Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices
<p>Chemical structures of the four local anesthetics studied in the present work [<a href="#B20-molecules-30-00068" class="html-bibr">20</a>].</p> "> Figure 2
<p>Overall BBD optimization for the extraction stage (<b>a</b>) and full factorial design optimization for the liquid desorption stage (<b>b</b>) of the procedure using BAµE devices and SPME LC Tips. y—the predicted response at the current variable settings; D—composite desirability; d—individual desirability; Cur—current variable displayed on the graphs below; LD— liquid desorption mode; time units in min and; temperature units in °C.</p> "> Figure 3
<p>Method and sample preparation evaluation according to the analytical greenness calculator (<b>a</b>), AGREEprep calculator (<b>b</b>) and the corresponding color scale for reference (<b>c</b>).</p> "> Figure 4
<p>Chromatograms obtained from (<b>a</b>) spiked urine at 25.0 µg/mL (continuous line) blank urine sample without spiking (dotted line) and (<b>b</b>) a positive anonymous donor urine without spiking, analyzed through BAµE/GC-MS(SIM) methodology, under optimized experimental conditions. 1 benzocaine; 2 diphenylamine (IS); 3 lidocaine; 4 procaine; 5 tetracaine.</p> "> Figure 5
<p>Experimental scheme of the proposed methodologies. Created with BioRender.com.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS(SIM) Optimization
2.2. SPME LC Tips and BAµE Optimization Assays
2.2.1. Microextraction Parameters
2.2.2. Back-Extraction Parameters
2.3. Comparison of Extraction Efficiencies of BAµE and SPME LC Tips
2.4. Validation of the Proposed Methodology
2.5. Performance Comparison with Other Microextraction Techniques
2.6. Application to Urine Samples
3. Materials and Methods
3.1. Chemicals, Standards and Sorbent Phases
3.2. Urine Matrices
3.3. Experimental Set-Up
3.3.1. Preparation of the BAµE Devices and Activation of SPME LC Tips
3.3.2. SPME LC Tips and BAµE Optimization Assays
3.3.3. Validation Assays
3.3.4. Urine Sample Assays
3.3.5. Instrumental Set-Up
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becker, D.E.; Reed, K.L. Local Anesthetics: Review of Pharmacological Considerations. Anesth. Prog. 2012, 59, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Kudlacek, O.; Hofmaier, T.; Luf, A.; Mayer, F.P.; Stockner, T.; Nagy, C.; Holy, M.; Freissmuth, M.; Schmid, R.; Sitte, H.H. Cocaine adulteration. J. Chem. Neuroanat. 2017, 83, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, R.; Costa, S.; Barroso, M.; Franco, J.; Fonseca, S. Toxicological analysis of cocaine adulterants in blood samples. Forensic Sci. Int. 2019, 299, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Laposchan, S.; Kranenburg, R.F.; van Asten, A.C. Impurities, adulterants and cutting agents in cocaine as potential candidates for retrospective mining of GC-MS data. Sci. Justice 2022, 62, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Centini, F.; Fiore, C.; Riezzo, I.; Rossi, G.; Fineschi, V. Suicide due to oral ingestion of lidocaine: A case report and review of the literature. Forensic Sci. Int. 2007, 171, 57–62. [Google Scholar] [CrossRef]
- Gaballah, M.H.; Tobaigi, M.S.; Hakami, A.; Abdulghaffar, E.M.; Aidy, R.Y.; Alhazmi, A.; Ghalibi, M.; Mosa, H.A.; Khamis, K.Y. Autopsy findings and toxicological results of two cases of sudden death due to intoxication by lidocaine. Forensic Sci. Int. Rep. 2022, 6, 100292. [Google Scholar] [CrossRef]
- Sekimoto, K.; Tobe, M.; Saito, S. Local anesthetic toxicity: Acute and chronic management. Acute Med. Surg. 2017, 4, 152–160. [Google Scholar] [CrossRef]
- Hieger, M.A.; Afeld, J.L.; Cumpston, K.L.; Wills, B.K. Topical Benzocaine and Methemoglobinemia. Am. J. Ther. 2017, 24, e596–e598. [Google Scholar] [CrossRef]
- Pete, D.D.; D’Souza, M.S. Local anesthetics. In Side Effects of Drugs Annual; Elsevier B.V.: Amsterdam, The Netherlands, 2020; pp. 155–163. [Google Scholar] [CrossRef]
- Baniceru, M.; Manda, C.V.; Popescu, S.M. Chromatographic analysis of local anesthetics in biological samples. J. Pharm. Biomed. Anal. 2011, 54, 1–12. [Google Scholar] [CrossRef]
