Synthesis and Characterization of Novel Co(III)/Ru(II) Heterobimetallic Complexes as Hypoxia-Activated Iron-Sequestering Anticancer Prodrugs
<p>Structural formulas of the studied and model ligands as well as the metal building blocks.</p> "> Figure 2
<p>Ortep view of the molecular structure of [Co(tren)(PyPropHpH)]<sup>3+</sup> (<b>top</b>) and [Co(tpa)(PyPropHp)]<sup>2+</sup> (<b>bottom</b>) cations. The anions and solvent molecules are omitted for clarity.</p> "> Figure 3
<p>(<b>A</b>) Cell viability after 72 h treatment of PyPropHpH under normoxia (black) and hypoxia (gray). (<b>B</b>) Cell viability after 72 h treatment with the complexes under normoxia (black) and hypoxia (gray). Data points are presented as mean (SD). Multiple paired <span class="html-italic">t</span> test and Holm–Šidák post hoc test were used to analyze the data. Significance level: ns: <span class="html-italic">p</span> > 0.05, *: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, ***: <span class="html-italic">p</span> ≤ 0.001, ****: <span class="html-italic">p</span> ≤ 0.0001.</p> "> Figure 4
<p>Gene expression level changes calculated by 2<sup>40-ct</sup> method after (<b>A</b>) 24 h treatment with PyPropHpH, (<b>B</b>) 24 h treatment with PyPropHpH and <b>2</b> at 200 μM and (<b>C</b>) 72 h treatment with PyPropHpH and <b>2</b> at 100 μM under normoxia (black) and hypoxia (gray). Data points are presented as mean (SD). Two-way ANOVA for (<b>A</b>,<b>B</b>) and one-way ANOVA for (<b>C</b>) followed by Dunett’s post hoc test for (<b>A</b>) and Tukey’s post hoc test for (<b>B</b>,<b>C</b>) were used to analyze the data. Significance level: ns: <span class="html-italic">p</span> > 0.05, *: <span class="html-italic">p</span> ≤ 0.05, **: <span class="html-italic">p</span> ≤ 0.01, ***: <span class="html-italic">p</span> ≤ 0.001, ****: <span class="html-italic">p</span> ≤ 0.0001.</p> "> Scheme 1
<p>Synthetic procedure of the Co(III) complexes and Co(III)/Ru(II) heterobimetallic complexes. The structures of Co(III)-based geometric isomers are shown. Stereogenic centers are denoted with *.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses and Characterization
2.2. Electrochemical Studies
2.3. Stability Testing
2.4. Lipophilicity Measurements
2.5. Cytotoxicity Studies
2.6. Gene Expression Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Syntheses
3.2.1. [Co(tren)PyPropHp](PF6)2 (1)
3.2.2. [Co(tpa)PyPropHp](PF6)2 (2)
3.2.3. [Co(tren)PyPropHp(η6-p-cym)RuCl](PF6)3 (3)
3.2.4. [Co(tpa)PyPropHp(η6-p-cym)RuCl](PF6)3 (4)
3.3. NMR
3.4. ESI-MS
3.5. Crystal Structure Analysis
3.6. Cyclic Voltammetry
3.7. Stability Measurements
3.8. Lipophilicity Measurements
3.9. Cell Culture
3.10. Cytotoxicity Studies
3.11. Gene Expression Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef]
- Ott, I.; Gust, R. Non Platinum Metal Complexes as Anti-cancer Drugs. Arch. Pharm. 2007, 340, 117–126. [Google Scholar] [CrossRef]
- Patel, A.; Sant, S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnol. Adv. 2016, 34, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.; Hay, M. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Janczy-Cempa, E.; Mazuryk, O.; Kania, A.; Brindell, M. Significance of Specific Oxidoreductases in the Design of Hypoxia-Activated Prodrugs and Fluorescent Turn off–on Probes for Hypoxia Imaging. Cancers 2022, 14, 2686. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans. 2015, 44, 13796–13808. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Hambley, T.W.; Bryce, N. Visualising the hypoxia selectivity of cobalt(III) prodrugs. Chem. Sci. 2011, 2, 2135–2142. [Google Scholar] [CrossRef]
