]
- Seid, A.; Fininsa, C.; Mekete, T.; Decraemer, W.; Wesemael, W.M. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.)—A century-old battle. Nematology 2015, 17, 995–1009. [Google Scholar] [CrossRef]
- Sikandar, A.; Zhang, M.Y.; Wang, Y.Y.; Zhu, X.F.; Liu, X.Y.; Fan, H.Y.; Xuan, Y.H.; Chen, L.J.; Duan, Y.X. Meloidogyne incognita (root-knot nematode) a risk to agriculture. Appl. Ecol. Environ. Res. 2020, 18, 1. [Google Scholar] [CrossRef]
- Ahmad, F.; Rather, M.A.; Siddiqui, M.A. Nematicidal activity of leaf extracts from Lantana camara L. against Meloidogyne incognita (kofoid and white) Chitwood and its use to manage roots infection of Solanum melongena L. Braz. Arch. Biol. Technol. 2010, 53, 543–548. [Google Scholar] [CrossRef]
- Bordoloi, K.; Bhagawati, B.; Baruah, A.M.; Neog, P.P.; Kurulkar, U. Biochemical mechanism of Lantana camara leaf extracts in the management of Meloidogyne incognita on tomato. J. Pharm. Phytochem. 2021, 10, 2828–2834. [Google Scholar] [CrossRef]
- Ali, N.I.; Siddiqui, A.; Zaki, M.J.; Shaukat, S.S. Nematicidal potential of Lantana camara against Meloidogyne javanica in mungbean. Nematol. Mediterr. Nematol. Medit. 2001, 29, 99–102. [Google Scholar]
- Malahlela, M.; Thibane, V.S.; Mudau, F.N. Nematocidal activity of fermented extracts from Lantana camara plant parts against Meloidogyne javanica on tomato. Int. J. Veg. Sci. 2021, 27, 20–28. [Google Scholar] [CrossRef]
- Shaukat, S.S.; Siddiqui, I.A. Lantana camara in the soil changes the fungal community structure and reduces impact of Meloidogyne javanica on mungbean. Phytopathol. Mediterr. 2001, 40, 245–252. [Google Scholar]
- Shaukat, S.S.; Siddiqui, I.A.; Ali, N.I.; Ali, S.A.; Khan, G.H. Nematicidal and allelopathic responses of Lantana camara root extract. Phytopathol. Mediterr. 2003, 42, 71–78. [Google Scholar]
- Begum, S.; Wahab, A.; Siddiqui, B.S.; Qamar, F. Nematicidal constituents of the aerial parts of Lantana camara. J. Nat. Prod. 2000, 63, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Zehra, S.Q.; Siddiqui, B.S.; Fayyaz, S.; Ramzan, M. Pentacyclic triterpenoids from the aerial parts of Lantana camara and their nematicidal activity. Chem. Biodivers. 2008, 5, 1856–1866. [Google Scholar] [CrossRef]
- Qamar, F.; Begum, S.; Raza, S.M.; Wahab, A.; Siddiqui, B.S. Nematicidal natural products from the aerial parts of Lantana camara Linn. Nat. Prod. Res. 2005, 19, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Ayub, A.; Siddiqui, B.S.; Fayyaz, S.; Kazi, F. Nematicidal triterpenoids from Lantana camara. Chem. Biodivers. 2015, 12, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Knogge, W. Fungal infection of plants. Plant Cell 1996, 8, 1711. [Google Scholar] [CrossRef] [PubMed]
- Ghabrial, S.A.; Suzuki, N. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 2009, 47, 353–384. [Google Scholar] [CrossRef] [PubMed]
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant pathogenic fungi. Microbiol. Spectr. 2017, 5, Funk-0023-2016. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Katoch, R.; Thakur, M.; Paul, Y.S. Antifungal activity of the essential oils of Chromolaena adenophorum, Ageratum conyzoides and Lantana camara. Indian Phytopathol. 2012, 65, 409–411. [Google Scholar]
