Investigation on the Coordination Bonding Nature of Actinide-Doped Endohedral Borospherenes An@B400/+/− (An = U, Np, Pu, Am, Cm)
<p>Three optimized low-lying isomers of (<b>a</b>) U@B<sub>40</sub> and (<b>b</b>) U@B<sub>40</sub><sup>−</sup> with their relative energies indicated in eV at PBE0, TPSSh (parentheses), and CCSD(T)/PBE0 (square brackets) levels, respectively, and optimized ground-state structures of (<b>c</b>) <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> U@B<sub>40</sub> (<b>1</b>,<sup>3</sup>A<sub>2</sub>), <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> U@B<sub>40</sub><sup>−</sup> (<b>2</b>, <sup>4</sup>B<sub>1</sub>), <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> Np@B<sub>40</sub><sup>+</sup> (<b>3</b>, <sup>5</sup>A<sub>1</sub>), <span class="html-italic">C</span><sub>2</sub> Np@B<sub>40</sub> (<b>4</b>, <sup>6</sup>A), <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> Pu@B<sub>40</sub> (<b>5</b>, <sup>7</sup>A<sub>2</sub>), <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> Am@B<sub>40</sub> (<b>6</b>, <sup>8</sup>A<sub>2</sub>), and <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> Cm@B<sub>40</sub><sup>+</sup> (<b>7</b>, <sup>8</sup>A<sub>2</sub>) at the PBE0 level.</p> "> Figure 2
<p>(<b>a</b>) AdNDP bonding pattern of triplet <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> U@B<sub>40</sub> (<b>1</b>), with the occupation numbers (ON) indicated. (<b>b</b>) PISO bonding pattern of <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> U@B<sub>40</sub> (<b>1</b>) with the U coordination center and B<sub>40</sub> ligand as interacting fragments, with the corresponding occupation numbers (PISO Pop.), PIO-based bond indexes (PBI), and percentage contributions (contrib/%) to the overall coordination interactions indicated.</p> "> Figure 3
<p>Unpaired PISO α-orbitals of U@B<sub>40</sub> (<b>1</b>, <sup>3</sup>A<sub>2</sub>), U@B<sub>40</sub><sup>−</sup> (<b>2</b>, <sup>4</sup>B<sub>1</sub>), Np@B<sub>40</sub><sup>+</sup> (<b>3</b>, <sup>5</sup>A<sub>1</sub>), Np@B<sub>40</sub> (<b>4</b>, <sup>6</sup>A), Pu@B<sub>40</sub> (<b>5</b>, <sup>7</sup>A<sub>2</sub>), Am@B<sub>40</sub> (<b>6</b>, <sup>8</sup>A<sub>2</sub>), and Cm@B<sub>40</sub><sup>+</sup> (<b>7</b>, <sup>8</sup>A<sub>2</sub>), with the α-spin occupation numbers (PISO Pop.) associated with the principal interacting spin orbitals, PISO-based bond indexes (PBI), and their percentage contributions (contrib/%) to the overall coordination interactions between the An coordination center and B<sub>40</sub> ligand indicated. The corresponding AdNDP analyses of the singly occupied 1c–1e α-5f orbitals in <b>1</b>, <b>2</b>, <b>3</b>, <b>5</b>, <b>6</b>, and <b>7</b> and 41c–1e α-bond in Np@B<sub>40</sub> (<b>4</b>) are compared at the bottom, with the occupation numbers (ON) indicated.</p> "> Figure 4
<p>Variation of the calculated overall An--B<sub>40</sub> coordination interaction energies highlighted in blue and the corresponding PISO percentage contributions of 5f-, 6d-, and 7s-orbital-involved pair interactions highlighted in red in U@B<sub>40</sub> (<b>1</b>, <sup>3</sup>A<sub>2</sub>), U@B<sub>40</sub><sup>−</sup> (<b>2</b>, <sup>4</sup>B<sub>1</sub>), Np@B<sub>40</sub><sup>+</sup> (<b>3</b>, <sup>5</sup>A<sub>1</sub>), Np@B<sub>40</sub> (<b>4</b>, <sup>6</sup>A), Pu@B<sub>40</sub> (<b>5</b>, <sup>7</sup>A<sub>2</sub>), Am@B<sub>40</sub> (<b>6</b>, <sup>8</sup>A<sub>2</sub>), and Cm@B<sub>40</sub><sup>+</sup> (<b>7</b>, <sup>8</sup>A<sub>2</sub>) with the numbers of singly occupied 5f electrons (n<sub>α</sub>) at the PBE0 level.</p> "> Figure 5