- Anderson, R.; Denny, W.; Ware, D.; Wilson, B. Pulse radiolysis studies on the hypoxia-selective toxicity of a cobalt-mustard complex. Br. J. Cancer Suppl. 1996, 27, S48–S51. [Google Scholar] [PubMed]
- Johnston, H.; Dickinson, P.; Ivens, A.; Buck, A.; Levine, R.; Remacle, F.; Campbell, C. Intracellular redox potential is correlated with miRNA expression in MCF7 cells under hypoxic conditions. Proc. Natl. Acad. Sci. USA 2019, 116, 19753–19759. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, B. Recent developments on other platinum metal complexes as target-specific anticancer therapeutics. Coord. Chem. Rev. 2023, 490, 215231. [Google Scholar] [CrossRef]
- Sigel, A.; Sigel, H.; Freisinger, E.; Sigel, R.K.O. Metallo-Drugs: Development and Action of Anticancer Agents. In Metal Ions in Life Sciences Book 18, 1st ed.; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Ibrahim, O.; O’Sullivan, J. Iron chelators in cancer therapy. BioMetals 2020, 33, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gutierrez, E.; Kovacevic, Z.; Saletta, F.; Obeidy, P.; Suryo Rahmanto, Y.; Richardson, D.R. Iron chelators for the treatment of cancer. Curr. Med. Chem. 2012, 19, 2689–2702. [Google Scholar] [CrossRef] [PubMed]
- Yasumoto, E.; Nakano, K.; Nakayachi, T.; Morshed, S.; Hashimoto, K.; Kikuchi, H.; Nishikawa, H.; Kawase, M.; Sakagami, H. Cytotoxic Activity of Deferiprone, Maltol and Related Hydroxyketones against Human Tumor Cell Lines. Anticancer Res. 2004, 24, 755–762. [Google Scholar] [PubMed]
- Fiorillo, M.; Tóth, F.; Brindisi, M.; Sotgia, F.; Lisanti, M. Deferiprone (DFP) Targets Cancer Stem Cell (CSC) Propagation by Inhibiting Mitochondrial Metabolism and Inducing ROS Production. Cells 2020, 9, 1529. [Google Scholar] [CrossRef]
- Nagy, S.; Ozsváth, A.; Bényei, A.; Farkas, E.; Buglyó, P. Donor Atom Preference of Organoruthenium and Organorhodium Cations on the Interaction with Novel Ambidentate (N,N) and (O,O) Chelating Ligands in Aqueous Solution. Molecules 2021, 26, 3586. [Google Scholar] [CrossRef]
- Le, N.T.V.; Richardson, D.R. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: A link between iron metabolism and proliferation. Blood 2004, 104, 2967–2975. [Google Scholar] [CrossRef] [PubMed]
- Darnell, G.; Richardson, D.R. The Potential of Iron Chelators of the Pyridoxal Isonicotinoyl Hydrazone Class as Effective Antiproliferative Agents III: The Effect of the Ligands on Molecular Targets Involved in Proliferation. Blood 1999, 94, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Le, N.T.V.; Richardson, D.R. Potent iron chelators increase the mRNA levels of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1, but paradoxically inhibit its translation: A potential mechanism of cell cycle dysregulation. Carcinogenesis 2003, 24, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Pantopoulos, K. Iron Metabolism and the IRE/IRP Regulatory System: An Update. Ann. N. Y. Acad. Sci. 2004, 1012, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Lakhani, S.R.; McCart Reed, A.E. NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers 2022, 14, 5739. [Google Scholar] [CrossRef] [PubMed]
- Buglyó, P.; Kacsir, I.; Kozsup, M.; Nagy, I.; Nagy, S.; Bényei, A.; Kováts, É.; Farkas, E. Tuning the redox potentials of ternary cobalt(III) complexes containing various hydroxamates. Inorg. Chim. Acta 2017, 472, 234–242. [Google Scholar] [CrossRef]
- Kozsup, M.; Zhou, X.; Farkas, E.; Bényei, A.; Bonnet, S.; Patonay, T.; Kónya, K.; Buglyó, P. Synthesis, characterization and cytotoxicity studies of Co(III)-flavonolato complexes. J. Inorg. Biochem. 2021, 217, 111382. [Google Scholar] [CrossRef] [PubMed]
