Supersaturated Liquid Formulation of Pazopanib Hydrochloride Loaded with Synergistic Precipitation Inhibitors
<p>Chemical structure of PZH.</p> "> Figure 2
<p>PXRD patterns of raw PZH (a), residual PZH obtained from 1.2 buffer (b), pH 4.0 buffer (c), pH 6.8 buffer (d), and water (e).</p> "> Figure 3
<p>Solubility of PVPs in glycerol at room temperature and 70 °C.</p> "> Figure 4
<p>Solubility of PZH in vehicles at 70 °C.</p> "> Figure 5
<p>Dispersion solubility of PZH and particle size of PZH precipitates in SSLFs at pH 6.8.</p> "> Figure 6
<p>Dispersion solubility of PZH in SSLFs in pH 6.8 buffer solution at the initial time and 5 h. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.005; N.S., no significant differences (<span class="html-italic">p</span> > 0.05).</p> "> Figure 7
<p>Dissolution profiles of SSLF1, SSLF4, SSLF10, and PZH powder in pH 1.2 buffer (<b>a</b>), pH 4.0 buffer (<b>b</b>), pH 6.8 buffer (<b>c</b>), and water (<b>d</b>).</p> "> Figure 8
<p>Supersaturation ratio (S) of SSLF1, SSLF4, SSLF10, and PZH powder from the dissolution rate at 360 min in pH 6.8 buffer solution as in <a href="#molecules-29-05267-f007" class="html-fig">Figure 7</a>.</p> "> Figure 9
<p>Transmission electron microscopy (TEM) images of PZH powder (<b>a</b>) and PZH powder dispersed in water (<b>b</b>) and pH 6.8 buffer solution (<b>c</b>); precipitation particles from the dissolution test of SSLF1 (<b>d</b>), SSLF4 (<b>e</b>), and SSLF10 (<b>f</b>) at 2 h in pH 6.8 buffer solution.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. pH Solubility of PZH at 37 °C
2.2. Solubility of PVP in Glycerol
2.3. Solubility of PZH in Vehicles
2.4. Effect of PVP Molecular Weight on PZH Dispersion Solubility
2.5. Effect of PG on the Dispersion Solubility of PZH in the SSLF
2.6. Dissolution Test
2.7. Supersaturation Ratio
2.8. TEM Analysis
3. Materials and Methods
3.1. Materials
3.2. HPLC Conditions
3.3. pH Solubility of PZH at 37 °C and Powder X-Ray Diffraction (PXRD) Characterization
3.4. Solubility of PVP in Glycerol
3.5. Solubility of PZH in the PVP and Glycerol (Vehicle) Solution
3.6. Preparation of Supersaturated Liquid Formulations
3.7. Dispersion Solubility of PZH
3.8. Particle Size of Precipitates
3.9. Dissolution Studies
3.10. Drug Supersaturation Ratio (S)
3.11. Transmission Electron Microscopy (TEM) Analysis
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Y.; Sychterz, C.; Suttle, A.B.; Dar, M.M.; Bershas, D.; Negash, K.; Qian, Y.; Chen, E.P.; Gorycki, P.D.; Ho, M.Y. Bioavailability, metabolism and disposition of oral pazopanib in patients with advanced cancer. Xenobiotica 2013, 43, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Spiess, P.E. The prospects of pazopanib in advanced renal cell carcinoma. Ther Adv. Urol. 2013, 5, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Herbrink, M.; Groenland, S.L.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H.; Steeghs, N.; Nuijen, B. Solubility and bioavailability improvement of pazopanib hydrochloride. Int. J. Pharm. 2018, 544, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Jung, H.; Li, X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J. 2015, 17, 1327–1340. [Google Scholar] [CrossRef]
- Verheijen, R.B.; Beijnen, J.H.; Schellens, J.H.; Huitema, A.D.; Steeghs, N. Clinical pharmacokinetics and pharmacodynamics of pazopanib: Towards optimized dosing. Clin. Pharmacokinet. 2017, 56, 987–997. [Google Scholar] [CrossRef]
- Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Sci. 2017, 112, 234–248. [Google Scholar] [CrossRef]