<p>Simulated IR, Raman, and UV–Vis spectra of (<b>a</b>) <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> U@B<sub>40</sub> (<b>1</b>, <sup>3</sup>A<sub>2</sub>), and IR, Raman, and photoelectron spectra (PES) of (<b>b</b>) <span class="html-italic">C</span><sub>2<span class="html-italic">v</span></sub> U@B<sub>40</sub><sup>−</sup> (<b>2</b>, <sup>4</sup>B<sub>1</sub>) at the PBE0 level.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structures and Stabilities
2.2. Bonding Pattern Analyses
2.3. Percentage Contributions of An 5f-, 6d-, and 7s-Involved PISO Pairs to the Overall Coordination Interactions
2.4. Simulated IR, Raman, and PE Spectra
3. Theoretical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhai, H.J.; Zhao, Y.F.; Li, W.L.; Chen, Q.; Bai, H.; Hu, H.S.; Piazza, Z.A.; Tian, W.J.; Lu, H.G.; Wu, Y.B.; et al. Observation of an All-Boron Fullerene. Nat. Chem. 2014, 6, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, W.L.; Zhao, Y.F.; Zhang, S.Y.; Hu, H.S.; Bai, H.; Li, H.R.; Tian, W.J.; Lu, H.G.; Zhai, H.J.; et al. Experimental and Theoretical Evidence of an Axially Chiral Borospherene. ACS Nano 2015, 9, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Jian, T.; Chen, X.; Li, S.D.; Boldyrev, A.I.; Li, J.; Wang, L.S. Probing the Structures and Bonding of Size-Selected Boron and Doped-Boron Clusters. Chem. Soc. Rev. 2019, 48, 3550–3591. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhao, Y.F.; Li, W.L.; Jian, T.; Chen, Q.; You, X.R.; Ou, T.; Zhao, X.Y.; Zhai, H.J.; Li, S.D.; et al. Observation and Characterization of the Smallest Borospherene, B28− and B28. J. Chem. Phys. 2016, 144, 064307. [Google Scholar] [CrossRef]
- Chen, W.J.; Ma, Y.Y.; Chen, T.T.; Ao, M.Z.; Yuan, D.F.; Chen, Q.; Tian, X.X.; Mu, Y.W.; Li, S.D.; Wang, L.S. B48−: A Bilayer Boron Cluster. Nanoscale 2021, 13, 3868–3876. [Google Scholar] [CrossRef]
- Tian, W.J.; Chen, Q.; Li, H.R.; Yan, M.; Mu, Y.W.; Lu, H.G.; Zhai, H.J.; Li, S.D. Saturn-like Charge-Transfer Complexes Li4&B36, Li5&B36+, and Li6&B362+: Exohedral Metalloborospherenes with a Perfect Cage-like B364− Core. Phys. Chem. Chem. Phys. 2016, 18, 9922–9926. [Google Scholar] [CrossRef]
- Chen, Q.; Li, H.R.; Tian, W.J.; Lu, H.G.; Zhai, H.J.; Li, S.D. Endohedral Charge-Transfer Complex Ca@B37−: Stabilization of a B373− Borospherene Trianion by Metal-Encapsulation. Phys. Chem. Chem. Phys. 2016, 18, 14186–14190. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, S.; Bai, H.; Tian, W.; Gao, T.; Li, H.; Miao, C.; Mu, Y.; Lu, H.; Zhai, H.; et al. Cage-Like B41+ and B422+: New Chiral Members of the Borospherene Family. Angew. Chem. Int. Ed. 2015, 127, 8278–8282. [Google Scholar] [CrossRef]
- Bai, H.; Chen, Q.; Zhai, H.J.; Li, S.D. Endohedral and Exohedral Metalloborospherenes: M@B40 (M = Ca, Sr) and M&B40 (M = Be, Mg). Angew. Chem. Int. Ed. 2015, 54, 941–945. [Google Scholar] [CrossRef]