- Chauhan, N.; Haider, S.Z.; Lohani, H.; Godbole, S.; Gwari, G.; Bhandari, U. Chemical composition and antifungal activity of essential oil of Cymbopogon distans (Nees ex Steud.) W. Watson, Eupatorium adenophorum Spreng and Lantana camara L. grown in Uttarakhand (India). J. Biol. Act. Prod. Nat. 2015, 5, 234–240. [Google Scholar]
- Bansal, R.K.; Gupta, R.K. Evaluation of plant extracts against Fusarium oxysporum, wilt pathogen of fenugreek. Indian Phytopathol. 2000, 53, 107–108. [Google Scholar]
- Sharma, B.; Kumar, P. In vitro antifungal potency of some plant extracts against Fusarium oxysporum. Int. J. Green Pharm. 2009, 3, 63–65. [Google Scholar] [CrossRef]
- Seepe, H.A.; Raphoko, L.; Amoo, S.O.; Nxumalo, W. Lantadene A and boswellic acid isolated from the leaves of Lantana camara L. have the potential to control phytopathogenic Fusarium species. Heliyon 2022, 8, e12216. [Google Scholar] [CrossRef]
- Passos, J.L.; Barbosa, L.C.A.; Demuner, A.J.; Alvarenga, E.S.; da Silva, C.M.; Barreto, R.W. Chemical characterization of volatile compounds of Lantana camara L. and L. radula Sw. and their antifungal activity. Molecules 2012, 17, 11447–11455. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.P.K.; Deverall, B.J.; Lyon, B.R. Molecular, physiological and pathological characterization of Corynespora leaf spot fungi rubber plantations in Sri Lanka. Plant Pathol. 1998, 47, 267–277. [Google Scholar] [CrossRef]
- Pereira, J.M.; Barreto, R.W.; Ellison, C.A.; Maffia, L.A. Corynespora cassiicola f. sp. lantanae: A potential biocontrol agent from Brazil for Lantana camara. Biol. Control 2003, 26, 21–31. [Google Scholar]
- Passos, J.L.; Barbosa, L.C.A.; Demuner, A.J.; King-Diaz, B.; Lotina-Hennsen, B. Effects of Corynespora cassiicola on Lantana camara. Planta Daninha 2010, 28, 229–237. [Google Scholar] [CrossRef]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 2018, 67, 3–17. [Google Scholar] [CrossRef]
- Huang, B.; Du, J.; Huang, J.; Zhang, C.; He, H.; Guo, Z.; Yang, D.; Zheng, J.; Liu, Q. First report of Agroathelia rolfsii causing southern blight on cowpea in China. Plant Dis. 2024, 108, 811. [Google Scholar] [CrossRef]
- Humpherson-Jones, F.M.; Phelps, K. Climatic factors influencing spore production in Alternaria brassicae and Alternaria brassicicola. Ann. Appl. Biol. 1989, 114, 449–458. [Google Scholar] [CrossRef]
- Mansoori, A.; Singh, N.; Dubey, S.K.; Thakur, T.K.; Alkan, N.; Das, S.N.; Kumar, A. Phytochemical characterization and assessment of crude extracts from Lantana camara L. for antioxidant and antimicrobial activity. Front. Agron. 2020, 2, 582268. [Google Scholar] [CrossRef]
- Mhedbi-Hajri, N.; Hajri, A.; Boureau, T.; Darrasse, A.; Durand, K.; Brin, C.; Saux, M.S.L.; Manceau, C.; Poussier, S.; Pruvost, O.; et al. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis. PLoS ONE 2013, 8, e58474. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Quan, G.; Kang, X.; Zhang, J.; Qin, Z. Influence of Lantana camara on soil. Effects on soil chemical properties, enzymes, and microorganisms. Allelopathy J. 2015, 35, 197–206. [Google Scholar]
