Reconstructing Phylogeny by Aligning Multiple Metabolic Pathways Using Functional Module Mapping
<p>Overview of the MMAL method. MMAL builds the phylogenetic tree for 4 organisms by comparing the common pathways of these organisms in three phases. <span class="html-italic">G<sub>ij</sub></span> is the common pathway <span class="html-italic">j</span> of organism <span class="html-italic">O<sub>i</sub></span>, <span class="html-italic">i</span> = 1, 2, 3, 4, <span class="html-italic">j</span> = 1, 2, 3. The nodes in the pathways are reactions. The nodes connected with a red dashed line form a reaction mapping between pathways, and each reaction mapping constructs a composite node in the figure. The union graph is a graph that is constructed by the composite nodes and does not have edges. In the figure, each of common pathways 1, 2, and 3 has a union graph. In phase I, the union graph is constructed for common pathways 1, 2, and 3 respectively. In phase II, the mapped functional modules (the modules are composed of the nodes circled in blue dashed line in the figure) in the union graph of common pathways 1, 2, and 3 are identified. In phase III, MMAL obtains organism distance matrix from the comparison of the mapped functional modules, and builds the phylogenetic tree based on the matrix, wherein <span class="html-italic">d<sub>i</sub><sub>j</sub></span> is the organism distance between organism <span class="html-italic">O<sub>i</sub></span> and <span class="html-italic">O<sub>j</sub></span>, <span class="html-italic">i</span> = 1, 2, 3, 4, <span class="html-italic">j</span> = 1, 2, 3, 4.</p> "> Figure 2
<p>Incremental phylogenetic reconstruction for 16 organisms from their common metabolic pathways. (<b>a</b>) Our tree T<sub>1</sub> based on aligning 5 common pathways for 16 organisms. (<b>b</b>) Our tree T<sub>2</sub> based on aligning 10 common pathways for 16 organisms. (<b>c</b>) Our tree T<sub>3</sub> based on aligning 15 common pathways for 16 organisms. (<b>d</b>) Our tree T<sub>4</sub> based on aligning 20 common pathways for 16 organisms. (<b>e</b>) Heymans et al.’s tree for 16 organisms. (<b>f</b>) The NCBI taxonomy for 16 organisms.</p> "> Figure 3
<p>Similarities between our trees and the NCBI taxonomy for the 16 organisms.</p> "> Figure 4
<p>Average values of similarities between perturbed trees and the original one. The error rate increases from 0% to 30%.</p> "> Figure 5
<p>Phylogenetic trees for <span class="html-italic">Anabaena</span> (ana), <span class="html-italic">Gloeobacter violaceus</span> (gvi), <span class="html-italic">Prochlorococcus marinus</span> SS120 (pma), <span class="html-italic">Prochlorococcus marinus MED4</span> (pmm), <span class="html-italic">Prochlorococcus marinus MIT 9313</span> (pmt), <span class="html-italic">Synechocystis sp. PCC 6803</span> (syn), <span class="html-italic">Synechococcus sp. WH8102</span> (syw), and <span class="html-italic">Thermosynechococcus elongatus</span> (tel). (<b>a</b>) Our tree T<sub>1</sub>. (<b>b</b>) Chang et al.’s tree T<sub>2</sub>. (<b>c</b>) Clemente et al.’s tree T<sub>3</sub>. (<b>d</b>) The NCBI taxonomy T.</p> "> Figure 6
<p>Phylogenetic trees for <span class="html-italic">Archaeoglobus fulgidus</span> (afu), <span class="html-italic">Clostridium perfringens</span> (cpe), <span class="html-italic">Haemophilus influenzae</span> (hin), <span class="html-italic">Listeria innocua</span> (lin), <span class="html-italic">Methanococcus jannaschii</span> (mja), <span class="html-italic">Mus musculus</span> (mmu), <span class="html-italic">Neisseria meningitidis</span> MC58 (nme), and <span class="html-italic">Rattus norvegicus</span> (rno). (<b>a</b>) Our tree T<sub>1</sub> and the tree T<sub>2</sub> constructed by MP-Align (T<sub>1</sub> and T<sub>2</sub> are the same). (<b>b</b>) The NCBI taxonomy T.</p> "> Figure 7