- Jin, P.; Hou, Q.; Tang, C.; Chen, Z. Computational Investigation on the Endohedral Borofullerenes M@B40 (M = Sc, Y, La). Theor. Chem. Acc. 2015, 134, 13. [Google Scholar] [CrossRef]
- Dong, H.; Hou, T.; Lee, S.T.; Li, Y. New Ti-Decorated B40 Fullerene as a Promising Hydrogen Storage Material. Sci. Rep. 2015, 5, 9952. [Google Scholar] [CrossRef] [PubMed]
- Fa, W.; Chen, S.; Pande, S.; Zeng, X.C. Stability of Metal-Encapsulating Boron Fullerene B40. J. Phys. Chem. A 2015, 119, 11208–11214. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Zhang, M.; Wu, D.; Fu, Z.; Wang, T.; Xia, C. Electronic Transport Properties of the First All-Boron Fullerene B40 and Its Metallofullerene Sr@B40. Phys. Chem. Chem. Phys. 2016, 18, 12024–12028. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Yang, L.; Liu, C.; Hou, Q.; Li, L. Computational Prediction of the Endohedral Metalloborofullerenes Tin@B40 (n = 1, 2). Theor. Chem. Acc. 2017, 136, 56. [Google Scholar] [CrossRef]
- Li, H.R.; Tian, X.X.; Luo, X.M.; Yan, M.; Mu, Y.W.; Lu, H.G.; Li, S.D. Heteroborospherene Clusters Nin ∈ B40 (n = 1–4) and Heteroborophene Monolayers Ni2 ∈ B14 with Planar Heptacoordinate Transition-Metal Centers in η7-B7 Heptagons. Sci. Rep. 2017, 7, 5701. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Zhang, Z.P.; Long, Z.W.; Qin, S.J. Structures, Stabilities and Spectral Properties of Metalloborospherenes MB 0/−40 (M = Cu, Ag, and Au). RSC Adv. 2017, 7, 38526–38537. [Google Scholar] [CrossRef]
- Yu, T.; Gao, Y.; Xu, D.; Wang, Z. Actinide Endohedral Boron Clusters: A Closed-Shell Electronic Structure of U@B40. Nano Res. 2018, 11, 354–359. [Google Scholar] [CrossRef]
- Wang, J.; Xie, W.; Jiang, W.; Wu, X.; Wang, Z. The Reliability of the Density-Functional Theory in Actinide Endohedral Systems. Adv. Theory Simul. 2019, 2, 1900138. [Google Scholar] [CrossRef]
- Zhang, N.; Li, A.; Wang, C.; Wu, Q.; Lan, J.; Chai, Z.; Zhao, Y.; Shi, W. Theoretical Prediction of Chiral Actinide Endohedral Borospherenes. N. J. Chem. 2021, 45, 6803–6810. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, C.; Wu, Q.; Lan, J.; Chai, Z.; Shi, W. Highly Stable Actinide(III) Complexes Supported by Doubly Aromatic Ligands†. Phys. Chem. Chem. Phys. 2022, 24, 5921–5928. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Bo, T.; Lan, J.H.; Wu, Q.Y.; Chai, Z.F.; Gibson, J.K.; Shi, W.Q. Ultrastable Actinide Endohedral Borospherenes. Chem. Commun. 2018, 54, 2248–2251. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.Z.; Wu, Q.Y.; Lan, J.H.; Chai, Z.F.; Nie, C.M.; Shi, W.Q. Construction of the Largest Metal-Centered Double-Ring Tubular Boron Clusters Based on Actinide Metal Doping. J. Phys. Chem. A 2022, 126, 3445–3451. [Google Scholar] [CrossRef]
- Xi, C.; Yang, L.; Liu, C.; You, P.; Li, L.; Jin, P. Lanthanide Metals in the Boron Cages: Computational Prediction of M@Bn (M = Eu, Gd; n = 38, 40). Int. J. Quantum. Chem. 2018, 118, e25576. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhou, Z.; Gao, Y.; Chen, Y.; Zhang, G.; Ma, C. Insights into ThB40: Stability, Electronic Structure, and Interaction. Molecules 2024, 29, 1222. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Cao, X.; Dolg, M. Segmented Contraction Scheme for Small-Core Actinide Pseudopotential Basis Sets. J. Mol. Struct. THEOCHEM 2004, 673, 203–209. [Google Scholar] [CrossRef]
