PTR-ToF-MS VOC Profiling of Raw and Cooked Gilthead Sea Bream Fillet (Sparus aurata): Effect of Rearing System, Season, and Geographical Origin
<p>Principal component analysis (PCA) on the measured VOC concentration for raw and cooked wild sea bream that were reared in either the Adriatic, Tyrrhenian, or Levant Sea.</p> "> Figure 2
<p>Differences in t.i. (<b>a</b>) hydrogen sulphide (<span class="html-italic">m</span>/<span class="html-italic">z</span> 34.995) (mean ± SD), (<b>b</b>) methanethiol (<span class="html-italic">m</span>/<span class="html-italic">z</span> 49.011), (<b>c</b>) methanol, and (<b>d</b>) hexenol (<span class="html-italic">m</span>/<span class="html-italic">z</span> 83.086) between cooked and raw fish samples and the level of significance according to a two-way ANOVA of geographical origin and time of harvest.</p> "> Figure 3
<p>The score plot (<b>a</b>) and loading plot (<b>b</b>) of the principal component analysis (PCA) on the measured VOC concentration for cooked wild sea bream from the Levant Sea, and cooked sea bream reared in either the Adriatic or Tyrrhenian Sea. The different colours in the score plot (<b>a</b>) show the geographical origin reported in the legend, and colour shades indicate the months in which the fish were harvested. The colours of the loading plot (<b>b</b>) correspond to the classification according to the two-way ANOVA results presented, as well as those in the Venn diagram (<b>c</b>).</p> "> Figure 4
<p>Selected mass peaks (mean ± SD), which distinguish different fish geographical origins, are plotted for three fish types under two conditions (cooked and raw). The two selected mass peaks are tentatively identified as (<b>a</b>) an isotope of dimethyl sulphide (<span class="html-italic">m</span>/<span class="html-italic">z</span> 65.022); (<b>b</b>) 2-Methyl propanal and butanal (<span class="html-italic">m</span>/<span class="html-italic">z</span> 73.066); (<b>c</b>) hexanal (<span class="html-italic">m</span>/<span class="html-italic">z</span> 101.097); and (<b>d</b>) 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, 1-Ethyl-2-methylbenzene, and Propylbenzene (<span class="html-italic">m</span>/<span class="html-italic">z</span> 121.103).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Differences Between Raw and Cooked Sea Bream
2.2. Differences Between Wild and Reared Sea Bream
2.3. Differences Between Geographical Origin and Harvest Month
3. Materials and Methods
3.1. Fish Samples
3.2. Sample Preparation
3.3. Volatile Organic Compound Analysis by PTR-ToF-MS
3.4. Data Extraction and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Fisheries and Aquaculture at a Glance. Available online: https://www.fao.org/3/cc0461en/online/sofia/2022/world-fisheries-aquaculture.html (accessed on 28 February 2024).
- Aquaculture Production. Available online: https://www.fao.org/3/cc0461en/online/sofia/2022/aquaculture-production.html (accessed on 27 February 2024).
- Mhalhel, K.; Levanti, M.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Porcino, C.; Briglia, M.; Germanà, A.; Montalbano, G. Review on Gilthead Seabream (Sparus aurata) Aquaculture: Life Cycle, Growth, Aquaculture Practices and Challenges. J. Mar. Sci. Eng. 2023, 11, 2008. [Google Scholar] [CrossRef]
- Lindsay, R.C. Flavour of Fish. In Seafoods: Chemistry, Processing Technology and Quality; Shahidi, F., Botta, J.R., Eds.; Springer: Boston, MA, USA, 1994; pp. 75–84. ISBN 978-1-4615-2181-5. [Google Scholar]
- Liu, L.; Zhao, Y.; Zeng, M.; Xu, X. Research Progress of Fishy Odor in Aquatic Products: From Substance Identification, Formation Mechanism, to Elimination Pathway. Food Res. Int. 2024, 178, 113914. [Google Scholar] [CrossRef]
- Selli, S.; Cayhan, G.G. Analysis of Volatile Compounds of Wild Gilthead Sea Bream (Sparus aurata) by Simultaneous Distillation–Extraction (SDE) and GC–MS. Microchem. J. 2009, 93, 232–235. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.D.A.; Shahidi, F. Comparison of Volatiles of Cultured and Wild Sea Bream (Sparus aurata) during Storage in Ice by Dynamic Headspace Analysis/Gas Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2005, 53, 2616–2622. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Mallouchos, A.; Haroutounian, S.A.; Boziaris, I.S. Volatile Organic Compounds of Microbial and Non-Microbial Origin Produced on Model Fish Substrate Un-Inoculated and Inoculated with Gilt-Head Sea Bream Spoilage Bacteria. LWT 2017, 78, 54–62. [Google Scholar] [CrossRef]