- Ma, M.; Kang, S.; Zhao, Q.; Chen, B.; Yao, S. Liquid-phase microextraction combined with high-performance liquid chromatography for the determination of local anaesthetics in human urine. J. Pharm. Biomed. Anal. 2006, 40, 128–135. [Google Scholar] [CrossRef]
- Oliveira, M.N.; Gonçalves, O.C.; Ahmad, S.M.; Schneider, J.K.; Krause, L.C.; Neng, N.R.; Caramão, E.B.; Nogueira, J.M.F. Application of Bar Adsorptive Microextraction for the Determination of Levels of Tricyclic Antidepressants in Urine Samples. Molecules 2021, 26, 3101. [Google Scholar] [CrossRef] [PubMed]
- Neng, N.; Silva, A.; Nogueira, J. Adsorptive micro-extraction techniques—Novel analytical tools for trace levels of polar solutes in aqueous media. J. Chromatogr. A 2010, 1217, 7303–7310. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Locatelli, M.; Ulusoy, H.I. Recent Trends in Microextraction Techniques Employed in Analytical and Bioanalytical Sample Preparation. Separations 2017, 4, 36. [Google Scholar] [CrossRef]
- Lizot, L.d.L.F.; da Silva, A.C.C.; Bastiani, M.F.; Maurer, T.F.; Hahn, R.Z.; Perassolo, M.S.; Antunes, M.V.; Linden, R. Simultaneous Determination of Cocaine and Metabolites in Human Plasma Using Solid Phase Micro-Extraction Fiber Tips C18 and UPLC–MS/MS. J. Anal. Toxicol. 2020, 44, 49–56. [Google Scholar] [CrossRef]
- Aurand, C. Utilizing Novel SPME LC Tips for Forensic Screening of Drugs of Abuse in Urine Samples. Report. Appl. Newsl. Supelco 2015, 33, 25–27. [Google Scholar]
- Ahmad, S.M.; Calado, B.B.; Oliveira, M.N.; Neng, N.R.; Nogueira, J. Bar Adsorptive Microextraction Coated with Carbon-Based Phase Mixtures for Performance-Enhancement to Monitor Selected Benzotriazoles, Benzothiazoles, and Benzenesulfonamides in Environmental Water Matrices. Molecules 2020, 25, 2133. [Google Scholar] [CrossRef]
- Almeida, C.; Nogueira, J. Determination of steroid sex hormones in real matrices by bar adsorptive microextraction (BAμE). Talanta 2015, 136, 145–154. [Google Scholar] [CrossRef]
- Ide, A.H.; Nogueira, J.M.F. New-generation bar adsorptive microextraction (BAμE) devices for a better eco-user-friendly analytical approach–Application for the determination of antidepressant pharmaceuticals in biological fluids. J. Pharm. Biomed. Anal. 2018, 153, 126–134. [Google Scholar] [CrossRef]
- ChemAxon, MarvinSketch Was Used for Drawing, Displaying and Characterizing Chemical Structures, MarvinSketch. 2013. Available online: https://www.chemaxon.com (accessed on 23 December 2024).
- Almeida, C.; Strzelczyk, R.; Nogueira, J. Improvements on bar adsorptive microextraction (BAμE) technique–Application for the determination of insecticide repellents in environmental water matrices. Talanta 2014, 120, 126–134. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Gomes, M.I.; Ide, A.H.; Neng, N.R.; Nogueira, J.M.F. Monitoring traces of organochlorine pesticides in herbal matrices by bar adsorptive microextraction—Application to black tea and tobacco. Int. J. Environ. Anal. Chem. 2021, 101, 1363–1377. [Google Scholar] [CrossRef]
- Nardelli, V.; D’amico, V.; Della Rovere, I.; Casamassima, F.; Marchesiello, W.M.V.; Nardiello, D.; Quinto, M. Box Behnken design-based optimized extraction of non-dioxin-like PCBs for GC-ECD and GC-MS analyses in milk samples. Emerg. Contam. 2020, 6, 303–311. [Google Scholar] [CrossRef]
- ADas, K.; Dewanjee, S. Optimization of Extraction Using Mathematical Models and Computation. In Computational Phytochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 75–106. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Oliveira, M.N.; Neng, N.R.; Nogueira, J. A Fast and validated high throughput bar adsorptive microextraction (HT-BAµE) method for the determination of ketamine and norketamine in urine samples. Molecules 2020, 25, 1438. [Google Scholar] [CrossRef] [PubMed]
- Antony, J. Full Factorial Designs. In Design of Experiments for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2014; pp. 63–85. [Google Scholar] [CrossRef]
- UNODC. Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimen. 2009. Available online: https://www.unodc.org/unodc/en/scientists/guidance-for-the-validation-of-analytical-methodology-and-calibration-of-equipment.html (accessed on 23 December 2024).
