Establishment of the Volatile Signature of Wine-Based Aromatic Vinegars Subjected to Maceration
"> Figure 1
<p>Flowchart showing the general production methods for vinegar [<a href="#B2-molecules-23-00499" class="html-bibr">2</a>,<a href="#B3-molecules-23-00499" class="html-bibr">3</a>,<a href="#B4-molecules-23-00499" class="html-bibr">4</a>].</p> "> Figure 2
<p>Effect of (<b>a</b>) fiber coating; (<b>b</b>) extraction time and extraction temperature; and (<b>c</b>) ionic strength, sample volume, desorption time on the volatile compounds extraction efficiency from wine vinegar. Error bars represent mean standard error (<span class="html-italic">n</span> = 3 for each data point). * Number of identified compounds.</p> "> Figure 3
<p>Total GC-MS peak area of chemical families identified in wine (control) and WBAV (banana, passion fruit, apple, pennyroyal) vinegars.</p> "> Figure 4
<p>(<b>a</b>) Principal components (PC) PC1 × PC2 of scores scatter plot of wine (control) and WBAV vinegars; (<b>b</b>) Loading plot of the main source of variability between volatile profile and wine vinegars—derived products by maceration with fruits and plant (attribution of the peak number shown in <a href="#molecules-23-00499-t001" class="html-table">Table 1</a>).</p> "> Figure 5
<p>Dendrogram for the HCA results using Ward’s cluster algorithm of the volatile profile obtained from wine (control) and WBAV vinegars. The Square Euclidean distances are shown on the <span class="html-italic">x</span>-axis.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. HS-SPME Optimization
2.1.1. Fiber Coating
2.1.2. Extraction Time
2.1.3. Extraction Temperature
2.1.4. Ionic Strength
2.1.5. Sample Volume
2.1.6. Desorption Time
2.2. Characterization of Volatile Signature of WBAV by Maceration Using HS-SPME/GC-MS
2.3. Multivariate Analysis
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Vinegar Samples
3.3. HS-SPME Procedure
3.4. GC-MS Conditions
- (i)
- comparison the GC retention times and mass spectra with those of the standard, when available;
- (ii)
- all mass spectra were also compared with the data system library (NIST Mass Spectral Search Program v.2.0d software; NIST: Washington, DC, USA, 2005);
- (iii)
- Kovats index (KI) values were determined according to the van den Dool and Kratz equation [37].
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ubeda, C.; Callejón, R.M.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography–mass spectrometry method. Food Res. Int. 2011, 44, 259–268. [Google Scholar] [CrossRef]
- Budak, N.; Aykin, .; Seydim, A.; Greene, A.K.; Guzel-Seydim, Z.B. Functional properties of vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef] [PubMed]
- Budak, H.; Guzel-Seydim, Z. Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef] [PubMed]