- Gola, U.; Kour, S.; Kaur, T.; Perveen, K.; Bukhari, N.A.; Alsulami, J.A.; Maithani, D.; Dasila, H.; Singh, M.; Suyal, D.C. Prokaryotic diversity and community structure in the rhizosphere of Lantana weed (Lantana camara L.). Front. Plant Sci. 2023, 14, 1174859. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy and allelochemicals of Imperata cylindrica as an invasive plant species. Plants 2022, 11, 2551. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Invasive mechanisms of one of the world’s worst alien plant species Mimosa pigra and its management. Plants 2023, 12, 1960. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants 2023, 12, 521. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Allelopathy of knotweeds as invasive plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Defense molecules of the invasive plant species Ageratum conyzoides. Molecules 2024, 29, 4673. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Defensive molecules momilactones A and B: Function, biosynthesis, induction and occurrence. Toxins 2023, 15, 241. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Bioactive compounds involved in the formation of the sparse understory vegetation in pine forests. Curr. Org. Chem. 2021, 25, 1731–1738. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; pp. 1–422. [Google Scholar]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Isolation and identification of allelochemicals and their activities and functions. J. Pestic. Sci. 2024, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Callaway, R.M.; Ridenour, W.M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 419–426. [Google Scholar] [CrossRef]
- Cappuccino, N.; Arnason, J.T. Novel chemistry of invasive exotic plants. Biol. Lett. 2006, 2, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants 2020, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Belz, R.G. Allelopathy in crop/weed interactions—An update. Pest. Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.A.; Molinillo, J.M.; Varela, R.M.; Galindo, J.C. Allelopathy—A natural alternative for weed control. Pest Manag. Sci. 2007, 63, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Saito, Y.; Suenaga, K. Involvement of allelopathy in the establishment of pure colony of Dicranopteris linearis. Plant Ecol. 2012, 213, 1937–1944. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Saito, Y.; Ohno, O.; Suenaga, K. A phytotoxic active substance in the decomposing litter of the fern Gleichenia japonica. J. Plant Physiol. 2015, 176, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kimura, F.; Ohno, O.; Suenaga, K. Involvement of allelopathy in inhibition of understory growth in red pine forests. J. Plant Physiol. 2017, 218, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Phytotoxic Substances Involved in Teak Allelopathy and Agroforestry. Appl. Sci. 2021, 11, 3314. [Google Scholar] [CrossRef]
- Clements, D.R.; Kato-Noguchi, H. Defensive mechanisms of Mikania micrantha likely enhance its invasiveness as one of the world’s worst alien species. Plants 2025, 14, 269. [Google Scholar] [CrossRef]
- Ahmed, R.; Uddin, M.B.; Khan, M.A.; Mukul, S.A.; Hossain, M.K. Allelopathic effects of Lantana camara on germination and growth behavior of some agricultural crops in Bangladesh. J. For. Res. 2007, 18, 301–304. [Google Scholar] [CrossRef]
- Alemayehu, Y.; Chimdesa, M.; Yusuf, Z. Allelopathic effects of Lantana camara L. leaf aqueous extracts on germination and seedling growth of Capsicum annuum L. and Daucus carota L. Scientifica 2024, 2024, 9557081. [Google Scholar] [CrossRef]
- Zheng, H.Q.; Wei, N.; Wang, L.; He, P. Effects of Lantana camara leaf extract on the activity of superoxide dismutase and accumulation of H2O2 in water hyacinth leaf. J. Plant Physiol. Mol. Biol. 2006, 32, 189–194. [Google Scholar]