- Nadaf, S.J.; Killedar, S.G.; Kumbar, V.M.; Bhagwat, D.A.; Gurav, S.S. Pazopanib-laden lipid based nanovesicular delivery with augmented oral bioavailability and therapeutic efficacy against non-small cell lung cancer. Int. J. Pharm. 2022, 628, 122287. [Google Scholar] [CrossRef]
- Choi, S.U.; Kim, M.J.; Kim, S.T.; Kim, H.C.; Cho, K.H.; Park, S.Y.; Lee, H.M.; Maeng, H.J.; Jang, D.J. Development of self-microemulsifying drug delivery systems of poorly water-soluble pazopanib for improvement of oral absorption. Sci. Adv. Mater. 2020, 12, 152–160. [Google Scholar] [CrossRef]
- Choi, S.A.; Park, E.J.; Lee, J.H.; Min, K.A.; Kim, S.T.; Jang, D.J.; Maeng, H.J.; Jin, S.G.; Cho, K.H. Preparation and Characterization of Pazopanib Hydrochloride-Loaded Four-Component Self-Nanoemulsifying Drug Delivery Systems Preconcentrate for Enhanced Solubility and Dissolution. Pharmaceutics 2022, 14, 1875. [Google Scholar] [CrossRef]
- Sharma, A.; Arora, K.; Mohapatra, H.; Sindhu, R.K.; Bulzan, M.; Cavalu, S.; Paneshar, G.; Elansary, H.O.; El-sabrout, A.M.; Mahmoud, E.A.; et al. Supersaturation-based drug delivery systems: Strategy for bioavailability enhancement of poorly water-soluble drugs. Molecules 2022, 27, 2969. [Google Scholar] [CrossRef]
- Xu, S.; Dai, W.G. Drug precipitation inhibitors in supersaturable formulations. Int. J. Pharm. 2013, 453, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, W.; Jin, Y.; Quan, D.Q. Studies on preparation of carbamazepine (CBZ) supersaturatable self-microemulsifying (S-SMEDDS) formulation and relative bioavailability in beagle dogs. Pharm. Dev. Technol. 2011, 16, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Q.; Liu, Y.; Zhao, J.H.; Wang, L.; Feng, N.P. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int. J. Nanomed. 2012, 7, 1115–1125. [Google Scholar]
- Vasilev, N.A.; Voronin, A.P.; Surov, A.O.; Perlovich, G.L. Influence of Co-amorphization on the Physical Stability and Dissolution Performance of an Anthelmintic Drug Flubendazole. Mol. Pharm. 2023, 20, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Ojarinta, R.A.; Heikkinen, T.; Sievänen, E.; Laitinen, R. Dissolution behavior of co-amorphous amino acid-indomethacin mixtures: The ability of amino acids to stabilize the supersaturated state of indomethacin. Eur. J. Pharm. Biopharm. 2017, 112, 85–95. [Google Scholar] [CrossRef]
- Prasad, D.; Chauhan, H.; Atef, E. Role of molecular interactions for synergistic precipitation inhibition of poorly soluble drug in supersaturated drug–polymer–polymer ternary solution. Mol. Pharm. 2016, 13, 756–765. [Google Scholar] [CrossRef]
- Brown, C.K.; Chokshi, H.P.; Nickerson, B.; Reed, R.A.; Rohrs, B.R.; Shah, P.A. Dissolution testing of poorly soluble compounds. Pharm. Technol. 2004, 28, 56–65. [Google Scholar]
- Krishnaiah, Y.S. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J. Bioequiv. Availab. 2010, 2, 28–36. [Google Scholar] [CrossRef]
- Paudel, A.; Nies, E.; Van den Mooter, G. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: Evaluation of solution-cast and quench-cooled films. Mol. Pharm. 2012, 9, 3301–3317. [Google Scholar] [CrossRef]
- Swei, J.; Talbot, J.B. Viscosity correlation for aqueous polyvinylpyrrolidone (PVP) solutions. J. Appl. Polym. Sci. 2003, 90, 1153–1155. [Google Scholar] [CrossRef]
- Bochmann, E.S.; Neumann, D.; Gryczke, A.; Wagner, K.G. Micro-scale solubility assessments and prediction models for active pharmaceutical ingredients in polymeric matrices. Eur. J. Pharm. Biopharm. 2019, 141, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.A.; DiNunzio, J.C.; Yang, W.; McGinity, J.W.; Williams III, R.O. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev. Ind. Pharm. 2008, 34, 890–902. [Google Scholar] [CrossRef]