- Jo, D.; Kim, G.-R.; Yeo, S.-H.; Jeong, Y.-J.; Noh, B.S.; Kwon, J.-H. Analysis of aroma compounds of commercial cider vinegars with different acidities using SPME/GC-MS, electronic nose, and sensory evaluation. Food Sci. Biotechnol. 2013, 22, 1559–1565. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Rodríguez Dodero, M.C.; Durán Guerrero, E.; Castro Mejías, R.; Natera Marín, R.; García Barroso, C. Development and optimisation by means of sensory analysis of new beverages based on different fruit juices and sherry wine vinegar. J. Sci. Food Agric. 2013, 93, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Cejudo-Bastante, C.; Castro-Mejías, R.; Natera-Marín, R.; García-Barroso, C.; Durán-Guerrero, E. Chemical and sensory characteristics of orange based vinegar. J. Food Sci. Technol. 2016, 53, 3147–3156. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, T.; Giudici, P.; Chen, F. Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1124–1138. [Google Scholar] [CrossRef]
- Marrufo-Curtido, A.; Cejudo-Bastante, M.J.; Rodríguez-Dodero, M.C.; Natera-Marín, R.; Castro-Mejías, R.; García-Barroso, C.; Durán-Guerrero, E. Novel vinegar-derived product enriched with dietary fiber: Effect on polyphenolic profile, volatile composition and sensory analysis. J. Food Sci. Technol. 2015, 52, 7608–7624. [Google Scholar] [CrossRef] [PubMed]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Nari, A.; Andrich, G.; Terzuoli, E.; Donnini, S.; Nicolella, C.; Zinnai, A. Development of phenol-enriched olive oil with phenolic compounds extracted from wastewater produced by physical refining. Nutrients 2017, 9, 916. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, J.; Igl, N.; Tippelt, M.; Stege, A.; Qoura, F.; Sohling, U.; Brück, T. Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst. Eng. 2017, 40, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Zinnai, A.; Sanmartin, C.; Taglieri, I.; Andrich, G.; Venturi, F. Supercritical fluid extraction from microalgae with high content of LC-PUFAs. A case of study: Sc-CO2 oil extraction from Schizochytrium sp. J. Supercrit. Fluids 2016, 116, 126–131. [Google Scholar] [CrossRef]
- Ghitescu, R.-E.; Volf, I.; Carausu, C.; Bühlmann, A.-M.; Gilca, I.A.; Popa, V.I. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason. Sonochem. 2015, 22, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Z.; Fu, S.-G.; Wang, S.-Y.; Yang, D.-J.; Wu, Y.-H. S.; Chen, Y.-C. Effects of a natural antioxidant, polyphenol-rich rosemary (Rosmarinus officinalis L.) extract, on lipid stability of plant-derived omega-3 fatty-acid rich oil. LWT 2018, 89, 210–216. [Google Scholar] [CrossRef]
- Chinnici, F.; Durán Guerrero, E.; Sonni, F.; Natali, N.; Natera Marín, R.; Riponi, C. Gas Chromatography−Mass Spectrometry (GC−MS) Characterization of Volatile Compounds in Quality Vinegars with Protected European Geographical Indication. J. Agric. Food Chem. 2009, 57, 4784–4792. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-J.; Lu, Z.-M.; Yu, N.-H.; Xu, W.; Li, G.-Q.; Shi, J.-S.; Xu, Z.-H. HS-SPME/GC-MS and chemometrics for volatile composition of Chinese traditional aromatic vinegar in the Zhenjiang region. J. Inst. Brew. 2012, 118, 133–141. [Google Scholar] [CrossRef]
