Detection of Total Aflatoxins in Herbal Medicines Based on Lateral Flow Assay with Contamination Ratio Model
"> Figure 1
<p>The agreements of <span class="html-italic">A. semen</span> samples were determined under different calibration curves.</p> "> Figure 2
<p>The agreements of <span class="html-italic">A. semen</span> samples were determined under different calibration curves.</p> "> Figure 3
<p>The distribution of the four types of aflatoxins in <span class="html-italic">A. semen</span> (<b>A</b>), <span class="html-italic">N. semen</span> (<b>B</b>), <span class="html-italic">C. semen</span> (<b>C</b>), <span class="html-italic">P. semen</span> (<b>D</b>), and <span class="html-italic">Z. spinosae semen</span> (<b>E</b>), respectively.</p> "> Figure 4
<p>The calibration curves for aflatoxin detection. The four-parametric logistic calibration curves were created by plotting the ratio of T and C against the concentration of aflatoxins (the calibration curve concentration was obtained by HPLC-FLD detection) in <span class="html-italic">A. semen</span> (<b>A</b>), <span class="html-italic">N. semen</span> (<b>B</b>), <span class="html-italic">C. semen</span> (<b>C</b>), <span class="html-italic">P. semen</span> (<b>D</b>), <span class="html-italic">Z. spinosae semen</span> (<b>E</b>), and the solvent standard (<b>F</b>), respectively.</p> "> Figure 5
<p>The flow chart for the process of judging the CGIS results. Sample results categorized as “uncertain” should be reinspected by HPLC-FLD or LC-MS/MS method for confirmation.</p> "> Figure 6
<p>The distribution of the AFs-positive rate (<b>A</b>), AFs-positive samples at different levels (<b>B</b>), and sample results categorized as qualified, unqualified and uncertain (<b>C</b>).</p> "> Figure 7
<p>Correlation between CGIS and HPLC-FLD results of <span class="html-italic">A. semen</span> (<b>A</b>), <span class="html-italic">N. semen</span> (<b>B</b>), <span class="html-italic">C. semen</span> (<b>C</b>), <span class="html-italic">P. semen</span> (<b>D</b>), and <span class="html-italic">Z. spinosae semen</span> (<b>E</b>) samples.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensitivity and Specificity of the CGIS
2.2. Quantitative Difference of Calibration Curves Constructed Using Various Aflatoxin Ratio Models
2.3. Influence of Herbal Medicine Matrices
2.4. Quantitative Detection of the CGIS and Methodology Validation
2.5. Process for Discrimination of CGIS Results
2.6. Investigation of Real Samples by CGIS and HPLC-FLD
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. CGIS Principle and Procedure
3.3. Evaluation of CGIS Sensitivity and Specificity
3.4. Establishment of CGIS Calibration Curves
3.5. Detection of Spiked and Authentic Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ałtyn, I.; Twarużek, M. Mycotoxin Contamination Concerns of Herbs and Medicinal Plants. Toxins 2020, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Ang, L.; Song, E.; Zhang, J.; Lee, H.W.; Lee, M.S. Herbal medicine for COVID-19: An overview of systematic reviews and meta-analysis. Phytomedicine 2022, 102, 154136. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Report on Traditional and Complementary Medicine 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Wei, G.; Guo, X.; Liang, Y.; Liu, C.; Zhang, G.; Liang, C.; Huang, Z.; Zheng, Y.; Chen, S.; Dong, L. Occurrence of fungi and mycotoxins in herbal medicines and rapid detection of toxin-producing fungi. Environ. Pollut. 2023, 333, 122082. [Google Scholar] [CrossRef] [PubMed]
- Kosalec, I.; Cvek, J.; Tomić, S. Contaminants of medicinal herbs and herbal products. Arh. Hig. Rada Toksikol. 2009, 60, 485–501. [Google Scholar] [CrossRef] [PubMed]
- Pickova, D.; Ostry, V.; Toman, J.; Malir, F. Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins 2021, 13, 399. [Google Scholar] [CrossRef]
- Jaćević, V.; Dumanović, J.; Alomar, S.Y.; Resanović, R.; Milovanović, Z.; Nepovimova, E.; Wu, Q.; Franca, T.C.C.; Wu, W.; Kuča, K. Research update on aflatoxins toxicity, metabolism, distribution, and detection: A concise overview. Toxicology 2023, 492, 153549. [Google Scholar] [CrossRef]
