Chemical Analysis of Dietary Constituents in Rosa roxburghii and Rosa sterilis Fruits
<p>Morphology of <span class="html-italic">R. roxburghii</span> (<b>A</b>–<b>C</b>) and <span class="html-italic">R. sterilis</span> (<b>D</b>–<b>F</b>) fruits.</p> "> Figure 2
<p>The representative total ion chromatograms of <span class="html-italic">R. roxburghii</span> (<b>A</b>) and <span class="html-italic">R. sterilis</span> (<b>B</b>) fruits obtained from GC-MS analysis.</p> "> Figure 3
<p>The representative total ion chromatograms of <span class="html-italic">R. roxburghii</span> (<b>A</b>) and <span class="html-italic">R. sterilis</span> (<b>B</b>) fruits obtained from UFLC/Q-TOF-MS in negative ion mode.</p> "> Figure 4
<p>Chemical structures of compounds identified in the methanol extracts of <span class="html-italic">R. roxburghii</span> and <span class="html-italic">R. sterilis</span> fruits.</p> "> Figure 4 Cont.
<p>Chemical structures of compounds identified in the methanol extracts of <span class="html-italic">R. roxburghii</span> and <span class="html-italic">R. sterilis</span> fruits.</p> "> Figure 4 Cont.
<p>Chemical structures of compounds identified in the methanol extracts of <span class="html-italic">R. roxburghii</span> and <span class="html-italic">R. sterilis</span> fruits.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis and Comparison of Essential Oils by GC-MS
2.2. Chemical Analysis and Comparison of Multiple Constituents by UFLC/Q-TOF-MS/MS
2.2.1. Identification of Constituents
2.2.2. Comparison of Multiple Constituents
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. GC-MS Experiment
3.3.1. Sample Preparation
3.3.2. Instrument Conditions
3.3.3. Data Analysis
3.4. UFLC/Q-TOF-MS Experiments
3.4.1. Sample Preparation
3.4.2. Instrument Conditions
3.4.3. Data Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, H.; Hu, J.W.; Huang, X.F.; Zhou, C.; Li, L.Y.; Fan, M.Y. Risk assessment of heavy metals pollution for Rosa sterilis and soil from planting bases located in karst areas of Guizhou province. Appl. Mech. Mater. 2015, 700, 475–481. [Google Scholar] [CrossRef]
- Westhuizen, F.H.V.D.; Rensburg, C.S.J.V.; Rautenbach, G.S.; Marnewick, J.L.; Du, T.L.; Huysamen, C.; Louw, R.; Pretorius, P.J.; Erasmus, E. In vitro antioxidant, antimutagenic and genoprotective activity of Rosa roxburghii fruit extract. Phytother. Res. 2008, 22, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, X.; Qiang, H.; Ke, L.; Wang, J.; Chen, D.; Zhang, Y. Inhibitory effects of Rosa roxburghii tratt juice on in vitro oxidative modification of low density lipoprotein and on the macrophage growth and cellular cholesteryl ester accumulation induced by oxidized low density lipoprotein. Clin. Chim. Acta 2001, 313, 37–43. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.J.; Liu, J.; Liu, L.K.; Zhang, E.S.; Li, W.L. Inhibition of metastasis and invasion of ovarian cancer cells by crude polysaccharides from Rosa roxburghii tratt in vitro. Asian Pac. J. Cancer Prev. 2014, 15, 10351–10354. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhang, W.B.; Cai, X.H.; Lu, D.D.; He, X.Y.; Qiu, P.Y.; Wu, J. Flavonoids of Rosa roxburghii tratt act as radioprotectors. Asian Pac. J. Cancer Prev. 2014, 15, 8171–8175. [Google Scholar] [CrossRef] [PubMed]
- Janse van Rensburg, C.; Erasmus, E.; Loots, D.T.; Oosthuizen, W.; Jerling, J.C.; Kruger, H.S.; Louw, R.; Brits, M.; van der Westhuizen, F.H. Rosa roxburghii supplementation in a controlled feeding study increases plasma antioxidant capacity and glutathione redox state. Eur. J. Nutr. 2005, 44, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Nan, Y.; Qin, J.; Yang, Y.; Hao, X.; Yang, X. Chemical constituents from medical and edible plants of Rosa roxburghii. China J. Chin. Mater. Med. 2016, 41, 451–455. [Google Scholar]
- Chen, Q.; Gao, J. Analysis of volatile components from Rosa roxburghii tratt seed by HS-SPME and GC-MS. China Brew. 2014, 33, 141–142. [Google Scholar]
- Sarangowa, O.; Kanazawa, T.; Nishizawa, M.; Myoda, T.; Bai, C.; Yamagishi, T. Flavonol glycosides in the petal of Rosa species as chemotaxonomic markers. Phytochemistry 2014, 107, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Li, Q.J.; Nan, Y.; Yang, X.S. Chemical Components of Antioxidant Activity Parts of Rosa roxburghii Fruit. Chin. J. Exp. Tradit. Med. Formulae 2015, 11, 62–65. [Google Scholar]
