Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals
<p>The molecular structures of dysprosium (<b>1</b>), erbium (<b>2</b>), and yttrium (<b>3</b>) complexes of the type (NacNac<sup>Mes</sup>)Ln (BIAN<sup>dipp</sup>). The ellipsoids of 50% probability. The hydrogen atoms are hidden.</p> "> Figure 2
<p>The molecular structures of dysprosium (<b>4</b>), erbium (<b>5</b>), and yttrium (<b>6</b>) complexes of the type (NacNac<sup>Mes</sup>)Ln(AP<sup>dipp</sup>)(THF). The ellipsoids of 50% probability. The hydrogen atoms are hidden.</p> "> Scheme 1
<p>Synthesis of complexes (NacNac<sup>Mes</sup>)Ln(BIAN<sup>dipp</sup>) <b>1</b>–<b>3</b>.</p> "> Scheme 2
<p>Synthesis of complexes (NacNac<sup>Mes</sup>)Ln(AP<sup>dipp</sup>)(THF) <b>4</b>–<b>6</b>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. X-ray Structures
3. Materials and Methods
3.1. General
3.2. Synthesis and Characterization
3.2.1. Synthesis of (NacNacMes)Ln(Biandipp) (Complexes 1–3)
3.2.2. Synthesis of (NacNacMes)Ln(APdipp) (4–6)
3.3. X-ray Diffraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bourget-Merle, L.; Lappert, M.F.; Severn, J.R. The Chemistry of β-Diketiminatometal Complexes. Chem. Rev. 2002, 102, 3031–3066. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Xiang, L.; Chen, Y. Rare earth metal complexes of β-diketiminato ligands bearing pendant nitrogen or oxygen donors. Coord. Chem. Rev. 2017, 346, 77–90. [Google Scholar] [CrossRef]
- Camp, C.; Arnold, J. On the non-innocence of “Nacnacs”: Ligand-based reactivity in β-diketiminate supported coordination compounds. Dalton Trans. 2016, 45, 14462–14498. [Google Scholar] [CrossRef]
- Hay, M.A.; Boskovic, C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chem. Eur. J. 2021, 27, 3608–3637. [Google Scholar] [CrossRef] [PubMed]
- Mouchel Dit Leguerrier, D.; Barré, R.; Bryden, M.; Imbert, D.; Philouze, C.; Jarjayes, O.; Luneau, D.; Molloy, J.K.; Thomas, F. Structural and spectroscopic investigations of nine-coordinate redox active lanthanide complexes with a pincer O,N,O ligand. Dalton Trans. 2020, 49, 8238–8246. [Google Scholar] [CrossRef] [PubMed]
- Lyubov, D.M.; Tolpygin, A.O.; Trifonov, A.A. Rare earth metal complexes as catalysts for ring-opening polymerization of cyclic esters. Coord. Chem. Rev. 2019, 392, 83–145. [Google Scholar] [CrossRef]
- Molloy, J.K.; Philouze, C.; Fedele, L.; Imbert, D.; Jarjayes, O.; Thomas, F. Seven-coordinate lanthanide complexes with a tripodal redox active ligand: Structural, electrochemical and spectroscopic investigations. Dalton Trans. 2018, 47, 10742–10751. [Google Scholar] [CrossRef]
- Broere, D.L.J.; Plessius, R.; van der Vlugt, J.I. New avenues for ligand-mediated processes—Expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. Chem. Soc. Rev. 2015, 44, 6886–6915. [Google Scholar] [CrossRef]
- van der Vlugt, J.I. Cooperative Catalysis with First-Row Late Transition Metals. Eur. J. Inorg. Chem. 2012, 2012, 363–375. [Google Scholar] [CrossRef]
- Trifonov, A.A. Reactions of Ytterbocenes with Diimines: Steric Manipulation of Reductive Reactivity. Eur. J. Inorg. Chem. 2007, 2007, 3151–3167. [Google Scholar] [CrossRef]
- Cador, O.; Le Guennic, B.; Pointillart, F. Electro-activity and magnetic switching in lanthanide-based single-molecule magnets. Inorg. Chem. Front. 2019, 6, 3398–3417. [Google Scholar] [CrossRef] [Green Version]
- Klementyeva, S.V.; Gritsan, N.P.; Khusniyarov, M.M.; Witt, A.; Dmitriev, A.A.; Suturina, E.A.; Hill, N.D.D.; Roemmele, T.L.; Gamer, M.T.; Boeré, R.T.; et al. The first lanthanide complexes with a redox-active sulphur diimide ligand: Synthesis and characterization of [LnCp*2(RN=)2S], Ln = Sm, Eu, Yb; R = SiMe3. Chem. Eur. J. 2017, 23, 1278–1290. [Google Scholar] [CrossRef] [PubMed]
- Demir, S.; Jeon, I.-R.; Long, J.R.; Harris, T.D. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev. 2015, 289–290, 149–176. [Google Scholar] [CrossRef] [Green Version]
- Pointillart, F.; le Guennic, B.; Cador, O.; Maury, O.; Ouahab, L. Lanthanide Ion and Tetrathiafulvalene-Based Ligand as a “Magic” Couple toward Luminescence, Single Molecule Magnets, and Magnetostructural Correlations. Acc. Chem. Res. 2015, 48, 2834–2842. [Google Scholar] [CrossRef] [PubMed]