- Cao, X.; Dolg, M.; Stoll, H. Valence Basis Sets for Relativistic Energy-Consistent Small-Core Actinide Pseudopotentials. J. Chem. Phys. 2003, 118, 487–496. [Google Scholar] [CrossRef]
- Guo, Y.; Riplinger, C.; Becker, U.; Liakos, D.G.; Minenkov, Y.; Cavallo, L.; Neese, F. Communication: An Improved Linear Scaling Perturbative Triples Correction for the Domain Based Local Pair-Natural Orbital Based Singles and Doubles Coupled Cluster Method [DLPNO-CCSD(T)]. J. Chem. Phys. 2018, 148, 011101. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software Update: The ORCA Program System—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Pantazis, D.A.; Neese, F. All-Electron Scalar Relativistic Basis Sets for the Actinides. J. Chem. Theory Comput. 2011, 7, 677–684. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Vandevondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005, 167, 103–128. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular Excitation Energies to High-Lying Bound States from Time-Dependent Density-Functional Response Theory: Characterization and Correction of the Time-Dependent Local Density Approximation Ionization Threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar] [CrossRef]
- Zubarev, D.Y.; Boldyrev, A.I. Developing Paradigms of Chemical Bonding: Adaptive Natural Density Partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217. [Google Scholar] [CrossRef]
- Tkachenko, N.V.; Boldyrev, A.I. Chemical Bonding Analysis of Excited States Using the Adaptive Natural Density Partitioning Method. Phys. Chem. Chem. Phys. 2019, 21, 9590–9596. [Google Scholar] [CrossRef]
- Zhang, J.X.; Sheong, F.K.; Lin, Z. Unravelling Chemical Interactions with Principal Interacting Orbital Analysis. Chem. Eur. J. 2018, 24, 9639–9650. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. NBO 6.0: Natural Bond Orbital Analysis Program. J. Comput. Chem. 2013, 34, 1429–1437. [Google Scholar] [CrossRef]
- Sheong, F.K.; Zhang, J.X.; Lin, Z. Principal Interacting Spin Orbital: Understanding the Fragment Interactions in Open-Shell Systems. Phys. Chem. Chem. Phys. 2020, 22, 10076–10086. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.-N.; Wei, Z.-H.; Li, S.-D. Investigation on the Coordination Bonding Nature of Actinide-Doped Endohedral Borospherenes An@B400/+/− (An = U, Np, Pu, Am, Cm). Molecules 2024, 29, 5879. https://doi.org/10.3390/molecules29245879
Zhao X-N, Wei Z-H, Li S-D. Investigation on the Coordination Bonding Nature of Actinide-Doped Endohedral Borospherenes An@B400/+/− (An = U, Np, Pu, Am, Cm). Molecules. 2024; 29(24):5879. https://doi.org/10.3390/molecules29245879
Chicago/Turabian StyleZhao, Xiao-Ni, Zhi-Hong Wei, and Si-Dian Li. 2024. "Investigation on the Coordination Bonding Nature of Actinide-Doped Endohedral Borospherenes An@B400/+/− (An = U, Np, Pu, Am, Cm)" Molecules 29, no. 24: 5879. https://doi.org/10.3390/molecules29245879
APA StyleZhao, X. -N., Wei, Z. -H., & Li, S. -D. (2024). Investigation on the Coordination Bonding Nature of Actinide-Doped Endohedral Borospherenes An@B400/+/− (An = U, Np, Pu, Am, Cm). Molecules, 29(24), 5879. https://doi.org/10.3390/molecules29245879