The Anti-Melanogenic Effects of Ganodermanontriol from the Medicinal Mushroom Ganoderma lucidum through the Regulation of the CREB and MAPK Signaling Pathways in B16F10 Cells
<p>Chemical structure (<b>a</b>), cytotoxicity (<b>b</b>), and melanin synthesis inhibitory activity (<b>c</b>) of ganodermanontriol (GT). The data were analyzed using one-way ANOVA followed by Tukey’s test. *** <span class="html-italic">p</span> < 0.001 vs. B16F10 cells without sample treatment. Arb, arbutin (0.5 mM).</p> "> Figure 2
<p>Effects of ganodermanontriol (GT) on expression of cellular tyrosinase and microphthalmia-associated transcription factor (MITF) proteins in B16F10 cells. Relative protein expression levels of tyrosinase (<b>a</b>), tyrosinase-related protein 1 (TRP-1) (<b>b</b>), and MITF protein (<b>c</b>). Relative protein levels were quantified using Western blot analysis (<b>d</b>). The data were analyzed using one-way ANOVA followed by Tukey’s test. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. B16F10 cells without sample treatment. Arb, arbutin (0.5 mM).</p> "> Figure 3
<p>Effects of ganodermanontriol (GT) on phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in B16F10 cells (<b>a</b>). Relative phosphorylation levels were quantified using Western blot analysis (<b>b</b>). The data were analyzed using one-way ANOVA followed by Tukey’s test. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. B16F10 cells without sample treatment. Arb, arbutin (0.5 mM).</p> "> Figure 4
<p>Effects of ganodermanontriol (GT) on phosphorylation of extracellular signal-regulated kinases (ERKs) (<b>a</b>), c-Jun N-terminal kinases (JNKs) (<b>b</b>), and p38 (<b>c</b>) proteins in B16F10 cells. Relative phosphorylation levels were quantified using Western blot analysis (<b>d</b>). The data were analyzed using one-way ANOVA followed by Tukey’s test. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. B16F10 cells without sample treatment. Arb, arbutin (0.5 mM).</p> "> Figure 5
<p>HPLC profiles (<b>a</b>) and HPLC-PDA chromatograms (<b>b</b>) of ganodermanontriol (GT) and <span class="html-italic">G. lucidum</span> extract. Rt, retention time. Arrows indicate GT-specific peaks.</p> "> Figure 6
<p>HPLC chromatograms (<b>a</b>) and ESI-MS spectra (<b>b</b>) of ganodermanontriol (GT) and GT from <span class="html-italic">G. lucidum</span>. Rt, retention time. Arrows indicate GT-specific peaks.</p> "> Figure 7
<p>Isolation procedure of ganodermanontriol from <span class="html-italic">Ganoderma lucidum</span>. The purification was started with the fruit body of <span class="html-italic">G. lucidum</span>. Each step is indicated by one arrow.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Ganodermanontriol Inhibited Melanin Synthesis of B16F10 Cells
2.2. Ganodermanontriol Inhibited Tyrosinase and MITF Protein Expression of B16F10 Cells
2.3. Ganodermanontriol Inhibited cAMP Response Element-Binding Protein (CREB) Phosphorylation in B16F10 Cells
2.4. Effects of Ganodermanontriol on the Phosphorylation of p38, c-Jun N-Terminal Kinase (JNK), and Extracellular Signal-Regulated Kinase (ERK) Proteins in B16F10 Cells
2.5. Ganodermanontriol in G. lucidum
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Ganoderma lucidum and Ganodermanontriol Isolation
4.3. Cell Culture and Viability Assay
4.4. Melanin Content Assay of the B16F10 Cells
4.5. Western Blot Assay
4.6. High-Performance Liquid Chromatography Analysis and Liquid Chromatography–Electrospray Ionization–Mass Spectrometry
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Wortsman, J.; Plonka, P.M.; Schallreuter, K.U.; Paus, R.; Tobin, D.J. Hair follicle pigmentation. J. Investig. Dermatol. 2005, 124, 13–21. [Google Scholar] [CrossRef]