- Arinobu, T.; Hattori, H.; Ishii, A.; Kumazawa, T.; Lee, X.P.; Suzuki, O.; Seno, H. Comparison of Sonic Spray Lonization with Atmospheric Pressure Chemical Lonization as an Interface of Liquid Chromatography-Mass Spectrometry for the analysis of Some Local Anesthetics. Chromatographia 2003, 57, 301–307. [Google Scholar] [CrossRef]
- Lombardo-Agüí, M.; Cruces-Blanco, C.; García-Campaña, A. Capillary zone electrophoresis with diode-array detection for analysis of local anaesthetics and opium alkaloids in urine samples. J. Chromatogr. B 2009, 877, 833–836. [Google Scholar] [CrossRef]
- da Silva, P.R.; Sena, L.C.S.; Silva, R.P.L.; de Santana, D.C.A.S.; de Santana, F.J.M. Determination of cocaine adulterants in human urine by dispersive liquid-liquid microextraction and high-performance liquid chromatography. Anal. Bioanal. Chem. 2019, 411, 3447–3461. [Google Scholar] [CrossRef]
- Daryanavard, S.M.; Jeppsson-Dadoun, A.; Andersson, L.I.; Hashemi, M.; Colmsjö, A.; Abdel-Rehim, M. Molecularly imprinted polymer in microextraction by packed sorbent for the simultaneous determination of local anesthetics: Lidocaine, ropivacaine, mepivacaine and bupivacaine in plasma and urine samples. Biomed. Chromatogr. 2013, 27, 1481–1488. [Google Scholar] [CrossRef]
- Maghsoudi, M.; Nojavan, S.; Hatami, E. Development of electrically assisted solvent bar microextraction followed by high performance liquid chromatography for the extraction and quantification of basic drugs in biological samples. J. Chromatogr. A 2021, 1654, 462447. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical greenness metric for sample preparation. Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
Local Anesthetic/ Compound | Retention Time (min) | Ions (m/z) | Relative Intensity (%) |
---|---|---|---|
Benzocaine | 5.30 | 92/120 */137/165 | 22.5/100/15.0/30.0 |
Diphenylamine (IS) | 5.60 | 77/115/168/169 * | |
Lidocaine | 7.00 | 58/72/86 */234 | 7.5/3.3/100/1.7 |
Procaine | 7.90 | 86 */99/120/164 | 100/37.5/32.0/9.0 |
Tetracaine | 8.80 | 58 */71/105/176 | 100/77.5/13.0/14.5 |
Local Anesthetic (Spiked with 50 µg/mL) | Recovery ± RSD (%) Aqueous Matrix (n = 6) | Recovery ± RSD (%) Urine Matrix (n = 5) | |
---|---|---|---|
BAμE | SPME LC Tips | BAμE | |
Benzocaine | 50.8 ± 7.4 | 1.5 ± 34.2 | 30.0 ± 7.3 |
Lidocaine | 100.6 ± 7.4 | 76.8 ± 20.6 | 95.3 ± 1.0 |
Procaine | 95.1 ± 9.5 | 38.6 ± 21.3 | 76.0 ± 3.1 |
Tetracaine | 84.8 ± 13.5 | 133.7 ± 11.9 | 97.9 ± 4.0 |
Local Anesthetic | LOD (ng/mL) | LOQ (ng/mL) | Spiking Level (µg/mL) | Intraday (n = 3) | Interday (n = 9) | |||
---|---|---|---|---|---|---|---|---|
Precision (RSD %) | Accuracy (Bias %) | Precision (RSD %) | Accuracy (Bias %) | Recovery (%) | ||||