- Luo, D.Y. Exploration and Research of Cili; People’s Publishing House in Guizhou: Guiyang, China, 1987; Volume 12, p. 66. [Google Scholar]
- An, H.M.; Liu, M.; Yang, M.; Fan, W.G. Analysis of main organic acid compositions in Rosa roxburghii Tratt. Sci. Agric. Sin. 2011, 44, 2049–2100. [Google Scholar]
- Qiang, X.; Wen, X.; Tao, N.; Hu, Z.; Yue, H.; Deng, X. Extraction of high quality of RNA and construction of a suppression subtractive hybridization (SSH) library from chestnut rose (Rosa roxburghii tratt). Biotechnol. Lett. 2006, 28, 587–591. [Google Scholar]
- Liang, G.Y.; Gray, A.I.; Waterman, P.G. Pentacyclic triterpenes from the fruits of Rosa sterilis. J. Nat. Prod. 1989, 52, 162–166. [Google Scholar]
- Wen, X.P.; Deng, X.Y. Characterization of genotypes and genetic relationship of Cili (Rosa roxburghii) and its relatives using RAPD markers. J. Agric. Biotechnol. 2003, 22, 376–383. [Google Scholar]
- Zhang, D.; Wei, G.X.; Wang, W.; Feng, F.; Zeng, F.K. Comparative research on basic ingredients and volatile aroma compounds of Rosa roxburghii Tratt and Rosa sterilis D. shi. Sci. Technol. Food Ind. 2016. [Google Scholar] [CrossRef]
- Fu, H.X.; Wang, D.P.; Huang, L.R.; Ma, L.; Yang, X.S. Analysis of the Volatile Aroma Compounds of Rosa Roxburghii Tratt and Rosa sterilis. Fine Chem. 2012, 29, 875–878. [Google Scholar]
- Lu, M.; An, H.; Zhao, X. Analysis of Amino Acids in Rosa sterilis and Rosa roxburghii Fruits. Food Sci. 2015, 36, 118–121. [Google Scholar]
- Klavina, L.; Springe, G.; Nikolajeva, V.; Martsinkevich, I.; Nakurte, I.; Dzabijeva, D.; Steinberga, I. Chemical composition analysis, antimicrobial activity and cytotoxicity screening of Moss extracts (Moss Phytochemistry). Molecules 2015, 20, 17221–17243. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, P.; Zeng, X.; Wu, H.; Su, W.; He, J. Identification and pharmacokinetics of multiple potential bioactive constituents after oral administration of Radix Astragali on cyclophosphamide-induced immunosuppression in Balb/c mice. Int. J. Mol. Sci. 2015, 16, 5047–507. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.H.; Liu, M.H.; Zhang, X.L.; He, J.Y. Chemical profiles and protective effect of Hedyotis diffusa Willd in lipopolysaccharide-induced renal inflammation mice. Int. J. Mol. Sci. 2015, 16, 27252–27269. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.H.; Ko, C.H.; Ma, N.; Tan, P.W.; Fu, W.M.; He, J.Y. Chemical profiles, antioxidant and anti-obesity effects of extract of Bambusa textilis Mcclure leaves. J. Funct. Foods 2016, 22, 533–546. [Google Scholar] [CrossRef]
- Liang, L.L.; Han, L.; Chen, X.; Shi, L.H. Study on volatile Components in Rose roxburghii fruit. Chem. Bull. 1992, 5, 34–36. [Google Scholar]
- Jiang, Y.H.; Gao, J.; Zhao, P.; Zhang, D.G.; Li, Y.H. GC-MS Analysis of Volatile Components from the Fresh Fruits of Rosa sterilis. Food Res. Dev. 2013, 34, 91–94. [Google Scholar]
- Wu, X.Q.; Lu, H.; Jin, J.L.; Xie, P.; Wang, S.S.; Yang, S.J. GC-MS Analysis of Volatile Oil from Rosa sterilis by Supercritical CO2 Extraction. Chin. J. Exp. Tradit. Med. Formulae 2014, 20, 98–101. [Google Scholar]
- Michelini, F.M.; Ramírez, J.A.; Berra, A.; Galagovsky, L.R.; Alché, L.E. Anti-herpetic and anti-inflammatory activities of two new synthetic 22,23-dihydroxylated stigmastane derivatives. J. Steroid Biochem. Mol. Biol. 2008, 111, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Bourourou, M.; Heurteaux, C.; Blondeau, N. Alpha-linolenic acid given as enteral or parenteral nutritional intervention against sensorimotor and cognitive deficits in a mouse model of ischemic stroke. Neuropharmacology 2016, 108, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, M.; Lee, Y.J.; Lee, S.P.; Kim, T.S.; Yang, H.J.; Kwon, D.Y.; Lee, S.H.; Lee, J.H. Effects of α-linolenic acid supplementation in perilla oil on collagen-epinephrine closure time, activated partial thromboplastin time and lp-pla2 activity in nondiabetic and hypercholesterolemic subjects. J. Funct. Foods 2016, 23, 95–104. [Google Scholar] [CrossRef]