- Costin, G.E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 2007, 21, 976–994. [Google Scholar] [CrossRef]
- Slominski, A.; Zmijewski, M.A.; Pawelek, J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012, 25, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Videira, I.F.; Moura, D.F.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef]
- Slominski, R.M.; Zmijewski, M.A.; Slominski, A.T. The role of melanin pigment in melanoma. Exp. Dermatol. 2015, 24, 258–259. [Google Scholar] [CrossRef]
- Sánchez-Ferrer, Á.; Rodríguez-López, J.N.; García-Cánovas, F.; García-Carmona, F. Tyrosinase: A comprehensive review of its mechanism. Biochem. Biophys. Acta 1995, 1247, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Goff, P.S.; Castle, J.T.; Kohli, J.S.; Sviderskaya, E.V.; Bennett, D.C. Isolation, culture, and transfection of melanocytes. Curr. Protoc. 2023, 3, e774. [Google Scholar] [CrossRef] [PubMed]
- Luger, T.A.; Scholzen, T.; Grabbe, S. The role of alpha-melanocyte-stimulating hormone in cutaneous biology. J. Investig. Dermatol. Symp. Proc. 1997, 2, 87–93. [Google Scholar] [CrossRef]
- Shibahara, S.; Yasumoto, K.I.; Amae, S.; Udono, T.; Watanabe, K.I.; Saito, H.; Takeda, K. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res. 2000, 13, 98–102. [Google Scholar] [CrossRef]
- Wachtel-Galor, S.; Yuen, J.; Buswell, J.A.; Benzie, I.F.F. Ganoderma lucidum (Lingzhi or Reishi). In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Watchel-Galor, S., Eds.; CRC Press; Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 1–31. [Google Scholar]
- Boh, B.; Berovic, M.; Zhang, J.; Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annu. Rev. 2007, 13, 265–301. [Google Scholar] [CrossRef] [PubMed]
- Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.; Bisen, P.S. Ganoderma lucidum: A potent pharmacological macrofungus. Curr. Pharm. Biotechnol. 2009, 10, 717–742. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.C.; Tsai, M.L.; Chen, C.C.; Chang, S.J.; Tseng, C.H. Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia 2008, 166, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jedinak, A.; Sliva, D. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA. Biochem. Biophys. Res. Commun. 2011, 18, 325–329. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Yong, T.; Wang, Z.; Su, J.; Jiao, C.; Xie, Y.; Yang, B.B. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure-activity relationships. Oncotarget 2017, 8, 10071–10084. [Google Scholar] [CrossRef]
- Fujita, A.; Arisawa, M.; Saga, M.; Hayashi, T.; Morita, N. Two new lanostanoids from Ganoderma lucidum. J. Nat. Prod. 1986, 49, 1122–1125. [Google Scholar] [CrossRef]
- Serna-Arbeláez, M.S.; Florez-Sampedro, L.; Orozco, L.P.; Ramírez, K.; Galeano, E.; Zapata, W. Natural products with inhibitory activity against human immunodeficiency virus type 1. Adv. Virol. 2021, 2021, 5552088. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, H.-I.; Kim, J.-H.; Kwon, O.-C.; Son, E.-S.; Lee, C.-S.; Park, Y.-J. Effects of Ganodermanondiol, a New Melanogenesis Inhibitor from the Medicinal Mushroom Ganoderma lucidum. Int. J. Mol. Sci. 2016, 17, 1798. [Google Scholar] [CrossRef]
- Kim, A.; Yim, N.H.; Im, M.; Jung, Y.P.; Liang, C.; Cho, W.K.; Ma, J.Y. Ssanghwa-tang, an oriental herbal cocktail, exerts anti-melanogenic activity by suppression of the p38 MAPK and PKA signaling pathways in B16F10 cells. BMC Complement. Altern. Med. 2013, 13, 214. [Google Scholar] [CrossRef]