- Shu, X.; Jiang, X.-W.; Cheng, B.C.-Y.; Ma, S.-C.; Chen, G.-Y.; Yu, Z.-L. Ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry analysis of the impact of processing on toxic components of Kansui Radix. BMC Complement. Altern. Med. 2016, 16, 73. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.; de Carvalho-Silva, S.; Trovatti Uetanabaro, A.; Villas-Boas, S. Vinegar Metabolomics: An Explorative Study of Commercial Balsamic Vinegars Using Gas Chromatography-Mass Spectrometry. Metabolites 2016, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Roberto, R.M.; García, N.P.; Hevia, A.G.; Valles, B.S. Application of purge and trap extraction and gas chromatography for determination of minor esters in cider. J. Chromatogr. A 2005, 1069, 245–251. [Google Scholar] [CrossRef]
- Guerrero, E.D.; Marín, R.N.; Mejías, R.C.; Barroso, C.G. Stir bar sorptive extraction of volatile compounds in vinegar: Validation study and comparison with solid phase microextraction. J. Chromatogr. A 2007, 1167, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Sun, H.-M.; Li, Z.-Y.; Qin, X.-M. Comparison of volatile components between raw and vinegar baked radix bupleuri by GC-MS based metabolic fingerprinting approach. Evid.-Based Complement. Alternat. Med. eCAM 2015, 2015, 653791. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Simón, B.; Martínez, J.; Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M. Volatile compounds and sensorial characterisation of red wine aged in cherry, chestnut, false acacia, ash and oak wood barrels. Food Chem. 2014, 147, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Barnaba, C.; Dellacassa, E.; Nicolini, G.; Nardin, T.; Malacarne, M.; Larcher, R. Identification and quantification of 56 targeted phenols in wines, spirits, and vinegars by online solid-phase extraction—Ultrahigh-performance liquid chromatography—Quadrupole-orbitrap mass spectrometry. J. Chromatogr. A 2015, 1423, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Dai, S.; Niu, Y.; Yu, H.; Zhu, J.; Tian, H.; Gu, Y. Discrimination of chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. J. Food Sci. 2011, 76, C1125–C1135. [Google Scholar] [CrossRef] [PubMed]
- Durán Guerrero, E.; Chinnici, F.; Natali, N.; Marín, R.N.; Riponi, C. Solid-phase extraction method for determination of volatile compounds in traditional balsamic vinegar. J. Sep. Sci. 2008, 31, 3030–3036. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Analysis and assessment of Madeira wine ageing over an extended time period through GC-MS and chemometric analysis. Anal. Chim. Acta 2010, 660, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S. Establishment of the varietal profile of Vitis vinifera L. grape varieties from different geographical regions based on HS-SPME/GC-qMS combined with chemometric tools. Microchem. J. 2014, 116, 107–117. [Google Scholar] [CrossRef]