- Grigorakis, K.; Taylor, K.D.A.; Alexis, M.N. Organoleptic and Volatile Aroma Compounds Comparison of Wild and Cultured Gilthead Sea Bream (Sparus aurata): Sensory Differences and Possible Chemical Basis. Aquaculture 2003, 225, 109–119. [Google Scholar] [CrossRef]
- Orban, E.; Sinesio, F.; Paoletti, F. The Functional Properties of the Proteins, Texture and the Sensory Characteristics of Frozen Sea Bream Fillets (Sparus aurata) from Different Farming Systems. LWT-Food Sci. Technol. 1997, 30, 214–217. [Google Scholar] [CrossRef]
- Fiorino, G.M.; Losito, I.; De Angelis, E.; Arlorio, M.; Logrieco, A.F.; Monaci, L. Assessing Fish Authenticity by Direct Analysis in Real Time-High Resolution Mass Spectrometry and Multivariate Analysis: Discrimination between Wild-Type and Farmed Salmon. Food Res. Int. 2019, 116, 1258–1265. [Google Scholar] [CrossRef]
- Alexi, N.; Sfyra, K.; Basdeki, E.; Athanasopoulou, E.; Spanou, A.; Chryssolouris, M.; Tsironi, T. Raw and Cooked Quality of Gilthead Seabream Fillets (Sparus aurata, L.) after Mild Processing via Osmotic Dehydration for Shelf Life Extension. Foods 2022, 11, 2017. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Taylor, K.D.A.; Shahidi, F. Comparative Quality Assessment of Cultured and Wild Sea Bream (Sparus aurata) Stored in Ice. J. Agric. Food Chem. 2002, 50, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, A.; Fernández-Segovia, I.; Serra, J.A.; Barat, J.M. Comparison of Wild and Cultured Sea Bass (Dicentrarchus labrax) Quality. Food Chem. 2010, 119, 1514–1518. [Google Scholar] [CrossRef]
- Ni, Q.; Khomenko, I.; Gallo, L.; Biasioli, F.; Bittante, G. Rapid Profiling of the Volatilome of Cooked Meat by PTR-ToF-MS: Characterization of Chicken, Turkey, Pork, Veal and Beef Meat. Foods 2020, 9, 1776. [Google Scholar] [CrossRef] [PubMed]
- Schutte, L.; Teranishi, R. Precursors of Sulfur-containing Flavor Compounds. CRC Crit. Rev. Food Technol. 1974, 4, 457–505. [Google Scholar] [CrossRef]
- Methven, L.; Tsoukka, M.; Oruna-Concha, M.J.; Parker, J.K.; Mottram, D.S. Influence of Sulfur Amino Acids on the Volatile and Nonvolatile Components of Cooked Salmon (Salmo salar). J. Agric. Food Chem. 2007, 55, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Khayat, A. Hydrogen Sulfide Production by Heating Tuna Meat. J. Food Sci. 1977, 42, 601–609. [Google Scholar] [CrossRef]
- Khayat, A. Hydrogen Sulfide Production by Heating Different Protein Fractions of Tuna Meat. J. Food Biochem. 1978, 2, 121–131. [Google Scholar] [CrossRef]
- Casey, J.C.; Self, R.; Swain, T. Origin of Methanol and Dimethyl Sulphide from Cooked Foods. Nature 1963, 200, 885. [Google Scholar] [CrossRef] [PubMed]
- Zatta, D.; Segata, M.; Biasioli, F.; Allegretti, O.; Bochicchio, G.; Verucchi, R.; Chiavarini, F.; Cappellin, L. Comparative Analysis of Volatile Organic Compound Purification Techniques in Complex Cooking Emissions: Adsorption, Photocatalysis and Combined Systems. Molecules 2023, 28, 7658. [Google Scholar] [CrossRef] [PubMed]
- Grigorakis, K. Compositional and Organoleptic Quality of Farmed and Wild Gilthead Sea Bream (Sparus aurata) and Sea Bass (Dicentrarchus labrax) and Factors Affecting It: A Review. Aquaculture 2007, 272, 55–75. [Google Scholar] [CrossRef]
- Özyurt, G.; Polat, A. Amino Acid and Fatty Acid Composition of Wild Sea Bass (Dicentrarchus labrax): A Seasonal Differentiation. Eur. Food Res. Technol. 2006, 222, 316–320. [Google Scholar] [CrossRef]
- Vidal, N.P.; Manzanos, M.J.; Goicoechea, E.; Guillén, M.D. Farmed and Wild Sea Bass (Dicentrarchus labrax) Volatile Metabolites: A Comparative Study by SPME-GC/MS. J. Sci. Food Agric. 2016, 96, 1181–1193. [Google Scholar] [CrossRef]
- Grigorakis, K.; Fountoulaki, E.; Giogios, I.; Alexis, M.N. Volatile compounds and organoleptic qualities of gilthead sea bream (Sparus aurata) fed commercial diets containing different lipid sources. Aquaculture 2009, 290, 116–121. [Google Scholar] [CrossRef]
- Papadaki, M.; Karamanlidis, D.; Sigelaki, E.; Fakriadis, I.; Mylonas, C.C. Evolution of Sex Ratio and Egg Production of Gilthead Seabream (Sparus aurata) over the Course of Five Reproductive Seasons. Aquac. Fish. 2024, 9, 534–542. [Google Scholar] [CrossRef]
- Mediterranean Sea Physiography—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/figures/mediterranean-sea-physiography/figure-01-1pia.eps (accessed on 6 March 2024).