- Rhys, N.H.; Gillams, R.J.; Collins, L.E.; Callear, S.K.; Lawrence, M.J.; McLain, S.E. On the structure of an aqueous propylene glycol solution. J. Chem. Phys. 2016, 145, 224504. [Google Scholar] [CrossRef]
- Shi, K.; Li, M. Optimisation of Pharmaceutical Cocrystal Dissolution Performance through a Synergistic Precipitation Inhibition. Pharm. Res. 2023, 40, 2051–2069. [Google Scholar] [CrossRef]
- Gan, Y.; Baak, J.P.; Chen, T.; Ye, H.; Liao, W.; Lv, H.; Wen, C.; Zheng, S. Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023, 28, 2212. [Google Scholar] [CrossRef]
- Zhao, P.; Hu, G.; Chen, H.; Li, M.; Wang, Y.; Sun, N.; Wang, L.; Xu, Y.; Xia, J.; Tian, B.; et al. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Int. J. Pharm. 2022, 616, 121538. [Google Scholar] [CrossRef]
- Fong, S.Y.K.; Bauer-Brandl, A.; Brandl, M. Oral bioavailability enhancement through supersaturation: An update and meta-analysis. Expert Opin. Drug Deliv. 2017, 14, 403–426. [Google Scholar] [CrossRef]
- Raina, S.A.; Zhang, G.G.; Alonzo, D.E.; Wu, J.; Zhu, D.; Catron, N.D.; Gao, Y.; Taylor, L.S. Impact of solubilizing additives on supersaturation and membrane transport of drugs. Pharm. Res. 2015, 32, 3350–3364. [Google Scholar] [CrossRef]
- Seedher, N.; Kanojia, M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm. Dev. Technol. 2009, 14, 185–192. [Google Scholar] [CrossRef]
- Rusdin, A.; Mohd Gazzali, A.; Ain Thomas, N.; Megantara, S.; Aulifa, D.L.; Budiman, A.; Muchtaridi, M. Advancing Drug Delivery Paradigms: Polyvinyl Pyrolidone (PVP)-Based Amorphous Solid Dispersion for Enhanced Physicochemical Properties and Therapeutic Efficacy. Polymers 2024, 16, 286. [Google Scholar] [CrossRef]
Test Solution | Solubility at 37 °C (μg/mL) |
---|---|
pH 1.2 buffer | 953.22 ± 34.16 |
pH 4.0 buffer | 5.58 ± 0.28 |
pH 6.8 buffer | 2.19 ± 0.08 |
water | 125.38 ± 28.51 |
SSLF | Composition Ratio (%, w/w) | ||||||
---|---|---|---|---|---|---|---|
PZH | Glycerol | PG | PVP K12 | PVP K17 | PVP K30 | PVP K90 | |
SSLF1 | 10 | 90 | 0 | 0 | 0 | 0 | 0 |
SSLF2 | 10 | 70 | 0 | 20 | 0 | 0 | 0 |
SSLF3 | 10 | 70 | 0 | 0 | 20 | 0 | 0 |
SSLF4 | 10 | 70 | 0 | 0 | 0 | 20 | 0 |
SSLF5 | 10 | 85 | 0 | 0 | 0 | 0 | 5 |
SSLF6 | 5 | 95 | 0 | 0 | 0 | 0 | 0 |
SSLF7 | 5 | 75 | 0 | 0 | 0 | 20 | 0 |
SSLF8 | 5 | 55 | 20 | 0 | 0 | 20 | 0 |
SSLF9 | 5 | 40 | 35 | 0 | 0 | 20 | 0 |
SSLF10 | 10 | 50 | 20 | 0 | 0 | 20 | 0 |
SSLF11 | 10 | 35 | 35 | 0 | 0 | 20 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.W.; Lee, S.-W.; Lee, J.H.; Jee, J.-P.; Maeng, H.-J.; Jang, D.-J.; Cho, K.H. Supersaturated Liquid Formulation of Pazopanib Hydrochloride Loaded with Synergistic Precipitation Inhibitors. Molecules 2024, 29, 5267. https://doi.org/10.3390/molecules29225267
Park JW, Lee S-W, Lee JH, Jee J-P, Maeng H-J, Jang D-J, Cho KH. Supersaturated Liquid Formulation of Pazopanib Hydrochloride Loaded with Synergistic Precipitation Inhibitors. Molecules. 2024; 29(22):5267. https://doi.org/10.3390/molecules29225267
Chicago/Turabian StylePark, Jin Woo, Sa-Won Lee, Jun Hak Lee, Jun-Pil Jee, Han-Joo Maeng, Dong-Jin Jang, and Kwan Hyung Cho. 2024. "Supersaturated Liquid Formulation of Pazopanib Hydrochloride Loaded with Synergistic Precipitation Inhibitors" Molecules 29, no. 22: 5267. https://doi.org/10.3390/molecules29225267
APA StylePark, J. W., Lee, S.-W., Lee, J. H., Jee, J.-P., Maeng, H.-J., Jang, D.-J., & Cho, K. H. (2024). Supersaturated Liquid Formulation of Pazopanib Hydrochloride Loaded with Synergistic Precipitation Inhibitors. Molecules, 29(22), 5267. https://doi.org/10.3390/molecules29225267