- Choyal, R.; Sharma, S.K. Allelopathic effects of Lantana camara (Linn) on Regeneration in Funaria hygrometrica. Indian J. Fundam. Appl. Life Sci. 2011, 1, 177–182. [Google Scholar]
- Achhireddy, N.R.; Singh, M.; Achhireddy, L.L.; Nigg, H.N.; Nagy, S. Isolation and partial characterization of phytotoxic compounds from lantana (Lantana camara L.). J. Chem. Ecol. 1985, 11, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Maiti, P.P.; Bhakat, R.K.; Bhattacharjee, A. Allelopathic effects of Lantana camara on physio-biochemical parameters of Mimosa pudica seeds. Allelopath. J. 2008, 22, 59–67. [Google Scholar]
- Maiti, P. Biometric evaluation of allelopathic potential of Lantana camara L. on Mimosa seeds. J. Crit. Rev. 2020, 7, 837–847. [Google Scholar]
- Hussain, F.; Ghulam, S.; Sher, Z.; Ahmad, B. Allelopathy by Lantana camara L. Pak. J. Bot. 2011, 43, 2373–2378. [Google Scholar]
- Oudhia, P. Allelopathic effects of root leachates of some obnoxious weeds on germination and seedling vigour of wheat. Ecol. Environ. Conserv. 2001, 7, 111–113. [Google Scholar]
- Joshi, V.; Joshi, C.; Bargali, S.S.; Bargali, K. Effects of aqueous leachates from above ground parts of Lantana camara on seed germination, growth and yield of wheat crop. Ecol. Front. 2024, 44, 1241–1250. [Google Scholar] [CrossRef]
- Romero-Romero, T.; Anaya, A.L.; Cruz-Ortega, R. Screening for effects of phytochemical variability on cytoplasmic protein synthesis pattern of crop plants. J. Chem. Ecol. 2002, 28, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.K. Aqueous leachate of Lantana camara kills water hyacinth. J. Chem. Ecol. 2000, 26, 2435–2447. [Google Scholar] [CrossRef]
- Motwani, G.; Golani, N.; Solanki, H. Allelopathic effects of aqueous leaf leachates of Lantana camara on Eichhorina crassipes. Life Sci. Leafl. 2013, 1, 83–90. [Google Scholar]
- Mersie, W.; Singh, M. Allelopathic effect of lantana on some agronomic crops and weeds. Plant Soil 1987, 98, 25–30. [Google Scholar] [CrossRef]
- Achhireddy, N.R.; Singh, M. Allelopathic effects of lantana (Lantana camara) on milkweedvine (Morrenia odorata). Weed Sci. 1984, 32, 757–761. [Google Scholar] [CrossRef]
- Wang, R.; Kang, X.; Quan, G.; Zhang, J. Influence of Lantana camara on soil II. Effects of Lantana camara leaf litter on plants and soil properties. Allelopath. J. 2015, 35, 207–216. [Google Scholar]
- Singh, H.P.; Batish, D.R.; Dogra, K.S.; Kaur, S.; Kohli, R.K.; Negi, A. Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India. Environ. Monit. Assess. 2014, 186, 3379–3389. [Google Scholar] [CrossRef]
- Hayyat, M.S.; Safdar, M.E.; Asif, M.; Tanveer, A.; Ali, L.; Qamar, R.; Ali, H.H.; Farooq, N.; Javeed, H.M.A.; Tarar, Z.H. Allelopathic effect of waste-land weeds on germination and growth of winter crops. Planta Daninha 2020, 38, e020173626. [Google Scholar] [CrossRef]
- Kong, C.H.; Wang, P.; Zhang, C.X.; Zhang, M.X.; Hu, F. Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res. 2006, 46, 290–295. [Google Scholar] [CrossRef]
- Verdeguer, M.; Blázquez, M.A.; Boira, H. Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochem. Syst. Ecol. 2009, 37, 362–369. [Google Scholar] [CrossRef]
- Singh, M.; Tamma, R.V.; Nigg, H.N. HPLC identification of allelopathic compounds from Lantana camara. J. Chem. Ecol. 1989, 15, 81–89. [Google Scholar] [CrossRef]