- Spínola, V.; Perestrelo, R.; Câmara, J.S.; Castilho, P.C. Establishment of Monstera deliciosa fruit volatile metabolomic profile at different ripening stages using solid-phase microextraction combined with gas chromatography–mass spectrometry. Food Res. Int. 2015, 67, 409–417. [Google Scholar] [CrossRef]
- Ferreira, L.; Perestrelo, R.; Câmara, J.S. Comparative analysis of the volatile fraction from Annona cherimola Mill. cultivars by solid-phase microextraction and gas chromatography-quadrupole mass spectrometry detection. Talanta 2009, 77, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Palomo, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC-MS. Talanta 2005, 66, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Perestrelo, R.; Caldeira, M.; Câmara, J.S. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. J. Sep. Sci. 2009, 32, 1875–1888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qi, M.; Shao, Q.; Zhou, S.; Fu, R. Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS. J. Pharm. Biomed. Anal. 2007, 44, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Varming, C.; Petersen, M.A.; Poll, L. Comparison of isolation methods for the determination of important aroma compounds in black currant (Ribes nigrum L.) juice, using nasal impact frequency profiling. J. Agric. Food Chem. 2004, 52, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Noble, A.C. Characterization of odor-active compounds in Californian chardonnay wines using GC-olfactometry and GC-mass spectrometry. J. Agric. Food Chem. 2003, 51, 8036–8044. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. D-Limonene: Safety and Clinical Applications. Alternat. Med. Rev. A J. Clin. Ther. 2007, 1212, 259–264. [Google Scholar]
- Gautam, N.; Mantha, A.K.; Mittal, S. Essential oils and their constituents as anticancer agents: A mechanistic view. BioMed Res. Int. 2014, 2014, 154106. [Google Scholar] [CrossRef] [PubMed]
- El Hadi, M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Van Den Dool, H.; Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Vidal, R.; Ma, Y.; Sastry, S.S. Generalized Principal Component Analysis; Springer: New York, NY, USA, 2016; pp. 25–62. ISBN 978-0-387-87811-9. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Peak Number | RT 1 (min) | KIcal 2 | KIlit 3 | Chemical Families | GC Peak Area × 106 (RSD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wine Vinegar Control | Macerated Vinegars | |||||||||||||
Banana | Passion Fruit | Apple | Pennyroyal | |||||||||||
Ethyl esters | ||||||||||||||
1 | 2.91 | 925 | 907 | Ethyl acetate | 300.22 | (8) | 197.65 | (9) | 122.23 | (13) | 113.89 | (9) | 247.35 | (3) |
4 | 4.68 | 1055 | 1028 | Ethyl butanoate | 16.03 | (6) | - 5 | 9.93 | (14) | 3.29 | (4) | - | ||