- Caceres, I.; Khoury, A.A.; Khoury, R.E.; Lorber, S.; Oswald, I.P.; Khoury, A.E.; Atoui, A.; Puel, O.; Bailly, J.D. Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins 2020, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, B. Challenges in the quality of herbal medicinal products with a specific focus on contaminants. Phytochem. Anal. 2021, 32, 117–123. [Google Scholar] [CrossRef]
- Victor Jeyaraj, S.V.; Loy, M.J.; Goh, K.W.; Lean, Y.L.; Chan, S.Y.; Ming, L.C. Aflatoxin tests in herbal products and its quantification: Latest updates. Front. Nutr. 2022, 9, 956077. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, S.; Yao, Z.; Liu, M. Aflatoxin detection technologies: Recent advances and future prospects. Environ. Sci. Pollut. Res. Int. 2023, 30, 79627–79653. [Google Scholar] [CrossRef]
- Cao, W.; Yu, P.; Yang, K.; Cao, D. Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol. Mech. Methods 2022, 32, 395–419. [Google Scholar] [CrossRef]
- Shabeer, S.; Asad, S.; Jamal, A.; Ali, A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins 2022, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Hashim, N.H.; Saad, B.; Safan, K.; Nakajima, M.; Yoshizawa, T. Evaluation of a method to determine the natural occurrence of aflatoxins in commercial traditional herbal medicines from Malaysia and Indonesia. Food Chem. Toxicol. 2005, 43, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Committee, N.P. People’s Republic of China (PRC) Pharmacopoeia; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Zhang, L.; Dou, X.W.; Zhang, C.; Logrieco, A.F.; Yang, M.H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Zhang, L.; Qin, J.A.; Dou, X.; Fu, Y.; Li, Q.; Zhao, X.; Yang, M. An integrated strategy for rapid on-site screening and determination of prometryn residues in herbs. Anal. Bioanal. Chem. 2020, 412, 621–633. [Google Scholar] [CrossRef]
- Tian, J.; Luo, J.; Qin, J.; Wang, Y.; Sun, X.; Zhang, J.; Ke, T.; Guo, M.; Ruan, H.; An, F.; et al. Preparation of a broad-specificity antibody against zearalenone and its primary analogues and development of immunoassay of Coicis Semen and related products. J. Food Sci. 2023, 88, 2723–2734. [Google Scholar] [CrossRef]
- Hu, S.; Dou, X.; Zhang, L.; Xie, Y.; Yang, S.; Yang, M. Rapid detection of aflatoxin B(1) in medicinal materials of radix and rhizome by gold immunochromatographic assay. Toxicon 2018, 150, 144–150. [Google Scholar] [CrossRef]
- Yin, M.; Hu, X.; Sun, Y.; Xing, Y.; Xing, G.; Wang, Y.; Li, Q.; Wang, Y.; Deng, R.; Zhang, G. Broad-spectrum detection of zeranol and its analogues by a colloidal gold-based lateral flow immunochromatographic assay in milk. Food Chem. 2020, 321, 126697. [Google Scholar] [CrossRef]
- Mao, X.; Wu, Y.; Chen, H.; Wang, Y.; Yu, B.; Shi, G. A mix-and-detect method based on colloidal gold immunochromatographic assay for on-site detection of zearalenone in edible oils. Anal. Methods 2020, 12, 5628–5634. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, J.; Fotina, H.; Zhang, H.; Chen, J. Advances in Antibody Preparation Techniques for Immunoassays of Total Aflatoxin in Food. Molecules 2020, 25, 4113. [Google Scholar] [CrossRef]
- Zhang, D.; Li, P.; Zhang, Q.; Zhang, W.; Huang, Y.; Ding, X.; Jiang, J. Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Anal. Chim. Acta 2009, 636, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Alshannaq, A.; Yu, J.H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jin, X.; Lin, Z.; Guo, Q.; Liu, B.; Yuan, Y.; Yue, T.; Zhao, X. Simultaneous Rapid Detection of Aflatoxin B(1) and Ochratoxin A in Spices Using Lateral Flow Immuno-Chromatographic Assay. Foods 2021, 10, 2738. [Google Scholar] [CrossRef] [PubMed]
- Design Criteria and Test Performance Specifications for Quantitative Aflatoxin Test Kits; Federal Grain Inspection Service of United States, Department of Agriculture: Washington, DC, USA, 2018.