- Pollution Hot Spots Along the Mediterranean Coast—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/figures/pollution-hot-spots-along-the-mediterranean-coast (accessed on 6 March 2024).
- Moretti, A.; Fernandez-Criado, M.P.; Cittolin, G.; Guidastri, R. Manual on Hatchery Production of Seabass and Gilthead Seabream. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/c76d3979-0dd5-4162-84ed-3418c837220d/content (accessed on 10 January 2025).
- Expert Group on Animal Health Requirements for Intra EU Movements and Entry into EU of Products of Animal Origin, Bruxelles, 2 October 2017. Available online: https://food.ec.europa.eu/document/download/5bb96308-e543-4861-8673-03b841c637ab_en?filename=ah_expert-group_pao_20171002_pres-03.pdf (accessed on 10 January 2025).
- Farneti, B.; Khomenko, I.; Grisenti, M.; Ajelli, M.; Betta, E.; Algarra, A.A.; Cappellin, L.; Aprea, E.; Gasperi, F.; Biasioli, F.; et al. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques. Front. Plant Sci. 2017, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Cappellin, L.; Biasioli, F.; Granitto, P.M.; Schuhfried, E.; Soukoulis, C.; Costa, F.; Märk, T.D.; Gasperi, F. On Data Analysis in PTR-TOF-MS: From Raw Spectra to Data Mining. Sens. Actuators B Chem. 2011, 155, 183–190. [Google Scholar] [CrossRef]
- Cappellin, L.; Biasioli, F.; Schuhfried, E.; Soukoulis, C.; Märk, T.D.; Gasperi, F. Extending the Dynamic Range of Proton Transfer Reaction Time-of-Flight Mass Spectrometers by a Novel Dead Time Correction. Rapid Commun. Mass Spectrom. 2011, 25, 179–183. [Google Scholar] [CrossRef]
- Lindinger, W.; Hansel, A.; Jordan, A. On-Line Monitoring of Volatile Organic Compounds at Pptv Levels by Means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) Medical Applications, Food Control and Environmental Research. Int. J. Mass Spectrom. Ion Process. 1998, 173, 191–241. [Google Scholar] [CrossRef]
Sample Name | Reared in Adriatic Sea | Reared in Tyrrhenian Sea | Wild |
---|---|---|---|
Harvest date | 19 July 2018 | Non-breeding season | |
9 August 2018 | Non-breeding season | ||
13 September 2018 | Non-breeding season | ||
18 October 2018 | Early breeding season (gonad maturation in the beginning of October) [29] | ||
Geographical origin | Adriatic Sea | Italian Tyrrhenian Sea | Levant Sea |
Rearing system | Extruded fish feed fed on schedule | Natural food from the wild | |
Habitat | Open sea floating cage | Wild at sea | |
Number of samples | 6 different fish fillets for first harvest date and 10 for other dates | ||
Replicates | 3 replicates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomenko, I.; Ting, V.; Brambilla, F.; Perbellini, M.; Cappellin, L.; Biasioli, F. PTR-ToF-MS VOC Profiling of Raw and Cooked Gilthead Sea Bream Fillet (Sparus aurata): Effect of Rearing System, Season, and Geographical Origin. Molecules 2025, 30, 402. https://doi.org/10.3390/molecules30020402
Khomenko I, Ting V, Brambilla F, Perbellini M, Cappellin L, Biasioli F. PTR-ToF-MS VOC Profiling of Raw and Cooked Gilthead Sea Bream Fillet (Sparus aurata): Effect of Rearing System, Season, and Geographical Origin. Molecules. 2025; 30(2):402. https://doi.org/10.3390/molecules30020402
Chicago/Turabian StyleKhomenko, Iuliia, Valentina Ting, Fabio Brambilla, Mirco Perbellini, Luca Cappellin, and Franco Biasioli. 2025. "PTR-ToF-MS VOC Profiling of Raw and Cooked Gilthead Sea Bream Fillet (Sparus aurata): Effect of Rearing System, Season, and Geographical Origin" Molecules 30, no. 2: 402. https://doi.org/10.3390/molecules30020402
APA StyleKhomenko, I., Ting, V., Brambilla, F., Perbellini, M., Cappellin, L., & Biasioli, F. (2025). PTR-ToF-MS VOC Profiling of Raw and Cooked Gilthead Sea Bream Fillet (Sparus aurata): Effect of Rearing System, Season, and Geographical Origin. Molecules, 30(2), 402. https://doi.org/10.3390/molecules30020402