5 | 5.29 | 1081 | 1050 | Ethyl 3-methylbutanoate | 15.18 | (6) | 16.36 | (17) | 3.31 | (13) | 8.12 | (4) | - | |
7 | 6.51 | 1125 | 1120 | Isoamyl acetate | 163.77 | (15) | 169.1 | (9) | 71.31 | (3) | 80.64 | (2) | 124.8 | (16) |
12 | 10.04 | 1222 | 1220 | Ethyl hexanoate | 227.53 | (9) | 113.51 | (8) | 195.43 | (12) | 84.73 | (20) | 128.32 | (14) |
16 | 12.41 | 1285 | 1304 | Ethyl 3-ethoxypropanoate 4 | - | 9.98 | (8) | - | 0.58 | (11) | 2.16 | (18) | ||
17 | 12.67 | 1291 | 1292 | Ethyl 3-hexenoate4 | - | 6.44 | (12) | 1.06 | (7) | 0.87 | (9) | 4.62 | (6) | |
18 | 13.23 | 1305 | 1300 | 3-Hexen-1-ol acetate isomer | 3.14 | (4) | 0.94 | (15) | - | 2.17 | (11) | - | ||
21 | 13.87 | 1320 | 1305 | Ethyl 2-hexenoate | 14.86 | (6) | 0.87 | (9) | 1.27 | (19) | 1.10 | (4) | 2.81 | (5) |
22 | 14.67 | 1339 | 1358 | Ethyl lactate | 21.95 | (14) | 42.24 | (16) | 36.08 | (4) | 28.80 | (14) | 51.13 | (1) |
25 | 15.53 | 1343 | 1350 | Hexyl acetate | 22.48 | (17) | 29.76 | (11) | 18.26 | (9) | 16.00 | (2) | 12.48 | (13) |
26 | 15.58 | 1359 | - | Heptyl acetate 4 | 0.52 | (15) | - | - | - | - | ||||
29 | 16.13 | 1370 | - | 2-Ethylhexyl acetate 4 | 2.99 | (9) | 2.40 | (3) | - | - | - | |||
30 | 16.16 | 1372 | 1389 | Methyl octanoate | - | 1.84 | (7) | 0.54 | (8) | - | - | |||
34 | 17.82 | 1405 | 1394 | Ethyl 2-hydroxyisovalerate | - | 2.46 | (11) | - | 0.13 | (13) | - | |||
35 | 18.16 | 1416 | 1414 | Ethyl octanoate | 296.15 | (4) | 182.15 | (3) | 181.16 | (10) | 194.75 | (2) | 208.86 | (11) |
37 | 19.19 | 1441 | - | Isopentyl hexanoate | - | - | 77.49 | (8) | - | 82.04 | (4) | |||
47 | 22.33 | 1518 | 1483 | Ethyl 3-hydroxybutanoate | 2.65 | (13) | - | 3.09 | (1) | 1.32 | (4) | - | ||
49 | 22.61 | 1526 | 1551 | 2-Ethyl hydroxycaproate 4 | 6.45 | (19) | 8.08 | (6) | 2.62 | (14) | 0.42 | (11) | 6.02 | (8) |
51 | 23.04 | 1536 | 1533 | Hexyl butanoate 4 | 1.21 | (7) | - | - | 1.74 | (3) | - | |||
64 | 26.58 | 1617 | 1636 | Ethyl decanoate | 112.62 | (3) | 132.17 | (14) | 110.55 | (5) | 211.67 | (4) | 138.31 | (2) |
65 | 26.85 | 1625 | 1610 | Butyl octanoate 4 | - | 0.27 | (20) | - | 1.47 | (16) | - | |||
66 | 27.35 | 1639 | 1648 | Ethyl benzoate | 6.63 | (15) | 6.26 | (8) | 5.83 | (11) | 6.65 | (1) | 9.15 | (4) |
68 | 28.07 | 1659 | 1680 | Diethyl succinate | 25.99 | (5) | 23.95 | (15) | 15.49 | (4) | 18.84 | (2) | 23.72 | (5) |
71 | 29.34 | 1693 | 1664 | Ethyl 3-hydroxyhexanoate | 1.27 | (4) | 1.02 | (9) | 0.20 | (12) | 0.21 | (20) | 0.98 | (5) |
75 | 31.42 | 1754 | 1755 | Phenylmethyl acetate | 2.78 | (6) | - | - | 0.27 | (12) | - | |||
76 | 32.07 | 1773 | 1775 | Ethyl benzeneacetate | 11.12 | (14) | 7.44 | (8) | 4.61 | (8) | 3.95 | (7) | 11.51 | (7) |
77 | 32.47 | 1784 | - | Dibuthyl succinate 4 | 0.31 | (3) | - | - | 1.41 | (2) | - | |||
78 | 32.73 | 1791 | 1798 | Methyl 2-hydroxybenzoate | 0.63 | (17) | 6.07 | (10) | - | - | 4.23 | (2) | ||
80 | 34.32 | 1838 | 1837 | Ethyl dodecanoate | 10.17 | (11) | 12.15 | (16) | 13.26 | (12) | 8.75 | (3) | 12.55 | (15) |
