When Chirality Makes the Difference: The Case of Novel Enantiopure N-Heterocyclic Carbene–Gold and –Silver Complexes
<p>Anticancer Ag(I)– and Au(I)–NHC complexes previously reported [<a href="#B13-molecules-29-05262" class="html-bibr">13</a>,<a href="#B14-molecules-29-05262" class="html-bibr">14</a>].</p> "> Figure 2
<p>Panel (<b>A</b>), <b>L1</b> series and panel (<b>B</b>), <b>L2</b> series. Anti-inflammatory activity (pink bars): NO production was induced in murine macrophages RAW 264.7 treated with LPS (1 µg/mL), in presence or not of the enantiopure complexes and pro-ligands at the indicated concentrations (µM), for 24 h. Indomethacin (Ind) was used as the reference molecule. Data were plotted as % NO inhibition with respect to LPS-only treatment. Viability assays (blue bars): MTT test was performed under the same experimental conditions of anti-inflammatory activity, in order to verify the effect of the complexes, pro-ligands and indomethacin (Ind) on RAW 264.7 cells viability. Data were plotted as % of cell viability with respect to LPS-only treatment (1 µg/mL). Experiments were performed three times, in triplicate. Columns ± SD are reported. ** <span class="html-italic">p</span> > 0.01, *** <span class="html-italic">p</span> > 0.001, **** <span class="html-italic">p</span> < 0.0001, or not significant (where not indicated), treated vs. LPS only.</p> "> Figure 3
<p>Structures of the docked enantiomerically pure NHC–gold complexes.</p> "> Figure 4
<p>The three-dimensional structure of iNOS (light blue ribbons) in complex with the binding site highlighted by the superposed docked complexes (<b>A</b>). (<b>B</b>–<b>E</b>) illustrate the different binding modes of complexes <b>(<span class="html-italic">R</span>)Au-L1</b> (orange sticks), <b>(<span class="html-italic">S</span>)-Au-L1</b> (violet sticks), <b>(<span class="html-italic">R</span>)Au-L2</b> (green sticks) and <b>(<span class="html-italic">S</span>)Au-L2</b> (yellow sticks), respectively, and in proximity of the heme moiety. Due to the complexity of the binding site, only some of the residues involved in protein–ligand interactions are drawn as sticks and properly labeled.</p> "> Scheme 1
<p>Synthesis of enantiopure pro-ligands <b>(<span class="html-italic">S</span>)-P1</b> and <b>(<span class="html-italic">S</span>)-P2</b>.</p> "> Scheme 2
<p>Synthesis of <b>(<span class="html-italic">S</span>)-AgL1</b>, <b>(<span class="html-italic">S</span>)-AgL2</b>, <b>(<span class="html-italic">S</span>)-AuL1</b> and <b>(<span class="html-italic">S</span>)-AuL2.</b></p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nitric Oxide (NO) Synthesis Inhibition
2.2. Docking Studies
2.3. Anticancer Activity
2.4. Antibacterial Activity
3. Materials and Methods
3.1. Chemistry
3.1.1. General Methods
3.1.2. Synthesis of Pro-Ligands, Imidazolium Salts (R)-P1, (S)-P1, (R)-P2, (S)-P2
- (S)- or (R)-P1
- (S)-1-(2-hydroxy-2-phenylethyl)-1H-imidazole (white amorphous powder, 84%).