- Domenichiello, A.F.; Kitson, A.P.; Chen, C.T.; Trépanier, M.O.; Stavro, P.M.; Bazinet, R.P. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats. J. Nutr. Biochem. 2016, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Cunja, V.; Mikulic-Petkovsek, M.; Zupan, A.; Stampar, F.; Schmitzer, V. Frost decreases content of sugars, ascorbic acid and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips. J. Plant Physiol. 2015, 178, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Nađpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anačkov, G.T.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.A.; Bos, A.A.V.D.; Kite, G.C.; Veitch, N.C.; Simmonds, M.S.J. Flavonol glycosides acylated with 3-hydroxy-3-methylglutaric acid as systematic characters in Rosa. Phytochemistry 2012, 81, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, W.; Shen, Y.; Li, N.; Dong, X.P.; Wang, K.J.; Cheng, Y.X. Antioxidant compounds from Rosa laevigata fruits. Food Chem. 2012, 130, 575–580. [Google Scholar] [CrossRef]
- Gao, P.Y.; Li, L.Z.; Peng, Y.; Piao, S.J.; Zeng, N.; Lin, H.W.; Song, S.J. Triterpenes from fruits of Rosa laevigata. Biochem. Syst. Ecol. 2010, 38, 457–459. [Google Scholar] [CrossRef]
- Yan, M.; Zhu, Y.; Zhang, H.J.; Jiao, W.H.; Han, B.N.; Liu, Z.X.; Qiu, F.; Chen, W.S.; Lin, H.W. Anti-inflammatory secondary metabolites from the leaves of Rosa laevigata. Bioorg. Med. Chem. 2013, 21, 3290–3297. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Li, S.; Hu, J.; Zhai, X.; Ma, W.; Li, N.; Wang, K. Phenolic constituents from the roots of Rosa laevigata (Rosaceae). Biochem. Syst. Ecol. 2014, 52, 23–26. [Google Scholar] [CrossRef]
- Riffault, L.; Destandau, E.; Pasquier, L.; André, P.; Elfakir, C. Phytochemical analysis of Rosa hybrida, cv. ‘jardin de granville’ by HPTLC, HPLC-DAD and HPLC-ESI-HRMS: polyphenolic fingerprints of six plant organs. Phytochemistry 2014, 99, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Xu, Q.; Deng, X.X. L-ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii tratt). J. Plant Physiol. 2014, 171, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- He, J.Y.; Zhang, Y.H.; Ma, N.; Zhang, X.L.; Liu, M.H.; Fu, W.M. Comparative analysis of multiple ingredients in Rosa roxburghii and R. sterilis fruits and their antioxidant activities. J. Funct. Foods 2016. [Google Scholar] [CrossRef]
- Qin, J.J.; Li, Q.J.; Xue, Y.; Ma, L.; Yang, X.S. Study on extraction methods and α-glucosidase inhibitory activity from the total triterpenes of Rosa roxbughii. Sci. Technol. Food Ind. 2014, 10, 186–189. [Google Scholar]
- Han, L.; Chen, X. Study on extraction methods for volatile flavor compounds in fresh fruit of Rosa roxburghii Tratt. Sci. Technol. Food Ind. 2007, 28, 100–101. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
No. | Rt (min) | Compounds | Molecular Formula | Molecular Weight | Main Mass Fragments | Area% in RR Fruit | Area% in RS Fruit |
---|---|---|---|---|---|---|---|
1 | 3.12 | 3-Furaldehyde | C5H4O2 | 96 | 67, 39 | - | 0.01 ± 0.001 |
2 | 3.17 | Furfural | C5H4O2 | 96 | 67, 39 | 0.67 ± 0.03 | 0.57 ± 0.02 |
3 | 3.34 | 3-Hexen-1-ol | C6H12O | 100 | 83, 67, 41 | - | 0.53 ± 0.01 |
4 | 3.40 | 4-Methyl-octane | C9H20 | 128 | 112, 85, 71, 69, 43 | 0.83 ± 0.04 | 0.17 ± 0.01 |
5 | 3.41 | Ethyl benzene | C8H10 | 106 | 91, 74, 51, 27 | - | 0.20 ± 0.02 |
6 | 3.48 | o-Xylene | C8H10 | 106 | 91, 74, 51 | 0.3 ± 0.003 | - |
7 | 3.48 | p-Xylene | C8H10 | 106 | 91, 74, 51 | - | 0.28 ± 0.02 |
8 | 3.67 | Styrene | C8H8 | 104 | 78, 51, 27 | 1.53 ± 0.05 | 0.04 ± 0.003 |
9 | 4.27 | 5-Methyl-nonane | C10H22 | 142 | 112, 85, 65, 43 | 0.16 ± 0.003 | - |
10 | 4.94 | 2-Ethyl-1-hexanol | C8H18O | 130 | 112, 83, 57, 29 | 0.23 ± 0.01 | - |
11 | 4.99 | d-Limonene | C10H16 | 158 | 137, 121, 93, 68, 41 | 0.22 ± 0.01 | 0.17 ± 0.01 |
12 | 5.02 | Benzyl alcohol | C7H8O | 108 | 79, 51 | - | 0.02 ± 0.002 |
13 | 5.07 | 1,6-Dimethylhepta-1,3,5-triene | C9H14 | 122 | 107, 91, 65, 41 | - | 0.03 ± 0.002 |
14 | 5.16 | 3,7-Dimethyl-1,3,6-octatriene | C10H16 | 136 | 121, 93, 77, 57 | - | 0.05 ± 0.01 |
15 | 5.69 | 4,5-Diethyloctane | C12H26 | 170 | 141, 111, 84, 67, 43 | 0.63 ± 0.02 | 0.46 ± 0.02 |
16 | 5.94 | 1,2,4,5-Tetramethylbenzene | C10H14 | 134 | 119, 91, 65 | - | 0.01 ± 0.001 |
17 | 6.01 | 5,6-Dimethyldecane | C12H26 | 170 | 141, 113, 84, 67, 43 | 0.73 ± 0.02 | 0.18 ± 0.02 |
18 | 6.17 | 4-Ethyldecane | C12H26 | 170 | 140, 113, 85, 43 | 0.18 ± 0.01 | - |
19 | 6.24 | 2,6-Dimethyldecane | C12H26 | 170 | 140, 113, 71, 43 | 0.29 ± 0.01 | - |
20 | 6.68 | Dodecane | C12H26 | 170 | 141, 112, 85, 57, 41 | 0.14 ± 0.01 | - |
21 | 7.05 | 2-Carene | C10H16 | 136 | 121, 93, 77 | - | 0.03 ± 0.003 |
22 | 7.22 | 2,6,10-Trimethyldodecane, | C15H32 | 212 | 183, 155, 127, 85, 57 | - | 0.02 ± 0.002 |
23 | 7.29 | 1,2,3,4-Tetrahydro-1,1,6-trimethylnaphthalene | C13H18 | 174 | 159, 131, 105, 71 | - | 0.07 ± 0.01 |