82 | 34.99 | 1857 | 1821 | Benzyl propanoate 4 | 7.54 | (4) | 1.32 | (14) | 9.26 | (8) | 11.71 | (15) | 5.61 | (2) |
83 | 35.58 | 1873 | 1849 | Benzyl butanoate 4 | 0.48 | (13) | - | 1.37 | (11) | 0.58 | (16) | - | ||
84 | 35.87 | 1880 | 1883 | 2-Phenylethyl acetate | 1.00 | (11) | 5.73 | (5) | 1.19 | (8) | - | 6.34 | (13) | |
85 | 36.47 | 1881 | 1880 | Citronellyl valerate 4 | 0.36 | (1) | 1.20 | (21) | 1.35 | (10) | 0.33 | (6) | 8.87 | (3) |
90 | 39.66 | 1970 | 1974 | Methyl jasmonate 4 | 0.98 | (2) | 0.81 | (4) | - | 0.26 | (12) | - | ||
95 | 43.13 | 2193 | 2189 | Phenylethyl benzoate 4 | 1.82 | (3) | 3.52 | (13) | 1.81 | (18) | 0.82 | (4) | 2.20 | (11) |
100 | 48.08 | 2308 | 2301 | Methyl hexadecanoate | 0.41 | (6) | 1.99 | (12) | 0.45 | (6) | - | 0.53 | (14) | |
Alcohols | ||||||||||||||
2 | 3.15 | 968 | 972 | Ethanol | 773.10 | (10) | 845.14 | (11) | 1040.94 | (16) | 1099.28 | (12) | 946.25 | (6) |
3 | 4.66 | 1074 | 1099 | 2-Butanol | 12.75 | (6) | 11.75 | (19) | - | - | 14.45 | (2) | ||
6 | 6.12 | 1113 | 1112 | 2-Methyl-1-propanol | 23.13 | (12) | 13.42 | (9) | 9.14 | (12) | 14.55 | (17) | 19.72 | (8) |
8 | 7.87 | 1165 | 1176 | 2-Hexanol | 2.75 | (7) | 3.25 | (10) | 1.86 | (12) | 2.19 | (15) | - | |
11 | 9.51 | 1206 | 1206 | 3-Methylbutanol | 436.65 | (8) | 262.37 | (13) | 209.63 | (9) | 301.03 | (7) | 399.42 | (3) |
20 | 13.51 | 1312 | 1332 | 2-Heptanol 4 | 0.23 | (4) | 1.23 | (6) | 1.01 | (3) | 1.61 | (8) | - | |
23 | 15.15 | 1350 | 1360 | 1-Hexanol | 23.03 | (10) | 33.89 | (13) | 69.49 | (3) | 55.64 | (10) | 63.41 | (3) |
24 | 15.23 | 1352 | 1386 | 3-Hexenol isomer | 0.22 | (18) | 0.47 | (9) | 0.26 | (2) | 0.77 | (19) | 0.41 | (15) |
27 | 15.81 | 1364 | 1379 | 3-Ethoxypropanol 4 | 0.14 | (10) | 1.82 | (6) | 1.29 | (14) | - | - | ||
28 | 16.11 | 1371 | 1391 | 3-Hexenol isomer | 5.78 | (3) | 1.83 | (16) | 2.01 | (11) | 8.56 | (13) | 6.49 | (4) |
33 | 17.69 | 1383 | 1388 | 1-Octanol | 10.25 | (4) | 6.01 | (16) | 10.23 | (1) | 5.63 | (2) | - | |
42 | 20.48 | 1475 | 1465 | 1-Octen-3-ol | 7.12 | (1) | 7.91 | (2) | 9.67 | (9) | 0.32 | (3) | - | |
46 | 21.71 | 1503 | 1487 | 2-Ethylhexanol | 2.56 | (5) | 2.54 | (13) | - | 8.17 | (9) | - | ||
48 | 22.43 | 1521 | 1546 | 2,3-Butanediol isomer | 5.06 | (3) | 14.92 | (12) | 1.79 | (4) | 0.29 | (13) | 10.03 | (1) |
52 | 23.23 | 1540 | 1535 | 2-Nonanol 4 | 0.53 | (8) | 1.91 | (3) | 4.37 | (7) | 3.13 | (8) | - | |
56 | 23.93 | 1556 | 1583 | 2,3-Butanediol isomer | 9.44 | (11) | 5.73 | (15) | 1.52 | (8) | 0.27 | (11) | - | |
72 | 29.65 | 1701 | 1723 | Methionol | 1.21 | (2) | 1.39 | (19) | 1.35 | (5) | 1.66 | (8) | - | |
73 | 31.28 | 1750 | 1765 | 1-Decanol 4 | 1.60 | (12) | 5.82 | (12) | 1.08 | (17) | 2.22 | (17) | 8.32 | (9) |
87 | 37.94 | 1898 | 1925 | 2-Phenylethanol | 124.77 | (5) | 78.46 | (12) | 27.58 | (7) | 63.08 | (6) | 68.75 | (6) |
89 | 39.24 | 1956 | 1952 | Tridecanol 4 | 0.67 | (7) | 2.14 | (12) | 6.68 | (10) | 0.99 | (12) | 4.35 | (2) |