- Alameri, M.M.; Kong, A.S.; Aljaafari, M.N.; Ali, H.A.; Eid, K.; Sallagi, M.A.; Cheng, W.H.; Abushelaibi, A.; Lim, S.E.; Loh, J.Y.; et al. Aflatoxin Contamination: An Overview on Health Issues, Detection and Management Strategies. Toxins 2023, 15, 246. [Google Scholar] [CrossRef]
- Cai, P.; Wang, R.; Ling, S.; Wang, S. A high sensitive platinum-modified colloidal gold immunoassay for tenuazonic acid detection based on monoclonal IgG. Food Chem. 2021, 360, 130021. [Google Scholar] [CrossRef]
- Ling, S.; Li, X.; Zhang, D.; Wang, K.; Zhao, W.; Zhao, Q.; Wang, R.; Yuan, J.; Xin, S.; Wang, S. Detection of okadaic acid (OA) and tetrodotoxin (TTX) simultaneously in seafood samples using colloidal gold immunoassay. Toxicon 2019, 165, 103–109. [Google Scholar] [CrossRef]
Herbal Medicine | Total Batch | Contamination Ratio of Aflatoxins | Conformity Rate (%) | |||
---|---|---|---|---|---|---|
AFB1 | AFB2 | AFG1 | AFG2 | |||
A. semen | 977 | 0.88 | 0.02 | 0.76 | 0.001 | 64.0 |
N. semen | 102 | 0.95 | 0.11 | 0.002 | 0 | 88.9 |
C. semen | 205 | 1.00 | 0.007 | 0 | 0 | 72.7 |
P. semen | 144 | 0.94 | 0.07 | 0.006 | 0 | 83.3 |
Z. spinosae semen | 140 | 0.96 | 0.06 | 0.009 | 0.003 | 95.5 |
Item | All | A. semen | N. semen | C. semen | P. semen | Z.spinosae semen |
---|---|---|---|---|---|---|
Total samples | 229 | 42 | 34 | 53 | 54 | 46 |
AFs-positive samples | 90 | 20 | 9 | 22 | 20 | 19 |
AFs-positive rate (%) | 39.3 | 47.6 | 26.4 | 41.5 | 37.0 | 41.3 |
AFs-positive range (μg/kg) | 2.6–39.2 | 4–28.2 | 3.8–39.2 | 3.2–18.7 | 2.6–22.6 | 3.7–12.4 |
Agreement (%) | - | 78.4–132.6 | 82.6–133.0 | 79.9–117.9 | 78.1–119.0 | 76.1–123.0 |
Uncertain rate (%) | - | 7.1 | 0 | 9.4 | 5.6 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.-Y.; Feng, R.; Zhou, H.; Pan, H.-Q.; Wang, H.; Huang, X.-J.; Shen, J.-Y.; Hu, Q.; Ji, S. Detection of Total Aflatoxins in Herbal Medicines Based on Lateral Flow Assay with Contamination Ratio Model. Molecules 2024, 29, 5827. https://doi.org/10.3390/molecules29245827
Qin X-Y, Feng R, Zhou H, Pan H-Q, Wang H, Huang X-J, Shen J-Y, Hu Q, Ji S. Detection of Total Aflatoxins in Herbal Medicines Based on Lateral Flow Assay with Contamination Ratio Model. Molecules. 2024; 29(24):5827. https://doi.org/10.3390/molecules29245827
Chicago/Turabian StyleQin, Xiao-Ya, Rui Feng, Heng Zhou, Hui-Qin Pan, Hao Wang, Xiao-Jing Huang, Jian-Ying Shen, Qing Hu, and Shen Ji. 2024. "Detection of Total Aflatoxins in Herbal Medicines Based on Lateral Flow Assay with Contamination Ratio Model" Molecules 29, no. 24: 5827. https://doi.org/10.3390/molecules29245827
APA StyleQin, X.-Y., Feng, R., Zhou, H., Pan, H.-Q., Wang, H., Huang, X.-J., Shen, J.-Y., Hu, Q., & Ji, S. (2024). Detection of Total Aflatoxins in Herbal Medicines Based on Lateral Flow Assay with Contamination Ratio Model. Molecules, 29(24), 5827. https://doi.org/10.3390/molecules29245827