24 | 7.46 | 3-Methylnonadecane | C20H42 | 283 | 253, 169, 141, 113, 85, 57 | 0.12 ± 0.01 | - |
25 | 7.65 | 2,3-Dihydro-1,1,5,6-tetramethyl-1H-indene | C6H7BClNO3 | 187 | 159, 128, 91, 71 | - | 0.26 ± 0.02 |
26 | 7.66 | Decane | C10H22 | 142 | 99, 71, 43, 27 | 0.03 ± 0.004 | - |
27 | 8.23 | 1,1,5-Trimethyl-1, 2-dihydronaphthalene | C13H16 | 172 | 157, 141, 115, 77 | - | 0.07 ± 0.01 |
28 | 8.28 | Megastigma-4,6(Z),8(Z)-triene | C13H20 | 176 | 161, 133, 105, 77 | - | 0.04 ± 0.004 |
29 | 8.47 | Dichloroacetic acid, tetradecyl ester | C16H30Cl2O2 | 325 | 196, 168, 139, 111, 83, 65, 43 | 0.07 ± 0.006 | - |
30 | 8.47 | 1-Tetradecene | C14H28 | 196 | 168, 140, 111, 83 | - | 0.04 ± 0.003 |
31 | 8.53 | Tetradecane | C14H30 | 198 | 169, 141, 113, 85, 57 | 0.03 ± 0.003 | - |
32 | 8.74 | Alloaromadendrene | C15H24 | 204 | 189, 161, 119, 91, 69 | - | 0.06 ± 0.004 |
33 | 8.99 | 3,8-Dimethyldecane | C12H26 | 170 | 141, 113, 85, 57 | - | 0.08 ± 0.01 |
34 | 9.04 | 9-Methylnonadecane | C20H42 | 282 | 267, 238, 168, 140, 113, 85 | - | 0.03 ± 0.004 |
35 | 9.20 | 2,6-Bis(1,1-dimethylethyl)-2,5-cyclohexadiene-1,4-dione | C14H20O2 | 220 | 177, 135, 91, 67 | - | 0.07 ± 0.01 |
36 | 9.51 | 2,4-Bis(1,1-dimethylethyl)phenol | C14H22O | 206 | 191, 163, 115, 91, 57 | 0.13 ± 0.01 | 0.13 ± 0.02 |
37 | 9.60 | 1-Butyl-2-propylcyclopentane | C12H24 | 168 | 140, 111, 91, 69, 41 | 0.03 ± 0.004 | - |
38 | 9.65 | 4-Ethoxybenzoic acid ethyl ester | C11H14O3 | 194 | 149, 121, 93, 65 | - | 0.09 ± 0.01 |
39 | 9.87 | Dodecanoic acid | C12H24O2 | 200 | 157, 129, 101, 73, 43 | 0.54 ± 0.02 | 2.26 ± 0.09 |
40 | 10.15 | 1-Tricosanol | C23H48O | 340 | 322, 294, 154, 125, 97, 69, 43 | 0.08 ± 0.01 | - |
41 | 10.22 | Hexadecane | C16H34 | 226 | 169, 141, 113, 85, 57 | 0.12 ± 0.02 | - |
42 | 11.26 | 2,6,10,14-Tetramethylpentadecane | C19H40 | 268 | 253, 183, 141, 113, 85, 57 | - | 0.20 ± 0.01 |
43 | 11.33 | Heptadecane | C17H36 | 240 | 169, 141, 113, 85, 57 | 0.21 ± 0.01 | 5.38 ± 0.13 |
44 | 11.49 | 3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol | C15H26O | 222 | 204, 161, 136, 93, 69 | 0.24 ± 0.02 | - |
45 | 11.72 | Hexacosane | C26H54 | 366 | 243, 197, 141, 113, 85, 57 | - | 0.09 ± 0.004 |
46 | 11.83 | 9-Octylheptadecane | C25H52 | 352 | 239, 197, 169, 141, 113, 85, 57 | 0.09 ± 0.01 | - |
47 | 11.86 | Tetradecanoic acid | C14H28O2 | 228 | 185, 157, 129, 97, 73 | 0.44 ± 0.02 | 0.92 ± 0.02 |
48 | 12.08 | Benzyl benzoate | C14H12O2 | 212 | 167, 105, 77, 51 | - | 0.27 ± 0.01 |
49 | 12.23 | 6-Tetradecanesulfonic acid butyl ester | C18H38O3S | 334 | 196, 127, 91, 71, 52 | - | 0.08 ± 0.01 |
50 | 12.28 | 3,3,4-Trimethyl-4-p-tolylcyclopentanol | C15H22O | 218 | 200, 163, 147, 119, 91 | 0.20 ± 0.01 | - |
51 | 12.50 | 2,6,10,14-Tetramethylhexadecane | C20H42 | 282 | 253, 183, 141, 113, 85 | 0.18 ± 0.01 | - |
52 | 13.06 | 2-Methylheptadecane | C18H38 | 254 | 239, 211, 141, 113, 85, 57 | - | 0.11 ± 0.01 |
53 | 13.25 | Cyclohexadecane | C16H32 | 224 | 125, 55 | - | 0.16 ± 0.02 |
54 | 13.40 | 1,2-Benzenedicarboxylic acid bis(2-methylpropyl) ester | C16H22O4 | 278 | 223, 167, 149, 104, 76, 57 | 0.44 ± 0.03 | 0.28 ± 0.01 |
55 | 13.49 | Cyclopentadecane | C15H30 | 210 | 182, 139, 111, 83, 55 | 0.07 ± 0.001 | - |
56 | 13.63 | 2-Methylhexacosane | C27H56 | 380 | 365, 337, 169, 141, 113, 85 | - | 0.10 ± 0.01 |
57 | 13.68 | Hentriacontane | C31H64 | 436 | 169, 141, 113, 85, 57 | - | 0.14 ± 0.01 |
58 | 13.69 | 8-Heptadecene | C17H34 | 238 | 210, 140, 111, 83, 55 | 0.08 ± 0.001 | - |
59 | 14.21 | 2,3-Dimethylnonadecane | C21H44 | 297 | 253, 183, 155, 127, 99, 71 | 0.19 ± 0.01 | - |
60 | 14.53 | Palmitoleic acid | C16H30O2 | 254 | 236, 192, 137, 111, 83 | 0.77 ± 0.02 | - |
61 | 14.57 | Oxacycloheptadecan-2-one | C16H30O2 | 254 | 236, 194, 138, 111, 83 | 0.39 ± 0.01 | - |
62 | 14.87 | n-Hexadecanoic acid a | C16H32O2 | 256 | 213, 185, 157, 129, 83, 60 | 16.06 ± 0.25 | 20.86 ± 0.31 |
63 | 15.64 | 1-Heptacosanol | C27H56O | 396 | 378, 181, 153, 125, 97, 57 | 0.29 ± 0.02 | - |
64 | 16.06 | 3,7,11,15-Tetramethylhexadeca-1,3,6,10,14-pentaene | C20H32 | 272 | 229, 191, 119, 93, 69 | 0.65 ± 0.01 | - |
65 | 16.07 | 3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol | C15H26O | 222 | 191, 161, 137, 93, 69 | - | 0.70 ± 0.01 |
66 | 16.12 | Trispiro[4.2.4.2.4.2.]heneicosane | C21H44 | 296 | 288, 231, 192, 163, 135, 97 | 0.29 ± 0.01 | - |
67 | 16.47 | N-[4-bromo-n-butyl]-2-piperidinone | C9H16BrNO | 234 | 205, 154, 97, 43 | - | 0.10 ± 0.01 |