- (R)-1-(2-hydroxy-2-phenylethyl)-1H-imidazole (white powder, 81%)
- (S)-P1–(S)-1-(2-hydroxy-2-phenylethyl)-3-methyl-1H-imidazol-3-ium iodide (white amorphous solid, 64%)
- (R)-P1–(R)-1-(2-hydroxy-2-phenylethyl)-3-methyl-1H-imidazol-3-ium iodide (white amorphous solid, 68%)
- (S)- or (R)-P2
- (S)-1-(2-hydroxy-2-phenylethyl)-4,5-dichloro-1H-imidazole
- (R)-1-(2-hydroxy-2-phenylethyl)-4,5-dichloro-1H-imidazole
- (S)-P2–(S)-4,5-dichloro-1-(2-hydroxy-2-phenylethyl)-3-methyl-1H-imidazol-3-ium iodide (white amorphous solid, 43%)
- (R)-P2–(R)-4,5-dichloro-1-(2-hydroxy-2-phenylethyl)-3-methyl-1H-imidazol-3-ium iodide (white amorphous solid, 69%)
3.1.3. Synthesis of Silver(I) Complexes (R)-AgL1, (S)-AgL1, (R)-AgL2, (S)-AgL2
- (S)-AgL1–(1-((S)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)silver(I) iodide (off-white powder, 80%)
- (R)-AgL1–(1-((R)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)silver(I) iodide (off-white powder, 82%)
- (S)-AgL2–(4,5-dichloro-1-((S)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)silver(I) iodide (off-white powder, 41%)
- (R)-AgL2–(4,5-dichloro-1-((R)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)silver(I) iodide (white powder, 48%)
3.1.4. Synthesis of Gold(I) Complexes (R)-AuL1, (S)-AuL1, (R)-AuL2, (S)-AuL2
- (S)-AuL1–(1-((S)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)gold(I) chloride (yellow powder, 52%)
- (R)-AuL1–(1-((R)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)gold(I) chloride (off-white powder, 55%)
- (S)-AuL2–(4,5-dichloro-1-((S)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)gold(I) chloride (yellow powder, 56%)
- (R)-AuL2–(4,5-dichloro-1-((R)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)gold(I) chloride (yellow powder, 52%)
3.2. Biology
3.2.1. Cells Culture
3.2.2. MTT Assay
3.2.3. Anti-Inflammatory Activity
3.2.4. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Determination
3.3. Docking
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, T.; Lok, C.-N.; Wan, P.-K.; Zhang, Z.-F.; Fung, S.-K.; Che, C.-M. Anticancer metal-N-heterocyclic carbene complexes of gold, platinum and palladium. Curr. Opin. Chem. Biol. 2018, 43, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, P.; Koy, M.; Hopkinson, M.N.; Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 2021, 5, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Narouz, M.R.; Lummis, P.A.; Singh, I.; Nazemi, A.; Li, C.-H.; Crudden, C.M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119, 4986–5056. [Google Scholar] [CrossRef] [PubMed]
- Voloshkin, V.A.; Tzouras, N.V.; Nolan, S.P. Recent advances in the synthesis and derivatization of N-heterocyclic carbene metal complexes. Dalton Trans. 2021, 50, 12058–12068. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Yin, Y.-K.; Zhang, H.; Han, Y.-F. Metal N-heterocyclic carbene complexes as potential metallodrugs in antitumor therapy. Coord. Chem. Rev. 2024, 514, 215941. [Google Scholar] [CrossRef]
- Banerjee, S.; Banerjee, S. Metal-based Complexes as Potential Anti-cancer Agents. Anticancer Agents Med. Chem. 2022, 22, 2684–2707. [Google Scholar] [CrossRef] [PubMed]
- Gautier, A.; Cisnetti, F. Advances in metal–carbene complexes as potent anti-cancer agents. Metallomics 2012, 4, 23–32. [Google Scholar] [CrossRef]