<p>Phylogenetic trees for green sulfur and green non-sulfur bacteria. (<b>a</b>) Our tree T<sub>1</sub>. (<b>b</b>) Ma et al.’s tree T<sub>2</sub>. (<b>c</b>) The NCBI taxonomy T.</p> "> Figure 8
<p>Phylogenetic trees for <span class="html-italic">Prochlorococcus</span> and <span class="html-italic">Synechococcus</span>. (<b>a</b>) Our tree T<sub>1</sub>. (<b>b</b>) Ma et al.’s tree T<sub>2</sub>. (<b>c</b>) The NCBI taxonomy T.</p> "> Figure 9
<p>Example of union graph. The upper path is <span class="html-italic">G<sub>p</sub></span> and the lower path is <span class="html-italic">G<sub>p</sub></span>′. <span class="html-italic">u<sub>i</sub></span>→<span class="html-italic">u<sub>j</sub></span> denotes that the output compound of <span class="html-italic">u<sub>i</sub></span> is the input compound of <span class="html-italic">u<sub>j</sub></span>, <span class="html-italic">v<sub>i</sub></span>→<span class="html-italic">v<sub>j</sub></span> denotes that the output compound of <span class="html-italic">v<sub>i</sub></span> is the input compound of <span class="html-italic">v<sub>j</sub></span>, <span class="html-italic">i</span>, <span class="html-italic">j</span> = 1, 2, 3, 4, 5, 6. <span class="html-italic">V</span>(<span class="html-italic">G<sub>p</sub></span>) and <span class="html-italic">V</span>(<span class="html-italic">G<sub>p</sub></span>′) are regarded as two partitions of bipartite graph <span class="html-italic">G<sub>b</sub></span>. Solid lines denote the edges of <span class="html-italic">G<sub>b</sub></span>. Each edge of <span class="html-italic">G<sub>b</sub></span> corresponds to a one-to-one node mapping between <span class="html-italic">G<sub>p</sub></span> and <span class="html-italic">G<sub>p</sub></span>′. The mappings in rectangles are the node mappings selected by the MWBM algorithm. Each selected node mapping constructs a composite node <span class="html-italic">c</span>_<span class="html-italic">d<sub>i</sub></span>, <span class="html-italic">i</span> = 1, 2, 3, 4, 5, 6. A union graph of <span class="html-italic">G<sub>p</sub></span> and <span class="html-italic">G<sub>p</sub></span>′ is constructed by these six composite nodes.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Comparison with the Classification Based on Substrate-Product Relationships and the Classification Based on EC Hierarchy
2.2. Comparison with the Classification Based on Comparing Single Pair of Metabolic Pathways
2.3. Comparison with the Classification Based on Global Alignment of Multiple Metabolic Pathways
2.3.1. Green Sulfur and Green Non-Sulfur Bacteria
2.3.2. Prochlorococcus and Synechococcus
3. Methods
3.1. Phase I—Constructing Union Graph
3.2. Phase II—Identifying Functionally Conserved Modules
3.3. Phase III—Building Phylogenetic Tree
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, C.-Y.; Lin, S.-H.; Lee, C.-C.; Tang, C.Y.; Berger, B.; Liao, C.-S. Reconstruction of phyletic trees by global alignment of multiple metabolic networks. BMC Bioinf. 2013, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014, 42, D199–D205. [Google Scholar] [CrossRef] [PubMed]
- Forst, C.V.; Schulten, K. Phylogenetic analysis of metabolic pathways. J. Mol. Evol. 2001, 52, 471–489. [Google Scholar] [CrossRef] [PubMed]
- Clemente, J.; Satou, K.; Valiente, G. Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology. Genome Inf. 2005, 16, 45–55. [Google Scholar]
- Oh, S.J.; Joung, J.-G.; Chang, J.-H.; Zhang, B.-T. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks. BMC Bioinf. 2006, 7, 284. [Google Scholar] [CrossRef] [PubMed]
- Mano, A.; Tuller, T.; Béjà, O.; Pinter, R.Y. Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinf. 2010, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Pinter, R.Y.; Rokhlenko, O.; Yeger-Lotem, E.; Ziv-Ukelson, M. Alignment of metabolic pathways. Bioinformatics 2005, 21, 3401–3408. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-S.; Lu, K.; Baym, M.; Singh, R.; Berger, B. IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 2009, 25, i253–i258. [Google Scholar] [CrossRef] [PubMed]