68 | 16.73 | 2,2-Dimethyl-5-(3-methyloxiranyl)-cyclohexanone | C11H20O2 | 196 | 182, 153, 123, 95, 69, 41 | 0.11 ± 0.008 | - |
69 | 16.74 | 7-Bromomethylpentadec-7-ene | C16H31Br | 302 | 223, 153, 125, 97, 69 | - | 0.15 ± 0.01 |
70 | 17.03 | 1-Nonadecene | C19H38 | 266 | 266, 210, 168, 126, 97 | 0.31 ± 0.01 | 0.10 ± 0.01 |
71 | 17.04 | 8-Hexadecene | C16H32 | 224 | 196, 153, 125, 97, 69 | - | 0.60 ± 0.02 |
72 | 17.21 | Estra-1,3,5(10)-trien-17β-ol | C18H24O | 256 | 185, 157, 129, 97, 73 | - | 0.11 ± 0.01 |
73 | 17.23 | Nonadecyl pentafluoropropionate | C22H39F5O2 | 430 | 313, 266, 153, 125, 97, 57 | 0.03 ± 0.001 | - |
74 | 17.36 | Heneicosane | C21H44 | 296 | 197, 169, 141, 113, 85 | 0.63 ± 0.02 | 0.51 ± 0.02 |
75 | 17.64 | 6-Octen-1-ol, 3,7-dimethyl acetate | C12H22O2 | 198 | 156, 123, 103, 81 | 2.33 ± 0.15 | - |
76 | 17.94 | Trifluoroacetic acid pentadecyl ester | C18H31F3O2 | 336 | 306, 255, 182, 140, 111, 83 | - | 0.42 ± 0.02 |
77 | 18.09 | 9,12-Octadecadienoic acid a | C18H32O2 | 280 | 236, 150, 123, 95, 67 | 2.92 ± 0.09 | 0.59 ± 0.01 |
78 | 18.21 | 9,12,15-Octadecatrien-1-ol | C18H32O | 264 | 236, 208, 108, 79 | 6.66 ± 0.14 | - |
79 | 18.40 | 9,12,15-Octadecatrienoic acid a | C18H30O2 | 278 | 222, 163, 135, 108, 79 | - | 9.06 ± 0.17 |
80 | 18.66 | 4-(4-Ethylcyclohexyl)-1-pentylcyclohexene | C19H34 | 262 | 220, 191, 164, 123, 81 | 0.42 ± 0.01 | - |
81 | 18.66 | Methyl 6,9,12-hexadecatrienoate | C17H28O2 | 264 | 194, 175, 135, 107, 79 | - | 0.69 ± 0.02 |
82 | 18.80 | 9-Octadecenoic acid a | C18H34O2 | 282 | 264, 222, 165, 137, 111, 83 | 0.43 ± 0.01 | 0.14 ± 0.01 |
83 | 18.83 | 1-Eicosene | C20H40 | 280 | 252, 182, 153, 125, 97 | 0.53 ± 0.02 | 0.10 ± 0.01 |
84 | 18.84 | tert-Hexadecanethiol | C16H34S | 258 | 224, 165, 111, 57 | - | 0.74 ± 0.01 |
85 | 18.97 | Bacchotricuneatin C | C20H22O5 | 342 | 245, 191, 145, 112, 71 | - | 0.14 ± 0.01 |
86 | 19.01 | E-8-Methyl-7-dodecen-1-ol acetate | C15H28O2 | 240 | 197, 165, 126, 97, 69 | 0.08 ± 0.003 | - |
87 | 19.01 | 3-Methylheptadecane | C18H38 | 254 | 225, 169, 141, 113, 85, 57 | - | 0.12 ± 0.01 |
88 | 19.03 | 1-Chloro-octadecane | C18H37Cl | 288 | 175, 147, 113, 85, 57 | - | 0.50 ± 0.01 |
89 | 19.15 | 2-Dodecen-1-yl(-)succinic anhydride | C16H26O3 | 266 | 237, 299, 181, 149, 123, 97, 69, 41 | 0.07 ± 0.001 | 0.10 ± 0.01 |
90 | 19.21 | 1-(1,5-Dimethylhexyl)-4-(4-methylpentyl)cyclohexane | C20H40 | 280 | 191, 166, 123, 97, 69 | 0.05 ± 0.001 | 0.27 ± 0.01 |
91 | 19.68 | 9-Tricosene | C23H46 | 322 | 294, 167, 139, 111, 83 | 0.95 ± 0.03 | 0.89 ± 0.02 |
92 | 19.83 | 13-Tetradecen-1-ol acetate | C16H30O2 | 254 | 194, 167, 139, 111, 83 | 0.13 ± 0.01 | - |
93 | 20.55 | 1-Tricosene | C23H46 | 322 | 196, 169, 139, 111, 83, 57 | 0.05 ± 0.001 | - |
94 | 20.92 | 1,7,11-Trimethyl-4-(1-methylethyl)cyclotetradecane | C20H40 | 280 | 236, 204, 165, 125, 97 | 0.10 ± 0.01 | 0.12 ± 0.01 |
95 | 21.03 | 1-Docosene | C23H46 | 308 | 223, 181, 139, 97, 57 | 0.33 ± 0.01 | 0.18 ± 0.01 |
96 | 21.34 | Eicosyl pentafluoropropionate | C23H41F5O2 | 444 | 426, 280, 182, 153, 125, 97 | 0.09 ± 0.005 | 0.16 ± 0.01 |
97 | 21.66 | Eicosane | C20H42 | 282 | 197, 169, 141, 113, 85 | 1.10 ± 0.04 | 2.28 ± 0.10 |
98 | 21.91 | Docosane | C22H46 | 310 | 197, 169, 141, 113, 85 | 0.04 ± 0.003 | 0.37 ± 0.01 |
99 | 22.05 | Nonadecane | C19H40 | 268 | 197, 169, 141, 113, 85 | 0.68 ± 0.01 | - |
100 | 22.06 | Octatriacontyl trifluoroacetate | C40H77F3O2 | 646 | 181, 139, 97, 57 | - | 0.46 ± 0.01 |
101 | 22.61 | Behenyl chloride | C22H45Cl | 344 | 189, 169, 141, 113, 85 | 0.44 ± 0.01 | 0.05 ± 0.004 |
102 | 22.72 | 11,13-Dimethyl-12-tetradecen-1-ol acetate | C18H34O2 | 282 | 267, 208, 151, 123, 95, 69 | 0.10 ± 0.02 | 0.69 ± 0.02 |
103 | 22.72 | 15-Isobutyl-(13αH)-isocopalane | C24H44 | 332 | 276, 219, 191, 151, 123, 95 | - | 0.41 ± 0.01 |
104 | 24.21 | Cyclotetracosane | C24H48 | 336 | 308, 167, 139, 111, 83 | 0.41 ± 0.01 | 0.49 ± 0.01 |
105 | 24.32 | 2,2'-Methylenebis[6-(1,1-dimethylethyl)-4-methyl]phenol | C23H32O2 | 340 | 284, 177, 149, 121, 91 | 2.78 ± 0.09 | 2.51 ± 0.07 |
106 | 24.59 | Hexadecyloxirane | C18H36O | 268 | 250, 211, 166, 138, 111, 82 | 0.71 ± 0.03 | - |
107 | 25.48 | Dotriacontyl pentafluoropropionate | C35H65F5O2 | 612 | 594, 448, 181, 139, 97, 57 | 0.08 ± 0.002 | 0.13 ± 0.01 |
108 | 26.38 | Tetratriacontane | C34H70 | 478 | 253, 225, 197, 169, 141, 113, 85 | - | 0.39 ± 0.02 |
109 | 26.66 | 12-Pentacosene | C25H50 | 350 | 350, 181, 153, 125, 97, 69 | 0.20 ± 0.01 | - |