Terpenoids | ||||||||||||||
9 | 8.38 | 1178 | 1182 | Limonene | 101.05 | (1) | 82.77 | (6) | 79.66 | (12) | 78.23 | (3) | 104.46 | (8) |
10 | 8.76 | 1187 | 1214 | Eucalyptol | 1.11 | (4) | 4.21 | (21) | 2.13 | (2) | - | 2.15 | (4) | |
13 | 11.18 | 1254 | 1233 | Sabinene | 2.22 | (15) | 6.03 | (2) | 1.19 | (15) | - | - | ||
19 | 13.38 | 1308 | 1337 | Rose oxide isomer 4 | 8.25 | (3) | 8.31 | (2) | 9.78 | (12) | 9.23 | (1) | 9.77 | (4) |
32 | 16.74 | 1392 | 1421 | Linalool oxide isomer | - | - | 1.45 | (12) | 0.33 | (10) | 8.76 | (6) | ||
38 | 19.22 | 1443 | 1449 | Dihydrolinalool 4 | 1.32 | (8) | 9.83 | (14) | 1.37 | (20) | 2.61 | (12) | - | |
39 | 19.4 | 1448 | 1467 | Linalool oxide isomer | - | 3.32 | (14) | 0.96 | (7) | 0.18 | (6) | - | ||
40 | 19.97 | 1462 | 1474 | Menthone 4 | - | 8.42 | (9) | 4.19 | (2) | - | 14.19 | (14) | ||
41 | 20.16 | 1467 | 1467 | Limonene oxide | - | 12.48 | (15) | 6.40 | (7) | 9.81 | (3) | 7.15 | (3) | |
44 | 21.47 | 1498 | 1531 | Vitispirane I | 5.61 | (8) | 6.21 | (15) | 3.95 | (1) | 4.95 | (5) | 6.57 | (5) |
45 | 21.57 | 1501 | 1534 | Vitispirane II | 12.14 | (18) | 4.25 | (16) | 4.31 | (2) | 3.13 | (11) | 3.36 | (9) |
50 | 22.88 | 1530 | 1537 | Linalool | 1.02 | (8) | 3.35 | (7) | 6.15 | (4) | 2.15 | (4) | 1.98 | (4) |
53 | 23.28 | 1541 | 1538 | Dihydrocarveol 4 | - | 11.61 | (3) | 14.14 | (5) | - | 21.68 | (14) | ||
55 | 23.72 | 1551 | 1580 | Bornyl acetate 4 | - | 4.89 | (4) | 1.38 | (5) | 2.81 | (8) | 1.18 | (15) | |
58 | 24.44 | 1559 | 1569 | Linalyl acetate | - | 26.39 | (7) | 28.71 | (11) | - | - | |||
59 | 24.83 | 1575 | 1574 | Fenchyl alcohol 4 | 0.58 | (2) | 0.73 | (8) | 0.42 | (9) | 0.78 | (4) | 1.91 | (20) |
62 | 26.27 | 1610 | 1626 | Menthol 4 | - | 5.94 | (16) | 5.66 | (7) | 5.40 | (2) | 7.62 | (6) | |
63 | 26.34 | 1618 | 1632 | Pulegone 4 | 2.84 | (13) | - | 2.75 | (12) | - | - | |||
69 | 28.58 | 1673 | 1669 | α-Terpeniol | 49.62 | (12) | 60.22 | (9) | 64.55 | (9) | 65.23 | (2) | 67.71 | (3) |
74 | 31.38 | 1753 | 1762 | Citronellol | 0.94 | (13) | 2.73 | (4) | - | - | 1.72 | (12) | ||
81 | 34.59 | 1844 | 1840 | Geranylacetone | 4.16 | (15) | 15.36 | (19) | 10.45 | (5) | 4.24 | (8) | 12.76 | (13) |
91 | 39.86 | 1981 | 2009 | Nerolidol | 0.76 | (8) | 0.82 | (3) | 1.21 | (4) | - | 2.43 | (4) | |
93 | 41.16 | 2125 | 2134 | α-Cadinol | 4.23 | (9) | 0.20 | (13) | 0.37 | (2) | 1.09 | (7) | 2.06 | (15) |
Carbonyl compounds | ||||||||||||||
14 | 12.05 | 1276 | 1276 | Octanal | - | - | 0.52 | (7) | - | - | ||||
25 | 12.18 | 1278 | 1272 | 3-Hydroxybutan-2-one | 3.01 | (8) | 2.71 | (5) | 0.75 | (2) | - | - | ||
31 | 16.29 | 1374 | 1378 | Nonanal | 1.22 | (7) | 1.58 | (7) | 1.99 | (10) | 1.27 | (7) | - | |
43 | 20.81 | 1483 | 1484 | Decanal | 1.69 | (8) | 2.19 | (13) | 1.90 | (2) | 1.47 | (8) | - | |
57 | 24.08 | 1571 | 1543 | Undecanone 4 | 2.72 | (12) | - | 0.21 | (3) | - | - | |||