1.5 | 6.5 | 1.4 | 8.8 | −4.9 | 43.9 | |||
Benzocaine | 18 | 60 | 15.0 | 3.0 | 5.8 | 4.4 | 10.7 | 41.9 |
24.0 | 8.0 | 3.0 | 7.2 | 7.0 | 44.8 | |||
1.5 | 1.6 | 13.9 | 4.0 | 6.5 | 95.8 | |||
Lidocaine | 2 | 10 | 15.0 | 1.4 | 13.3 | 2.5 | 15.0 | 93.9 |
24.0 | 4.8 | 7.2 | 5.5 | 10.6 | 89.9 | |||
1.5 | 3.4 | 1.5 | 4.7 | −1.4 | 84.3 | |||
Procaine | 4 | 10 | 5.0 | 1.4 | 8.7 | 3.3 | 12.6 | 82.1 |
8.0 | 5.9 | 8.3 | 5.4 | 11.9 | 89.9 | |||
1.5 | 6.0 | −13.6 | 6.7 | −15.9 | 94.5 | |||
Tetracaine | 5 | 20 | 15.0 | 1.6 | 11.5 | 2.2 | 12.2 | 97.5 |
24.0 | 4.1 | 7.4 | 5.5 | 9.2 | 98.7 |
Extraction Technique | LLE | SPE | DLLME c | MEPS d | LPME e | HFME f | BAµE |
---|---|---|---|---|---|---|---|
Instrumental system | SSI a-LC-MS | CZE-DAD b | HPLC-DAD | LC-MS/MS | HPLC-UV | HPLC-UV | GC-MS |
Target local anesthetics | Tetracaine Lidocaine Procaine | Lidocaine | Lidocaine | Lidocaine | Lidocaine Tetracaine | Lidocaine | Benzocaine Lidocaine Procaine Tetracaine |
LOD (µg/mL) | 0.38 | 0.11 | n.a. | 0.0002 | 0.05 | 0.001 | 0.002–0.018 |
Linear range (µg/mL) | 0.75–12.0 | 0.5–10 | 0.18–1.5 | 0.001–0.47 | 0.1–10.0 | 0.5–5 | 0.5–30.0 |
Determination coefficients (r2) | ≥0.992 | 0.997 | 0.9923 | ≥0.999 | 0.999 | 0.998 | ≥0.9945 |
Precision (%RSD) | ≤12.2 | ≤9.1 | ≤14.9 | ≤9.4 | ≤5.5 | ≤11.7 | ≤8.8 |
Recovery (%) | 60.0–85.5 | ≥94.9 | 44.62–76.63 | n.a. | ≥94.1 | 33.2 | 30.0–97.9 (urine matrix) |
Sample volume (mL) | 0.5 | 10 | 4.0 | n.a. | n.a. | 4 | 0.5 |
Reference | [28] | [29] | [30] | [31] | [11] | [32] | This work |
Sample | Local Anesthetics Identified | Compound Amount (µg/mL) |
---|---|---|
1 | Lidocaine | 2.0 |
2 | Lidocaine | <LOQ |
3 | Lidocaine | 0.6 |
4 | Lidocaine | 1.2 |
5 | Lidocaine | 4.1 |
6 | No compounds identified | <LOQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.R.P.; Rocha, D.C.; Neng, N.R.; Maurício, P.; Torres, M.E.; Ahmad, S.M.; Quintas, A. Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices. Molecules 2025, 30, 68. https://doi.org/10.3390/molecules30010068
Pereira JRP, Rocha DC, Neng NR, Maurício P, Torres ME, Ahmad SM, Quintas A. Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices. Molecules. 2025; 30(1):68. https://doi.org/10.3390/molecules30010068
Chicago/Turabian StylePereira, Joana R. P., Daniela C. Rocha, Nuno R. Neng, Paulo Maurício, M. Edite Torres, Samir M. Ahmad, and Alexandre Quintas. 2025. "Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices" Molecules 30, no. 1: 68. https://doi.org/10.3390/molecules30010068
APA StylePereira, J. R. P., Rocha, D. C., Neng, N. R., Maurício, P., Torres, M. E., Ahmad, S. M., & Quintas, A. (2025). Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices. Molecules, 30(1), 68. https://doi.org/10.3390/molecules30010068