110 | 27.32 | Bis(2-ethylhexyl)phthalate | C24H38O4 | 390 | 279, 180, 149, 104, 57 | 1.60 ± 0.06 | - |
111 | 27.95 | Eicosyl trifluoroacetate | C22H41F3O2 | 394 | 376, 325, 280, 153, 125, 97 | 0.06 ± 0.002 | - |
112 | 28.50 | Heptacosyl trifluoroacetate | C29H55F3O2 | 492 | 474, 423, 378, 181, 139, 97 | 0.09 ± 0.01 | - |
113 | 28.58 | Hexacosane | C26H54 | 366 | 169, 141, 113, 85, 57 | 1.11 ± 0.05 | 1.20 ± 0.06 |
114 | 29.31 | 2-Dodecen-1-yl(-)succinic anhydride | C16H26O3 | 266 | 209, 166, 137, 97, 69 | 1.65 ± 0.06 | 0.08 ± 0.002 |
115 | 29.53 | Tricosane | C23H48 | 324 | 197, 169, 141, 113, 85 | 0.13 ± 0.01 | 0.53 ± 0.02 |
116 | 29.88 | Pentacosane | C25H52 | 352 | 211, 169, 141, 113, 85, 57 | - | 1.56 ± 0.05 |
117 | 29.89 | 2,6,10,14,18-Pentamethyleicosane | C25H52 | 352 | 253, 183, 141, 113, 85 | 1.15 ± 0.04 | - |
118 | 30.64 | 2,6,10,14-Tetramethyl-7-(3-methylpent-4-enylidene)pentadecane | C25H48 | 348 | 264, 207, 167, 125, 97 | 0.56 ± 0.02 | - |
119 | 30.67 | 14-Nonacosane | C29H60 | 408 | 378, 181, 153, 125, 97 | 0.25 ± 0.01 | 0.10 ± 0.03 |
120 | 30.87 | Octadecane | C18H38 | 254 | 169, 141, 113, 85, 57 | 8.16 ± 0.14 | 5.70 ± 0.09 |
121 | 31.05 | 1-Hexacosene | C26H52 | 364 | 209 ,181, 153, 125, 97 | 0.46 ± 0.01 | 0.54 ± 0.02 |
122 | 31.59 | 1-Bromo-11-iodoundecane | C11H22BrI | 362 | 281, 233, 177, 135, 97 | 0.31 ± 0.01 | 0.27 ± 0.01 |
123 | 31.62 | 1-Methyl-4-(1-methylethyl)-3-[1-methyl-1-(4-methylpentyl)-5-methylheptyl]cyclohexene | C25H48 | 348 | 248, 193, 123, 69 | 0.24 ± 0.01 | - |
124 | 32.46 | 13-Methyl-Z-14-nonacosene | C30H60 | 420 | 405, 209, 181, 153, 125, 97 | 0.78 ± 0.02 | - |
125 | 32.98 | (5α,14β)-Cholestane | C27H48 | 372 | 259, 218, 176, 149, 109 | 2.11 ± 0.03 | 1.66 ± 0.09 |
126 | 33.10 | Tetracosane | C24H50 | 338 | 169, 141, 113, 85, 57 | 3.24 ± 0.05 | 1.00 ± 0.07 |
127 | 33.67 | Cholestane | C27H48 | 372 | 262, 217, 149, 109, 81 | 5.24 ± 0.09 | 3.93 ± 0.10 |
128 | 34.33 | (5α,13α)-d-Homoandrostane | C20H34 | 274 | 259, 217, 177, 149, 95, 55 | 1.25 ± 0.04 | 1.39 ± 0.06 |
129 | 35.31 | Nonacosane | C29H60 | 408 | 197, 169, 141, 113, 85 | 6.44 ± 0.21 | 5.07 ± 0.19 |
130 | 35.94 | Stigmastane | C29H52 | 400 | 290, 217, 189, 149, 109 | 4.44 ± 0.18 | 3.27 ± 0.14 |
131 | 37.45 | 1-Iodo-octadecane | C18H37I | 380 | 253, 183, 141, 99, 57 | 2.16 ± 0.08 | 0.67 ± 0.03 |
132 | 37.46 | Triacontane | C30H62 | 422 | 197, 169, 141, 113, 85, 57 | - | 2.88 ± 0.11 |
133 | 37.80 | 28-Nor-17α(H)-hopane | C29H50 | 398 | 383, 355, 218, 191, 137, 109 | 2.44 ± 0.09 | - |
134 | 43.31 | β-Sitosterol | C29H50O | 414 | 381, 329, 255, 213, 145, 81 | 4.60 ± 0.17 | 2.36 ± 0.09 |
135 | 43.70 | (3β,24Z)-Stigmasta-5,24(28)-dien-3-ol | C29H48O | 412 | 379, 314, 281, 229, 202 | - | 2.04 ± 0.10 |
No. | Rt (min) | Molecular Formula | [M + H]+ | [M − H]− | Major Fragment Ions in Positive Mode | Major Fragment Ions in Negative Mode | Identification | Source |
---|---|---|---|---|---|---|---|---|
1 | 3.28 | C3H6O3 | 89.02442 (0) | 71.0233 [M − H − H2O]− | Lactic acid a | RR, RS | ||
2 | 3.36 | C3H7NO3 | 106.04983 (–0.4) | 104.0534 (+0.1) | 87.0324 [M + H − NH3]+ | Serine a | RR, RS | |
3 | 3.4 | C6H14N4O2 | 175.11826 (−4.0) | 173.10527 (+5.0) | 158.0918 [M + H − NH3]+, 130.0970 [M + H − NH3 − CO]+, 116.0724 [M + H − CH5N3]+ | Arginine a | RR, RS | |
4 | 3.82 | C5H9NO2 | 116.07018 (−3.7) | 114.05579 (−2.3) | 70.0677 [M + H − HCOOH]+ | Proline a | RR, RS | |
5 | 3.92 | C4H6O5 | 133.01458 (+2.5) | 115.0047 [M − H − H2O]− | Malic acid a | RR, RS | ||
6 | 3.99 | C7H12O6 | 193.06974 (−4.8) | 191.05529 (−4.3) | 173.0462 [M − H − H2O]−, 127.0396 [M − H − H2O − HCOOH]−, 109.0294 [M − H − 2H2O − HCOOH]− | Quinic acid | RR, RS | |
7 | 4 | C5H11NO2 | 118.08617 (−0.7) | 116.07236 (+5.7) | 72.0828 [M + H − HCOOH]+ | Valine a | RR, RS | |
8 | 4.09 | C6H8O6 | 177.03933 (−0.2) | 175.02491 (+0.6) | 129.0187, 111.0080, 95.0138 | 115.0043 [M − H − C2H4O2]−, 87.0103 [M − H − C2H4O2 − CO]− | Ascorbic acid a | RR, RS |
9 | 5.18 | C7H6O4 | 155.03362 (−1.7) | 153.01985 (+3.4) | 137.0253 [M + H − H2O]+ | 109.0.93 [M − H − CO2]− | Protocatechuic acid a | RR, RS |
10 | 5.23 | C6H8O7 | 193.03373 (−2.8) | 191.02033 (+3.1) | 155.0029 [M − H − 2H2O]−, 111.0079 [M − H − 2H2O − CO2]− | Citric acid a | RR, RS | |
11 | 5.65 | C9H11NO3 | 182.08028 (−4.9) | 147.0444 [M + H − H2O − NH3]+, 136.0761 [M + H − HCOOH]+, 119.0493 [M + H − C2H3NO2]+, 91.099 2[M + H − C2H3NO2 − H2O]+ | Tyrosine a | RR, RS | ||