- Chan, C.F.; Huang, C.C.; Lee, M.Y.; Lin, Y.S. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 2014, 19, 13122–13135. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Kim, H.N.; Kim, Y.R.; Choi, W.Y.; Choi, Y.H.; Shin, H.K.; Choi, B.T. Partially purified components of Nardostachys chinensis suppress melanin synthesis through ERK and Akt signaling pathway with cAMP down-regulation in B16F10 cells. J. Ethnopharmacol. 2011, 137, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Ishida, K. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: Perspective of anti-pigmenting agents. Int. J. Mol. Sci. 2014, 15, 8293–8315. [Google Scholar] [CrossRef] [PubMed]
- Bickers, D.R.; Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Kute, T.; Setaluri, V. Regulation of tyrosinase-related protein-2 (TYRP2) in human melanocytes: Relationship to growth and morphology. Pigment Cell Res. 2001, 14, 132–139. [Google Scholar] [CrossRef]
- Huber, W.E.; Price, E.R.; Widlund, H.R.; Du, J.; Davis, I.J.; Wegner, M.; Fisher, D.E. A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 2003, 278, 45224–45230. [Google Scholar] [CrossRef] [PubMed]
- Buscà, R.; Ballotti, R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000, 13, 60–69. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.-Q.; Zhang, J.; Li, Z.-M.; Liu, H.-G.; Wang, Y.-Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst: A review. RSC Adv. 2020, 10, 42084–42097. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X.; et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules 2014, 19, 17478–17535. [Google Scholar] [CrossRef]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef]
- Wang, K.; Bao, L.; Xiong, W.; Ma, K.; Han, J.; Wang, W.; Yin, W.; Liu, H. Lanostane triterpenes from the Tibetan medicinalmushroom Ganoderma leucocontextum and their inhibitory effects on HMG-CoA reductase and α-glucosidase. J. Nat. Prod. 2015, 78, 1977–1989. [Google Scholar] [CrossRef]
- Angulo-Sanchez, L.T.; López-Peña, D.; Torres-Moreno, H.; Gutiérrez, A.; Gaitán-Hernández, R.; Esquedaa, M. Biosynthesis, gene expression, and pharmacological properties of triterpenoids of Ganoderma species (Agaricomycetes): A review. Int. J. Med. Mushrooms 2022, 24, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.-Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A Review of Ganoderma triterpenoids and their bioactivities. Biomolecules 2023, 13, 24. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Flow Rate | Solvent A | Solvent B |
---|---|---|---|
(mL/min) | Water Containing 0.2% Acetic Aid | Acetonitrile | |
0 | 0.8 | 80 | 20 |
20 | 0.8 | 65 | 35 |
30 | 0.8 | 60 | 40 |
40 | 0.8 | 50 | 50 |
50 | 0.8 | 40 | 60 |
55 | 0.8 | 30 | 70 |
60 | 0.8 | 25 | 75 |
70 | 0.8 | 15 | 85 |
80 | 0.8 | 5 | 95 |
90 | 0.8 | 0 | 100 |
100 | 0.8 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.-H.; Oh, Y.-L.; Shin, J.-H.; Park, Y.-J. The Anti-Melanogenic Effects of Ganodermanontriol from the Medicinal Mushroom Ganoderma lucidum through the Regulation of the CREB and MAPK Signaling Pathways in B16F10 Cells. Molecules 2024, 29, 3976. https://doi.org/10.3390/molecules29163976
Park C-H, Oh Y-L, Shin J-H, Park Y-J. The Anti-Melanogenic Effects of Ganodermanontriol from the Medicinal Mushroom Ganoderma lucidum through the Regulation of the CREB and MAPK Signaling Pathways in B16F10 Cells. Molecules. 2024; 29(16):3976. https://doi.org/10.3390/molecules29163976
Chicago/Turabian StylePark, Che-Hwon, Youn-Lee Oh, Ju-Hyeon Shin, and Young-Jin Park. 2024. "The Anti-Melanogenic Effects of Ganodermanontriol from the Medicinal Mushroom Ganoderma lucidum through the Regulation of the CREB and MAPK Signaling Pathways in B16F10 Cells" Molecules 29, no. 16: 3976. https://doi.org/10.3390/molecules29163976
APA StylePark, C.-H., Oh, Y.-L., Shin, J.-H., & Park, Y.-J. (2024). The Anti-Melanogenic Effects of Ganodermanontriol from the Medicinal Mushroom Ganoderma lucidum through the Regulation of the CREB and MAPK Signaling Pathways in B16F10 Cells. Molecules, 29(16), 3976. https://doi.org/10.3390/molecules29163976