- Teyssot, M.-L.; Jarrousse, A.-S.; Manin, M.; Chevry, A.; Roche, S.; Norre, F.; Beaudoin, C.; Morel, L.; Boyer, D.; Mahiou, R.; et al. Metal-NHC complexes: A survey of anti-cancer properties. Dalton Trans. 2009, 6894–6902. [Google Scholar] [CrossRef]
- Roymahapatra, G.; Mandal, S.M.; Porto, W.F.; Samanta, T.; Giri, S.; Dinda, J.; Franco, O.L.; Chattaraj, P.K. Pyrazine Functionalized Ag(I) and Au(I)-NHC Complexes are Potential Antibacterial Agents. Curr. Med. Chem. 2012, 19, 4184–4193. [Google Scholar] [CrossRef]
- Haque, R.A.; Choo, S.Y.; Budagumpi, S.; Iqbal, M.A.; Al-Ashraf Abdullah, A. Silver(I) complexes of mono- and bidentate N-heterocyclic carbene ligands: Synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Eur. J. Med. Chem. 2015, 90, 82–92. [Google Scholar] [CrossRef]
- Şahin, N.; Şahin-Bölükbaşı, S.; Marşan, H. Synthesis and antitumor activity of new silver(I)-N-heterocyclic carbene complexes. J. Coord. Chem. 2019, 72, 3602–3613. [Google Scholar] [CrossRef]
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in gold–NHC complexes with biological properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Saturnino, C.; Barone, I.; Iacopetta, D.; Mariconda, A.; Sinicropi, M.S.; Rosano, C.; Campana, A.; Catalano, S.; Longo, P.; Andò, S. N-Heterocyclic Carbene Complexes of Silver and Gold as Novel Tools Against Breast Cancer Progression. Future Med. Chem. 2016, 8, 2213–2229. [Google Scholar] [CrossRef] [PubMed]
- Iacopetta, D.; Rosano, C.; Sirignano, M.; Mariconda, A.; Ceramella, J.; Ponassi, M.; Saturnino, C.; Sinicropi, M.S.; Longo, P. Is the Way to Fight Cancer Paved with Gold? Metal-Based Carbene Complexes with Multiple and Fascinating Biological Features. Pharmaceuticals 2020, 13, 91. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Holenya, P.; Can, S.; Alborzinia, H.; Rubbiani, R.; Ott, I.; Wölfl, S. A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells. Mol. Cancer 2014, 13, 221. [Google Scholar] [CrossRef]
- Krishnamurthy, D.; Karver, M.R.; Fiorillo, E.; Orrú, V.; Stanford, S.M.; Bottini, N.; Barrios, A.M. Gold(I)-Mediated Inhibition of Protein Tyrosine Phosphatases: A Detailed in Vitro and Cellular Study. J. Med. Chem. 2008, 51, 4790–4795. [Google Scholar] [CrossRef]
- Karaaslan, M.G.; Aktaş, A.; Gürses, C.; Gök, Y.; Ateş, B. Chemistry, structure, and biological roles of Au-NHC complexes as TrxR inhibitors. Bioorganic Chem. 2020, 95, 103552. [Google Scholar] [CrossRef]
- Guarra, F.; Busto, N.; Guerri, A.; Marchetti, L.; Marzo, T.; García, B.; Biver, T.; Gabbiani, C. Cytotoxic Ag(I) and Au(I) NHC-carbenes bind DNA and show TrxR inhibition. J. Inorg. Biochem. 2020, 205, 110998. [Google Scholar] [CrossRef]
- Trávníček, Z.; Vančo, J.; Čajan, M.; Belza, J.; Popa, I.; Hošek, J.; Lenobel, R.; Dvořák, Z. Gold(I) N-heterocyclic carbene (NHC) complexes containing 6-mercaptopurine derivatives and their in vitro anticancer and anti-inflammatory effects. Appl. Organomet. Chem. 2024, 38, e7401. [Google Scholar] [CrossRef]
- Romero, M.J.; Sadler, P.J. Chirality in Organometallic Anticancer Complexes. In Bioorganometallic Chemistry; Wiley: Hoboken, NJ, USA, 2014; pp. 85–116. [Google Scholar]
- Mukherjee, N.; Mondal, B.; Saha, T.N.; Maity, R. Palladium, iridium, and rhodium complexes bearing chiral N-heterocyclic carbene ligands applied in asymmetric catalysis. Appl. Organomet. Chem. 2024, 38, e6794. [Google Scholar] [CrossRef]