12 | 5.65 | C9H8O3 | 165.05427 (−2.1) | 163.04076 (+4.2) | 119.0467 [M + H − HCOOH]+, 91.0563 [M + H − HCOOH − H2O]+ | p-Coumaric acid a | RR, RS | |
13 | 5.73 | C6H13NO2 | 132.10173 (−1.3) | 130.08736 (0) | 86.0981 [M + H − HCOOH]+, 69.0722 [M + H − HCOOH − NH3]+ | Isoleucine a | RR, RS | |
14 | 6.13 | C6H13NO2 | 132.10198 (+0.6) | 130.08852 (+9.0) | 86.0982 [M + H − HCOOH]+, 69.0720 [M + H − HCOOH − NH3]+ | Leucine a | RR, RS | |
15 | 6.99 | C8H8O4 | 169.04931 (−1.3) | 167.03526 (+1.7) | 150.9672 [M+H − H2O]+, 95.0136 | 109.0268 [M − H − CO − HCOH]− | Vanillin a | RR |
16 | 7.72 | C7H6O5 | 171.02825 (−3.2) | 169.0144 (+0.9) | 139.0017, 111.0063 | 125.0238 [M − H − CO2]− | Gallic acid a | RR, RS |
17 | 8.09 | C9H11NO2 | 166.08574 (−3.1) | 164.07209 (+2.4) | 120.0809 [M + H − HCOOH]+, 103.0548 [M + H − HCOOH − NH3]+ | 147.0454 [M − H − NH3]−, 120.0444 [M − H − CO2]− | Phenylalanine a | RR, RS |
18 | 9.27 | C15H14O7 | 307.08106 (−0.6) | 305.06686 (+0.6) | 125.0234 [M − H − C8H8O4]− | Epigallocatechin | RS | |
19 | 10.07 | C9H10O5 | 197.04591 (+1.8) | 151.0430 [M − H − HCOOH]−, 125.0248 [M − H − CO2 − H2O]− | Syringic acid a | RR | ||
20 | 10.14 | C11H12N2O2 | 205.09718 (+0.1) | 203.08256 (−0.2) | 188.0691 [M + H − NH3]+, 170.0595 [M + H − NH3 − H2O]+, 146.0593, 118.0648 | 116.0507 [M − H − C3H7NO2]− | Tryptophan a | RR, RS |
21 | 10.40 | C30H26O12 | 579.14939 (−0.5) | 577.13504 (−0.2) | 427.1022 [M + H − C8H8O3]+, 409.0898 [M + H − C8H8O3 − H2O]+, 287.0554 [M + H − C15H16O6]+ | 451.1050, 425.0893 [M − H − C8H8O3]−, 407.0783 [M − H − C8H8O3 − H2O]−, 289.0729 [M − H − C15H12O6]− | Procyanidin B1 | RR, RS |
22 | 10.54 | C9H10O4 | 183.06502 (−0.9) | 181.05076 (+0.7) | 163.0367 [M − H − H2O]−, 135.0449 [M − H − H2O − CO]−, 119.0495 [M − H − CH2O − CH4O]− | Syringaldehyde | RR | |
23 | 10.72 | C13H16O8 | 299.0775 (+0.9) | 137.0241 [M − H − glc]−, 93.0358 [M − H − glc − CO2]− | 4-Hydroxybenzoic acid-4-O-glucopyranoside | RS | ||
24 | 11.06 | C30H26O12 | 579.14973 (0) | 577.13567 (+0.9) | 453.1169, 427.1037, 409.0923, 301.0721, 287.0554 | 289.0730 [M − H − C15H12O6]− | Procyanidin B2 | RR, RS |
25 | 11.73 | C7H6O3 | 139.03867 (−2.2) | 137.02506 (+4.7) | 111.0440 [M + H − H2O]+, 95.0135 [M + H − CO2]+ | 93.0351 [M − H − CO2]− | 4-Hydroxybenzoic acid a | RR, RS |
26 | 12.39 | C21H26O8 | 407.16816 (−4.6) | 245.0449[M + H − glc]+ | Erythro-guaiacylglycerol β-sinapyl ether or threo-guaiacylglycerol β-sinapyl ether | RR, RS | ||
27 | 12.41 | C30H26O11 | 561.14044 (+0.4) | 407.0756 [M − H − C8H10O3]−, 289.0718 [M − H − C15H12O5]−, 273.07006 [M − H − C15H12O6]− | Fisetinidol-(4α,8)-catechin | RS | ||
28 | 13.01 | C9H8O4 | 179.03508 (+0.5) | 135.0446 [M − H − CO2]− | Caffeic acid a | RR, RS | ||
29 | 13.29 | C30H26O12 | 579.14959 (−0.2) | 577.13543 (+0.5) | 439.1030, 427.1038 [M + H − C8H8O3]+, 409.0909 [M + H − C8H8O3 − H2O]+, 301.0738, 287.0554, 271.0620 | 451.1072, 425.0879 [M + H − C8H8O3]−, 407.0789 [M + H − C8H8O3 − H2O]−, 289.0716 [M − H − C15H12O6]− | Procyanidin B3 | RR, RS |
30 | 14.06 | C27H30O16 | 611.16016 (−0.8) | 609.14646 (+0.6) | 303.0460 [M + H − rutinose]+ | 301.0333 [M − H − rui]−, 271.0238 [M − H − rui − CH2O]− | Rutin a | RR, RS |
31 | 14.72 | C21H20O12 | 465.10249 (−0.6) | 463.08802 (−0.4) | 303.0504 [M + H − glc]+ | 301.0347 [M − H − glc]−, 271.0260, 255.0292, 151.0027 | Isoquercitrin a | RR, RS |
32 | 15.18 | C27H28O16 | 609.14377 (−2.0) | 607.13045 (0) | 303.0491 | 463.0839, 301.0352 | Quercetin 3-O-[(X-O-3-hydroxy-3-methylglutaryl)-β-glucoside] | RR, RS |
33 | 15.23 | C22H26O8 | 417.15509 (−1.0) | 181.0482 [M − H − C13H16O4]−, | Diasyringaresinol | RR | ||
34 | 15.57 | C20H18O11 | 435.09253 (+0.8) | 433.07753 (−0.2) | 303.0508 [M + H − C5H10O4]+ | 301.0358 [M − H − C5H10O4]− | Quercetin-3-O-d-xyloside | RR, RS |
35 | 15.77 | C21H20O11 | 449.10749 (−0.8) | 447.09296 (−0.7) | 303.0846 [M + H − C6H12O4]+, 151.0380, 123.0429 | 300.9984 [M − H − C6H12O4]−, 285.0406 | Quercitrin a | RR, RS |
36 | 15.94 | C27H28O15 | 593.14886 (−2.1) | 591.13566 (+0.2) | 287.0543 | 529.1312, 489.1046, 447.0920, 285.0309 | Kaempferol 3-O-[(X-O-3-hydroxy-3-methylglutaryl)-β-galactoside] | RR, RS |
37 | 16.28 | C20H22O8 | 389.12421 (0) | 227.0712 [M − H − glc]− | Piceid | RR, RS | ||
38 | 16.36 | C27H28O15 | 593.14843 (−2.8) | 591.13617 (+1.1) | 287.0544 | 529.1236, 489.1044, 447.0936, 285.0407 | Kaempferol 3-O-[(X-O-3-hydroxy-3-methylglutaryl)-β-glucoside] | RR, RS |