70 | 29.21 | 1689 | 1700 | Dodecanal 4 | 5.99 | (3) | - | 0.94 | (6) | - | - | |||
Acids | ||||||||||||||
36 | 18.51 | 1425 | 1407 | Acetic acid | 422.11 | (18) | 347.48 | (12) | 139.85 | (9) | 136.06 | (11) | 122.36 | (14) |
54 | 23.52 | 1547 | 1572 | 2-Methylpropanoic acid | 1.52 | (14) | 2.66 | (7) | - | - | - | |||
61 | 25.97 | 1600 | 1619 | Butanoic acid | 3.77 | (1) | 8.09 | (15) | 0.92 | (4) | 0.44 | (9) | 1.25 | (7) |
67 | 27.56 | 1645 | 1665 | Isovaleric acid | 19.86 | (13) | 9.15 | (12) | 2.61 | (7) | 6.63 | (11) | 16.27 | (5) |
79 | 34.29 | 1837 | 1850 | Hexanoic acid | 37.85 | (11) | 32.83 | (4) | 17.25 | (8) | 15.06 | (5) | 21.49 | (10) |
86 | 36.69 | 1937 | 1962 | 2-Hexenoic acid isomer 4 | 0.23 | (4) | 0.68 | (16) | 0.92 | (13) | - | 1.68 | (7) | |
94 | 41.82 | 2098 | 2083 | Octanoic acid | 83.66 | (7) | 41.12 | (13) | 34.35 | (3) | 53.22 | (2) | 76.83 | (12) |
101 | 48.56 | 2321 | 2317 | Decanoic acid | 71.71 | (6) | 65.85 | (15) | 70.36 | (5) | 42.58 | (2) | 45.52 | (19) |
102 | 54.81 | 2340 | 2310 | Hydrocinnamic acid | 10.63 | (10) | 1.02 | (16) | 0.81 | (7) | 2.43 | (5) | - | |
103 | 67.81 | 2392 | 2407 | Undecylic acid 4 | 7.18 | (8) | 0.91 | (15) | - | 0.56 | (8) | 0.62 | (9) | |
Lactones | ||||||||||||||
60 | 25.71 | 1594 | 1618 | Butyrolactone | 0.94 | (5) | - | - | 0.19 | (19) | - | |||
88 | 37.95 | 1936 | 1912 | γ–Octalactone 4 | 0.53 | (14) | - | - | - | - | ||||
92 | 40.63 | 2107 | 2103 | γ–Decalactone 4 | 2.28 | (17) | 0.95 | (8) | 2.28 | (2) | 14.59 | (2) | 4.23 | (4) |
96 | 43.92 | 2218 | 2209 | Wine lactone 4 | 3.99 | (2) | - | - | 1.27 | (7) | 2.60 | (12) | ||
99 | 45.44 | 2267 | 2241 | γ-Decenolactone 4 | 11.22 | (6) | 4.43 | (8) | 7.34 | (13) | 15.90 | (2) | 7.75 | (1) |
Volatile phenols | ||||||||||||||
97 | 44.22 | 2228 | 2205 | 4-Ethylphenol | 1.82 | (4) | 1.71 | (14) | 1.22 | (3) | - | 0.79 | (3) | |
98 | 45.13 | 2257 | 2250 | Eugenol | 0.39 | (8) | 1.68 | (10) | 3.73 | (10) | 1.35 | (4) | 2.83 | (4) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perestrelo, R.; Silva, C.L.; Silva, P.; Câmara, J.S. Establishment of the Volatile Signature of Wine-Based Aromatic Vinegars Subjected to Maceration. Molecules 2018, 23, 499. https://doi.org/10.3390/molecules23020499
Perestrelo R, Silva CL, Silva P, Câmara JS. Establishment of the Volatile Signature of Wine-Based Aromatic Vinegars Subjected to Maceration. Molecules. 2018; 23(2):499. https://doi.org/10.3390/molecules23020499
Chicago/Turabian StylePerestrelo, Rosa, Catarina L. Silva, Pedro Silva, and José S. Câmara. 2018. "Establishment of the Volatile Signature of Wine-Based Aromatic Vinegars Subjected to Maceration" Molecules 23, no. 2: 499. https://doi.org/10.3390/molecules23020499
APA StylePerestrelo, R., Silva, C. L., Silva, P., & Câmara, J. S. (2018). Establishment of the Volatile Signature of Wine-Based Aromatic Vinegars Subjected to Maceration. Molecules, 23(2), 499. https://doi.org/10.3390/molecules23020499