- Parvez, M.M.K.; Yokotani, T.; Fujii, Y.; Konishi, T.; Iwashina, T. Effects of quercetin and its seven derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochem. Syst. Ecol. 2004, 32, 631–635. [Google Scholar] [CrossRef]
- Okada, S.; Iwasaki, A.; Kataoka, I.; Suenaga, K.; Kato-Noguchi, H. Isolation and identification of a phytotoxic substance in kiwifruit leaves. Acta Hortic. 2018, 1218, 207–212. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Masi, M.; Cimmino, A.; Vilariño, S.; Evidente, A. Allelopathic effect of quercetin, a flavonoid from Fagopyrum esculentum roots in the radicle growth of Phelipanche ramosa: Quercetin natural and semisynthetic analogues were used for a structure-activity relationship investigation. Plants 2021, 10, 543. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, H.; Anwar, T.; Ali, Q.; Haider, M.Z.; Habib, N.; Fatima, S.; Waseem, M.; Bibi, Y.; Arshad, M.; Adkins, S.W. Isolation of natural herbicidal compound from Lantana camara. Int. J. Environ. Anal. Chem. 2021, 101, 631–638. [Google Scholar] [CrossRef]
- Inderjit. Plant phenolics in allelopathy. Bot. Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Einhellig, F.A. Mode of action of allelochemical action of phenolic compounds. In Chemistry and Mode of Action of Allelochemicals; Macías, F.A., Galindo, J.C.G., Molino, J.M.G., Cutler, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 217–238. [Google Scholar]
- Dalton, B.R. The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: Methodological limitations in establishing conclusive proof of allelopathy. In Principals and Practices in Plant Ecology: Allelochemical Interactions; Inderjit, Dakshini, K.M.M., Foy, C.L., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 57–74. [Google Scholar]
- Moreland, D.E.; Novitzky, W.P. Effects of phenolic acids, coumarins, and flavonoids on isolated chloroplasts and mitochondria. In Allelochemicals: Role in Agriculture and Forestry; Waller, E.D., Ed.; Series 330; ACS Publications: Washington, DC, USA, 1987; pp. 247–274. [Google Scholar]
- Einhellig, F.A. Mechanisms of action of allelochemicals in allelopathy. In Allelopathy; Inderjit, Dakshini, K.M.M., Einhellig, F.A., Eds.; Series 582; ACS Publications: Washington, DC, USA, 1995; pp. 96–116. [Google Scholar]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Widhalm, J.R.; Dudareva, N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant 2015, 8, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.J.P.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta 2010, 1804, 245–262. [Google Scholar] [CrossRef]
- Miao, L.; Clair, D.K.S. Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Heck, D.E.; Shakarjian, M.; Kim, H.D.; Laskin, J.D.; Vetrano, A.M. Mechanisms of oxidant generation by catalase. Ann. N. Y. Acad. Sci. 2010, 1203, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Peng, S.L.; Zeng, R.S.; Ding, L.W.; Xu, Z.F. Cloning, expression and wounding induction of β-caryophyllene synthase gene from Mikania micrantha HBK and allelopathic potential of β-caryophyllene. Allelopath. J. 2009, 24, 35–44. [Google Scholar]
- Gabi, B.; Adewumi, A.A.J.; Aina, V.O. Phytochemical characterization and in-vivo anti-malaria activity of Lantana camara leaf extract. Br. J. Pharmacol. Toxicol. 2011, 2, 277–282. [Google Scholar]
- Bhuvaneswari, E.; Giri, R.S. Physicochemical and phytochemical screening in Lantana camara leaves. J. Pharmacogn. Phytochem. 2018, 7, 1962–1966. [Google Scholar]