39 | 16.83 | C21H24O10 | 435.12995 (0.6) | 273.0781[M − H − glc]−, 167.0349 | Phloridzin | RR | ||
40 | 17.21 | C15H14O2 | 227.10655 (−0.4) | 197.0650 [M + H − CH2O]+, 185.0997 [M + H − CH2O − H2O]+ | 3-Methoxy-5-hydroxy-stilbene | RR, RS | ||
41 | 17.35 | C21H26O8 | 407.16945 (−1.5) | 389.1582 [M + H − H2O]+, 371.1472 [M + H − 2H2O]+, 245.1159 [M + H − glc]+, 215.1062, 199.1114 | Erythro-guaiacylglycerol β-sinapyl ether or threo-guaiacylglycerol β-sinapyl ether | RR, RS | ||
42 | 18.53 | C20H22O6 | 359.14831 (−1.7) | 357.13435 (0) | 327.1216 [M − H − CH4O]−, 313.1057 [M − H − H2O − CO]−, 253.0856 | Pinoresinol | RR, RS | |
43 | 18.68 | C36H58O11 | 665.39109 (+0.7) | 619.3935 [M − H − 2H2O]−, 485.3284 [M − H − glc − H2O]−, 441.3399 [M − H − glc − H2O − CO2]−, 357.2748 | Polygalacic acid 3-O-β-d-glucopyranoside | RR, RS | ||
44 | 18.9 | C15H10O7 | 303.0497 (−0.7) | 301.03548 (+0.4) | 257.0431, 229.0497, 201.0540, 165.0182, 153.0181, 137.0230 | 178.9987, 151.0038, 121.0290 | Quercetin a | RR, RS |
45 | 19.38 | C36H58O11 | 665.39114 (+0.8) | 485.3272 [M − H − glc − H2O]−, 467.3211 [M − H − glc − 2H2O]−, 351.2653 | 19α -hydroxyasiatic acid-28-O-β-d-glucopyranoside | RR, RSS | ||
46 | 20.39 | C36H58O10 | 649.39552 (−0.3) | 487.3427 [M − H − glc]−, 469.3319 [M − H − glc − H2O]− | Kajiichigoside F1 | RR, RS | ||
47 | 20.64 | C15H10O6 | 287.05474 (−1.0) | 165.0133, 153.0202 | Kaempferol a | RR, RSS | ||
48 | 22.10 | C15H12O5 | 273.07551 (−0.9) | 153.0181 | 151.003 | Dihydroapigenin | RR, RS | |
49 | 22.95 | C15H10O6 | 287.05465 (−1.3) | 285.04066 (+0.7) | 268.9789, 153.0188, 121.0251 | 229.0563, 187.0393, 169.0649, 143.0520 | Luteolin a | RR, RS |
50 | 26.48 | C30H48O6 | 503.33793 (+0.2) | 485.3320 [M − H − H2O]−, 439.3229 [M − H − HCOOH − H2O]−, 421.3141 [M − H − HCOOH − 2H2O]− 225.1623 | 1-Hydroxyeuscaphic acid | RR, RS | ||
51 | 27.25 | C30H46O5 | 487.34155 (−0.5) | 485.32722 (−0.1) | 451.3208 [M + H − 2H2O]+, 405.3170 [M + H − 2H2O − HCOOH]+, 223.1604, 199.1448, 187.1454 | 467.3176, 425.23124, 375.3047, 321.2564, 257.2382 | 2α,19α-Dihydroxy-3-oxo-urs-12-en-28-oic acid isomer | RR, RS |
52 | 29.27 | C30H48O5 | 489.35729 (−0.3) | 487.34276 (−0.3) | 407.3131 [M + H − 2H2O − HCOOH]+, 207.1733, 201.1624 | 469.3302 [M − H − H2O]− 443.3533 [M − H − CO2]−, 427.3205 [M − H − H2O − CO2]−, 371.2911 | Euscaphic acid | RR, RSS |
53 | 33.05 | C30H46O5 | 487.34155 (−0.5) | 485.32728 (+0.1) | 451.3208 [M + H − 2H2O]+, 405.3170 [M + H − 2H2O − HCOOH]+, 223.1604, 199.1448, 187.1454 | 467.3186 [M − H − H2O]−, 441.3415 [M − H − CO2]−, 423.3280 [M − H − H2O − CO2]−, 393.3161 | 2α,19α-Dihydroxy-3-oxo-urs-12-en-28-oic acid | RR, RS |
54 | 34.87 | C30H48O4 | 471.34821 (+0.5) | 453.3398 [M − H − H2O]− 423.3270, 407.3350, 377.2865 | Pomolic acid or isomer | RR, RS | ||
55 | 35.53 | C30H48O4 | 471.348 (0) | 453.3350 [M − H − H2O]−, 407.3315, 377.2888 | Pomolic acid or isomer | RR, RS | ||
56 | 35.56 | C30H46O4 | 469.33187 (−1.0) | 451.3237 [M − H − H2O]−, 407.3304 [M − H − H2O − CO2]−, 377.3222 | 2α,3β-Dihydroxylup-20(29)-en-28-oic acid | RR, RS | ||
57 | 40.72 | C18H30O2 | 279.2318 (−0.2) | 9,12,15-Octadecatrienoic acid a | RS | |||
58 | 42.58 | C30H48O3 | 457.36755 (−0.2) | 455.35307 (−0.6) | 407.3335 [M − H − HCOOH]− | Ursolic acid a | RR, RS | |
59 | 42.68 | C18H32O2 | 281.24735 (−0.6) | 279.23322 (+1.0) | 261.2124 [M − H − H2O]− | 9,12-Octadecadienoic acid a | RR, RS |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.-H.; Zhang, Q.; Zhang, Y.-H.; Lu, X.-Y.; Fu, W.-M.; He, J.-Y. Chemical Analysis of Dietary Constituents in Rosa roxburghii and Rosa sterilis Fruits. Molecules 2016, 21, 1204. https://doi.org/10.3390/molecules21091204
Liu M-H, Zhang Q, Zhang Y-H, Lu X-Y, Fu W-M, He J-Y. Chemical Analysis of Dietary Constituents in Rosa roxburghii and Rosa sterilis Fruits. Molecules. 2016; 21(9):1204. https://doi.org/10.3390/molecules21091204
Chicago/Turabian StyleLiu, Meng-Hua, Qi Zhang, Yuan-He Zhang, Xian-Yuan Lu, Wei-Ming Fu, and Jing-Yu He. 2016. "Chemical Analysis of Dietary Constituents in Rosa roxburghii and Rosa sterilis Fruits" Molecules 21, no. 9: 1204. https://doi.org/10.3390/molecules21091204
APA StyleLiu, M.-H., Zhang, Q., Zhang, Y.-H., Lu, X.-Y., Fu, W.-M., & He, J.-Y. (2016). Chemical Analysis of Dietary Constituents in Rosa roxburghii and Rosa sterilis Fruits. Molecules, 21(9), 1204. https://doi.org/10.3390/molecules21091204