- Mariconda, A.; Sirignano, M.; Costabile, C.; Longo, P. New NHC- silver and gold complexes active in A3-coupling (aldehyde-alkyne-amine) reaction. Mol. Catal. 2020, 480, 110570. [Google Scholar] [CrossRef]
- Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; et al. A guiding map for inflammation. Nat. Immunol. 2017, 18, 826–831. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible Nitric Oxide Synthase and Inflammatory Diseases. Mol. Med. 2000, 6, 347–373. [Google Scholar] [CrossRef] [PubMed]
- Stuehr, D.J.; Marletta, M.A. Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. USA 1985, 82, 7738–7742. [Google Scholar] [CrossRef]
- Wink, D.A.; Mitchell, J.B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free. Radic. Biol. Med. 1998, 25, 434–456. [Google Scholar] [CrossRef]
- Sinicropi, M.S.; Iacopetta, D.; Rosano, C.; Randino, R.; Caruso, A.; Saturnino, C.; Muià, N.; Ceramella, J.; Puoci, F.; Rodriquez, M.; et al. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: Synthesis, characterisation and molecular mechanism evaluation. J. Enzym. Inhib. Med. Chem. 2018, 33, 434–444. [Google Scholar] [CrossRef]
- Cheshire, D.R.; Åberg, A.; Andersson, G.M.K.; Andrews, G.; Beaton, H.G.; Birkinshaw, T.N.; Boughton-Smith, N.; Connolly, S.; Cook, T.R.; Cooper, A.; et al. The discovery of novel, potent and highly selective inhibitors of inducible nitric oxide synthase (iNOS). Bioorganic Med. Chem. Lett. 2011, 21, 2468–2471. [Google Scholar] [CrossRef]
- Mariconda, A.; Iacopetta, D.; Sirignano, M.; Ceramella, J.; Costabile, C.; Pellegrino, M.; Rosano, C.; Catalano, A.; Saturnino, C.; El-Kashef, H.; et al. N-Heterocyclic Carbene (NHC) Silver Complexes as Versatile Chemotherapeutic Agents Targeting Human Topoisomerases and Actin. ChemMedChem 2022, 17, e202200345. [Google Scholar] [CrossRef]
- Carrasco, C.J.; Montilla, F.; Álvarez, E.; Calderón-Montaño, J.M.; López-Lázaro, M.; Galindo, A. Chirality influence on the cytotoxic properties of anionic chiral bis(N-heterocyclic carbene)silver complexes. J. Inorg. Biochem. 2022, 235, 111924. [Google Scholar] [CrossRef]
- Michalak, M.; Kośnik, W. Chiral N-heterocyclic Carbene Gold Complexes: Synthesis and Applications in Catalysis. Catalysts 2019, 9, 890. [Google Scholar] [CrossRef]
- Costabile, C.; Mariconda, A.; Sirignano, M.; Crispini, A.; Scarpelli, F.; Longo, P. A green approach for A3-coupling reactions: An experimental and theoretical study on NHC silver and gold catalysts. New J. Chem. 2021, 45, 18509–18517. [Google Scholar] [CrossRef]
- Ceramella, J.; Loizzo, M.R.; Iacopetta, D.; Bonesi, M.; Sicari, V.; Pellicanò, T.M.; Saturnino, C.; Malzert-Fréon, A.; Tundis, R.; Sinicropi, M.S. Anchusa azurea Mill. (Boraginaceae) aerial parts methanol extract interfering with cytoskeleton organization induces programmed cancer cells death. Food Funct. 2019, 10, 4280–4290. [Google Scholar] [CrossRef]
- Iacopetta, D.; Costabile, C.; La Chimia, M.; Mariconda, A.; Ceramella, J.; Scumaci, D.; Catalano, A.; Rosano, C.; Cuda, G.; Sinicropi, M.S.; et al. NHC-Ag(I) and NHC-Au(I) Complexes with N-Boc-Protected α-Amino Acidate Counterions Powerfully Affect the Growth of MDA-MB-231 Cells. ACS Med. Chem. Lett. 2023, 14, 1567–1575. [Google Scholar] [CrossRef]