- Failes, T.W.; Hambley, T.W. Models of hypoxia activated prodrugs: Co(III) complexes of hydroxamic acids. Dalton Trans. 2006, 15, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- Go, Y.M.; Jones, D.P. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med. 2011, 50, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Maji, M.; Acharya, S.; Bhattacharya, I.; Gupta, A.; Mukherjee, A. Effect of an Imidazole-Containing Schiff Base of an Aromatic Sulfonamide on the Cytotoxic Efficacy of N,N-Coordinated Half-Sandwich Ruthenium(II) p-Cymene Complexes. Inorg. Chem. 2021, 60, 4744–4754. [Google Scholar] [CrossRef] [PubMed]
- Rohwer, N.; Cramer, T. Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist. Updates 2011, 14, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Bentley, K.W.; Creaser, E.H. Cleavage of peptides and peptide esters with cis-β-hydroxoaquo(triethylenetetramine)cobalt(III) ion. Inorg. Chem. 1974, 13, 1183–1191. [Google Scholar] [CrossRef]
- Green, B.P.; Renfrew, A.K.; Glenister, A.; Turner, P.; Hambley, T.W. The influence of the ancillary ligand on the potential of cobalt(III) complexes to act as chaperones for hydroxamic acid-based drugs. Dalton Trans. 2017, 46, 15897–15907. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.D.; Failes, T.W.; Yamamoto, N.; Hambley, T.W. Bioreductive activation and drug chaperoning in cobalt pharmaceuticals. Dalton Trans. 2007, 3983–3990. [Google Scholar] [CrossRef]
- Bormio Nunes, J.H.; Hager, S.; Mathuber, M.; Pósa, V.; Roller, A.; Enyedy, É.A.; Stefanelli, A.; Berger, W.; Keppler, B.K.; Heffeter, P.; et al. Cancer Cell Resistance Against the Clinically Investigated Thiosemicarbazone COTI-2 Is Based on Formation of Intracellular Copper Complex Glutathione Adducts and ABCC1-Mediated Efflux. J. Med. Chem. 2020, 63, 13719–13732. [Google Scholar] [CrossRef]
- Strese, S.; Fryknäs, M.; Larsson, R.; Gullbo, J. Effects of hypoxia on human cancer cell line chemosensitivity. BMC Cancer 2013, 13, 331. [Google Scholar] [CrossRef]
- Westrip, S.P. PublCIF: Software for editing, validating and formatting crystallographic information files. J. Apply. Cryst. 2010, 43, 920–925. [Google Scholar] [CrossRef]
Complex | Metal Centre | 4N Ligand | Epc (mV), Mean ± SD |
---|---|---|---|
2 | Co | tpa | −298 ± 17 |
4 | Co/Ru | tpa | −242 ± 17 |
1 | Co | tren | −535 ± 19 |
3 | Co/Ru | tren | −478 ± 18 |
Complex | Metal Center | 4N | log Dn-octanol/PBS |
---|---|---|---|
2 | Co | tpa | <–2.0 |
4 | Co/Ru | tpa | –1.9 |
1 | Co | tren | <–2.0 |
3 | Co/Ru | tren | <–2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.B.; Sipos, É.; Bényei, A.C.; Nagy, S.; Lekli, I.; Buglyó, P. Synthesis and Characterization of Novel Co(III)/Ru(II) Heterobimetallic Complexes as Hypoxia-Activated Iron-Sequestering Anticancer Prodrugs. Molecules 2024, 29, 5967. https://doi.org/10.3390/molecules29245967
Tran TB, Sipos É, Bényei AC, Nagy S, Lekli I, Buglyó P. Synthesis and Characterization of Novel Co(III)/Ru(II) Heterobimetallic Complexes as Hypoxia-Activated Iron-Sequestering Anticancer Prodrugs. Molecules. 2024; 29(24):5967. https://doi.org/10.3390/molecules29245967
Chicago/Turabian StyleTran, Tan Ba, Éva Sipos, Attila Csaba Bényei, Sándor Nagy, István Lekli, and Péter Buglyó. 2024. "Synthesis and Characterization of Novel Co(III)/Ru(II) Heterobimetallic Complexes as Hypoxia-Activated Iron-Sequestering Anticancer Prodrugs" Molecules 29, no. 24: 5967. https://doi.org/10.3390/molecules29245967
APA StyleTran, T. B., Sipos, É., Bényei, A. C., Nagy, S., Lekli, I., & Buglyó, P. (2024). Synthesis and Characterization of Novel Co(III)/Ru(II) Heterobimetallic Complexes as Hypoxia-Activated Iron-Sequestering Anticancer Prodrugs. Molecules, 29(24), 5967. https://doi.org/10.3390/molecules29245967