- Harborne, J.B. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis, 3rd ed.; Chapman & Hall: London, UK, 1998; pp. 1–301. [Google Scholar]
- Massingill, J.L., Jr.; Hodgkins, J.E. Alkaloids of bacteria. Phytochemistry 1967, 6, 977–982. [Google Scholar] [CrossRef]
- Cushnie, T.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, H.N.; Fett-Neto, A.G. Plant alkaloids: Main features, toxicity, and mechanisms of action. Plant Toxins 2015, 2, 1–15. [Google Scholar]
- Thawabteh, A.M.; Thawabteh, A.; Lelario, F.; Bufo, S.A.; Scrano, L. Classification, toxicity and bioactivity of natural diterpenoid alkaloids. Molecules 2021, 26, 4103. [Google Scholar] [CrossRef] [PubMed]
Defense Function Against | Allelopathy | Reference | |||||
---|---|---|---|---|---|---|---|
Phytochemical Class | Compound | Mammal | Insect | Nematode | Fungus, Bacterium | Competitive Plant | |
Triterpene | Lamtidines A | ✓ | ✓ | ✓ | e.g., [59,62,68,134,187] | ||
Reduced lantadene A | ✓ | [62,68] | |||||
Lantadene B | ✓ | ✓ | [58,62,187] | ||||
Reduced lantadene B | ✓ | [62] | |||||
Lantadene C | ✓ | [59] | |||||
Lantadene D | ✓ | [59] | |||||
Icterogenin | ✓ | [59] | |||||
Oleanonic acid | ✓ | ✓ | [59,127,128] | ||||
Lantanolic acid | ✓ | [125,126] | |||||
Lantoic acid | ✓ | [125,126] | |||||
Pomolic acid | ✓ | [125,126] | |||||
Ursolic acid | ✓ | [125,126] | |||||
Camarinin | ✓ | [125,126] | |||||
Camarin | ✓ | [125,126] | |||||
Lantacin | ✓ | [125,126] | |||||
Sesquiterpene | β-Caryophyllene | ✓ | ✓ | ✓ | [86,100,105,134,188] | ||
β-Humulene | ✓ | [105] | |||||
Isoledene | ✓ | [110] | |||||
α-Copaene | ✓ | [110] | |||||
Farnesol | ✓ | [100] | |||||
Farnesal | ✓ | [100] | |||||
Germacrene-D | ✓ | [134,138] | |||||
β-Curcumene | ✓ | [134] | |||||
α-Curcumene | ✓ | [188] | |||||
γ-Muurolene | ✓ | [188] | |||||
Monoterpene | Thymol | ✓ | [105] | ||||
Loliolide | ✓ | [145] | |||||
Aromatic compound | Methyl coumarin | ✓ | [189] | ||||
Unbelliferone | ✓ | [189] | |||||
Phenolic acid | Salicylic acid | ✓ | [189] | ||||
Gentisic acid | ✓ | [189] | |||||
p-Hydroxybenzoic acid | ✓ | [189] | |||||
Vanillic acid | ✓ | [189] | |||||
α-Resorcylic acid | ✓ | [189] | |||||
β-Resorcylic acid | ✓ | [189] | |||||
Phenolic aldehyde | Vanillin | ✓ | [189] | ||||
Phenylpropanoid | Caffeic acid | ✓ | [189] | ||||
p-Coumaric acid | ✓ | [189] | |||||
Ferulic acid | ✓ | [189] | |||||
Flavonoid | Quercetin | ✓ | [189] | ||||
Flavone glucoside | Vitexin | ✓ | [193] | ||||
Alcohol | cis-3-Hexen-1-ol | ✓ | [94] | ||||
Fatty acid | Hexadecanoic acid | ✓ | [100] | ||||
Eicosapentaenoic acid | ✓ | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato-Noguchi, H.; Kato, M. Compounds Involved in the Invasive Characteristics of Lantana camara. Molecules 2025, 30, 411. https://doi.org/10.3390/molecules30020411
Kato-Noguchi H, Kato M. Compounds Involved in the Invasive Characteristics of Lantana camara. Molecules. 2025; 30(2):411. https://doi.org/10.3390/molecules30020411
Chicago/Turabian StyleKato-Noguchi, Hisashi, and Midori Kato. 2025. "Compounds Involved in the Invasive Characteristics of Lantana camara" Molecules 30, no. 2: 411. https://doi.org/10.3390/molecules30020411
APA StyleKato-Noguchi, H., & Kato, M. (2025). Compounds Involved in the Invasive Characteristics of Lantana camara. Molecules, 30(2), 411. https://doi.org/10.3390/molecules30020411