- Mariconda, A.; Iacopetta, D.; Sirignano, M.; Ceramella, J.; D’Amato, A.; Marra, M.; Pellegrino, M.; Sinicropi, M.S.; Aquaro, S.; Longo, P. Silver and Gold Complexes with NHC-Ligands Derived from Caffeine: Catalytic and Pharmacological Activity. Int. J. Mol. Sci. 2024, 25, 2599. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Sanner, M.F.; Duncan, B.S.; Carrillo, C.J.; Olson, A.J. Integrating Computation and Visualization for Biomolecular Analysis: An Example Using Python and Avs. In Proceedings of the Biocomputing ‘99, Mauna Lani, HI, USA, 4–9 January 1999; pp. 401–412. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
Compound | |
---|---|
(S)-P1 | +44.68 |
(S)-P2 | +73.22 |
(R)-P1 | −44.79 |
(R)-P2 | −65.29 |
(S)-AgL1 | +64.18 |
(R)-AgL1 | −74.62 |
(S)-AuL1 | +106.03 |
(R)-AuL1 | −103.58 |
Complexes | Binding Energy (Kcal/mol) | Ki (μM) |
---|---|---|
(R)-AuL1 | −3.7 | 7.41 |
(S)-AuL1 | −2.48 | 7.65 |
(R)-AuL2 | −0.689 | 8.41 |
(S)-AuL2 | −1.32 | 8.02 |
IC50 (µM) | |||
---|---|---|---|
MCF-7 | MDA-MB-231 | MCF-10A | |
(R)-AuL1 | 16.0 ± 0.8 | 15.3 ± 4.5 | 52.9 ± 2.2 |
(S)-AuL1 | 14.6 ± 1.0 | 22.6 ± 0.4 | 64.5 ± 3.2 |
(R)-AgL1 | 14.5 ± 1.2 | 9.2 ± 0.5 | 54.8 ± 2.1 |
(S)-AgL1 | 69.8 ± 2.1 | >200 | >200 |
(R)-P1 | >200 | >200 | >200 |
(S)-P1 | >200 | >200 | >200 |
(R)-AuL2 | 2.2 ± 0.2 | 1.2 ± 0.2 | 38.0 ± 2.2 |
(S)-AuL2 | 10.0 ± 0.5 | 11.5 ± 0.4 | 17.2 ± 1.6 |
(R)-AgL2 | 18.4 ± 0.9 | 6.7 ± 0.7 | 69.2 ± 2.7 |
(S)-AgL2 | 4.0 ± 0.5 | >200 | >200 |
(R)-P2 | >200 | >200 | >200 |
(S)-P2 | >200 | >200 | >200 |
M.I.C. [µg/mL] [a]/M.B.C. [µg/mL] [b] | ||
---|---|---|
E. coli [c] | S. aureus [c] | |
(R)-AuL1 | 75/>150 | 25/>150 |
(S)-AuL1 | 75/>150 | 75/>150 |
(R)-AgL1 | 25/>100 | 75/>150 |
(S)-AgL1 | 75/>200 | 50/>100 |
(R)-P1 | 100/>200 | 75/>150 |
(S)-P1 | 100/>200 | 75/>150 |
(R)-AuL2 | 75/>150 | 75/>100 |
(S)-AuL2 | 100/>200 | 75/>100 |
(R)-AgL2 | 50/>100 | 75 />150 |
(S)-AgL2 | 75/>200 | 75/>200 |
(R)-P2 | 75/>200 | 75/>150 |
(S)-P2 | 75/>150 | 75/>200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marra, M.; Mariconda, A.; Iacopetta, D.; Ceramella, J.; D’Amato, A.; Rosano, C.; Tkachenko, K.; Pellegrino, M.; Aquaro, S.; Sinicropi, M.S.; et al. When Chirality Makes the Difference: The Case of Novel Enantiopure N-Heterocyclic Carbene–Gold and –Silver Complexes. Molecules 2024, 29, 5262. https://doi.org/10.3390/molecules29225262
Marra M, Mariconda A, Iacopetta D, Ceramella J, D’Amato A, Rosano C, Tkachenko K, Pellegrino M, Aquaro S, Sinicropi MS, et al. When Chirality Makes the Difference: The Case of Novel Enantiopure N-Heterocyclic Carbene–Gold and –Silver Complexes. Molecules. 2024; 29(22):5262. https://doi.org/10.3390/molecules29225262
Chicago/Turabian StyleMarra, Maria, Annaluisa Mariconda, Domenico Iacopetta, Jessica Ceramella, Assunta D’Amato, Camillo Rosano, Kateryna Tkachenko, Michele Pellegrino, Stefano Aquaro, Maria Stefania Sinicropi, and et al. 2024. "When Chirality Makes the Difference: The Case of Novel Enantiopure N-Heterocyclic Carbene–Gold and –Silver Complexes" Molecules 29, no. 22: 5262. https://doi.org/10.3390/molecules29225262
APA StyleMarra, M., Mariconda, A., Iacopetta, D., Ceramella, J., D’Amato, A., Rosano, C., Tkachenko, K., Pellegrino, M., Aquaro, S., Sinicropi, M. S., & Longo, P. (2024). When Chirality Makes the Difference: The Case of Novel Enantiopure N-Heterocyclic Carbene–Gold and –Silver Complexes. Molecules, 29(22), 5262. https://doi.org/10.3390/molecules29225262