- Clemente, J.C.; Satou, K.; Valiente, G. Phylogenetic reconstruction from non-genomic data. Bioinformatics 2007, 23, e110–e115. [Google Scholar] [CrossRef] [PubMed]
- Mazurie, A.; Bonchev, D.; Schwikowski, B.; Buck, G.A. Phylogenetic distances are encoded in networks of interacting pathways. Bioinformatics 2008, 24, 2579–2585. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, E.; Kupiec, M.; Feldman, M.W.; Ruppin, E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl. Acad. Sci. USA 2008, 105, 14482–14487. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Lyu, P.-C.; Arita, M. Reconstructing phylogeny from metabolic substrate-product relationships. BMC Bioinf. 2011, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhong, C.; Lin, H.X.; Wang, J. A Method for Finding Metabolic Pathways Using Atomic Group Tracking. PLoS ONE 2017, 12, e0168725. [Google Scholar] [CrossRef] [PubMed]
- Plotree, D.; Plotgram, D. PHYLIP-phylogeny inference package (version 3.2). Cladistics 1989, 5, 163–166. [Google Scholar]
- Page, R.D. Visualizing phylogenetic trees using TreeView. Curr. Protoc. Bioinf. 2002, 6, 1–15. [Google Scholar]
- Shasha, D.; Wang, J.T.; Zhang, S. Unordered tree mining with applications to phylogeny. In Proceedings of the 20th International Conference on Data Engineering (ICDE), Boston, MA, USA, 2 April 2004; pp. 708–719. [Google Scholar]
- Heymans, M.; Singh, A.K. Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics 2003, 19, i138–i146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.; Skogerbø, G.; Zhang, Z.; Zhu, X.; Zhang, Z.; Sun, S.; Lu, H.; Shi, B.; Chen, R. Phylophenetic properties of metabolic pathway topologies as revealed by global analysis. BMC Bioinf. 2006, 7, 1. [Google Scholar]
- Alberich, R.; Llabrés, M.; Sánchez, D.; Simeoni, M.; Tuduri, M. MP-Align: alignment of metabolic pathways. BMC Syst. Biol. 2014, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Zhong, C.; Lin, H.X.; Huang, J. Aligning Metabolic Pathways Exploiting Binary Relation of Reactions. PloS ONE 2016, 11, e0168044. [Google Scholar] [CrossRef] [PubMed]
- Ay, F.; Kellis, M.; Kahveci, T. SubMAP: Aligning metabolic pathways with subnetwork mappings. J. Comput. Biol. 2011, 18, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Hattori, M.; Okuno, Y.; Goto, S.; Kanehisa, M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 2003, 125, 11853–11865. [Google Scholar] [CrossRef] [PubMed]
- Sankowski, P. Maximum weight bipartite matching in matrix multiplication time. Theor. Comput. Sci. 2009, 410, 4480–4488. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Reconstructed Tree | Similarity |
---|---|
Our tree T1 | 0.38 |
Chang et al.’s tree T2 | 0.19 |
Clemente et al.’s tree T3 | 0.16 |
Reconstructed Tree | Similarity |
---|---|
Our tree T1 | 0.20 |
Ma et al.’s tree T2 | 0.12 |
Reconstructed Tree | Similarity |
---|---|
Our tree T1 | 0.14 |
Ma et al.’s tree T2 | 0.10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhong, C.; Lin, H.X.; Wang, J.; Peng, Y. Reconstructing Phylogeny by Aligning Multiple Metabolic Pathways Using Functional Module Mapping. Molecules 2018, 23, 486. https://doi.org/10.3390/molecules23020486
Huang Y, Zhong C, Lin HX, Wang J, Peng Y. Reconstructing Phylogeny by Aligning Multiple Metabolic Pathways Using Functional Module Mapping. Molecules. 2018; 23(2):486. https://doi.org/10.3390/molecules23020486
Chicago/Turabian StyleHuang, Yiran, Cheng Zhong, Hai Xiang Lin, Jianyi Wang, and Yuzhong Peng. 2018. "Reconstructing Phylogeny by Aligning Multiple Metabolic Pathways Using Functional Module Mapping" Molecules 23, no. 2: 486. https://doi.org/10.3390/molecules23020486
APA StyleHuang, Y., Zhong, C., Lin, H. X., Wang, J., & Peng, Y. (2018). Reconstructing Phylogeny by Aligning Multiple Metabolic Pathways Using Functional Module Mapping. Molecules, 23(2), 486. https://doi.org/10.3390/molecules23020486