- Baryshnikova, S.V.; Poddel’sky, A.I. Heteroligand Metal Complexes with Extended Redox Properties Based on Redox-Active Chelating Ligands of o-Quinone Type and Ferrocene. Molecules 2022, 27, 3928. [Google Scholar] [CrossRef]
- Abakumov, G.A.; Piskunov, A.V.; Cherkasov, V.K.; Fedushkin, I.L.; Ananikov, V.P. Organoelement chemistry: Promising growth areas and challenges. Russ. Chem. Rev. 2018, 87, 393–507. [Google Scholar] [CrossRef]
- Starikova, A.A.; Minkin, V.I. Adducts of transition metal complexes with redox-active ligands: The structure and spin-state-switching rearrangements. Russ. Chem. Rev. 2018, 87, 1049–1079. [Google Scholar] [CrossRef]
- Matson, E.M.; Franke, S.M.; Anderson, N.H.; Cook, T.D.; Fanwick, P.E.; Bart, S.C. Radical Reductive Elimination from Tetrabenzyluranium Mediated by an Iminoquinone Ligand. Organometallics 2014, 33, 1964–1971. [Google Scholar] [CrossRef]
- Luca, O.R.; Crabtree, R.H. Redox-active ligands in catalysis. Chem. Soc. Rev. 2013, 42, 1440–1459. [Google Scholar] [CrossRef]
- Lyaskovskyy, V.; de Bruin, B. Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2, 270–279. [Google Scholar] [CrossRef]
- Kaim, W.; Schwederski, B. Non-innocent ligands in bioinorganic chemistry-An overview. Coord. Chem. Rev. 2010, 254, 1580–1588. [Google Scholar] [CrossRef]
- Hill, N.J.; Vargas-Baca, I.; Cowley, A.H. Recent developments in the coordination chemistry of bis(imino)acenaphthene (BIAN) ligands with s- and p-block elements. Dalton Trans. 2009, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Pashanova, K.I.; Poddel’sky, A.I.; Piskunov, A.V. Complexes of “late” transition metals of the 3d row based on functionalized o-iminobenzoquinone type ligands: Interrelation of molecular and electronic structure, magnetic behaviour. Coord. Chem. Rev. 2022, 459, 214399. [Google Scholar] [CrossRef]
- Kaim, W.; Paretzki, A. Interacting metal and ligand based open shell systems: Challenges for experiment and theory. Coord. Chem. Rev. 2017, 344, 345–354. [Google Scholar] [CrossRef]
- Poddel’sky, A.I.; Cherkasov, V.K.; Abakumov, G.A. Transition Metal Complexes with Bulky 4,6-di-tert-butyl-N-aryl(alkyl)-o-Iminobenzoquinonato Ligands: Structure, EPR and Magnetism. Coord. Chem. Rev. 2009, 253, 291–324. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Zhao, Y.; Redshaw, C.; Fedushkin, I.L.; Wu, B.; Yang, X.-J. Main-group metal complexes of α-diimine ligands: Structure, bonding and reactivity. Dalton Trans. 2021, 50, 13634–13650. [Google Scholar] [CrossRef]
- Ershova, I.V.; Piskunov, A.V. Complexes of Group III Metals Based on o-Iminoquinone Ligands. Russ. J. Coord. Chem. 2020, 46, 154–177. [Google Scholar] [CrossRef]
- Chegerev, M.G.; Piskunov, A.V. Chemistry of Complexes of Group 14 Elements Based on Redox-Active Ligands of the o-Iminoquinone Type. Russ. J. Coord. Chem. 2018, 44, 258–271. [Google Scholar] [CrossRef]
- Abakumov, G.A.; Poddel’sky, A.I.; Grunova, E.V.; Cherkasov, V.K.; Fukin, G.K.; Kurskii, Y.A.; Abakumova, L.G. Reversible Binding of Dioxygen by a Non-transition-Metal Complex. Angew. Chem. Int. Ed. 2005, 44, 2767–2771. [Google Scholar] [CrossRef]
- Cherkasov, V.K.; Abakumov, G.A.; Grunova, E.V.; Poddel’sky, A.I.; Fukin, G.K.; Baranov, E.V.; Kurskii, Y.A.; Abakumova, L.G. Triphenylantimony(v) Catecholates and o-Amidophenolates: Reversible Binding of Molecular Oxygen. Chem. Eur. J. 2006, 12, 3916–3927. [Google Scholar] [CrossRef]
- Poddel’sky, A.I.; Kurskii, Y.A.; Piskunov, A.V.; Somov, N.V.; Cherkasov, V.K.; Abakumov, G.A. The triphenylantimony(V) o-amidophenolates with unsymmetrical N-aryl group for a reversible dioxygen binding. Appl. Organomet. Chem. 2011, 25, 180–189. [Google Scholar] [CrossRef]
- Fukin, G.K.; Baranov, E.V.; Poddel’sky, A.I.; Cherkasov, V.K.; Abakumov, G.A. Reversible Binding of Molecular Oxygen to Catecholate and Amidophenolate Complexes of SbV: Electronic and Steric Factors. ChemPhysChem 2012, 13, 3773–3776. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Khvoinova, N.M.; Skatova, A.A.; Fukin, G.K. Oxidative Addition of Phenylacetylene through C−H Bond Cleavage To Form the MgII–dpp-bian Complex: Molecular Structure of [Mg{dpp-bian(H)}(C≡CPh)(thf)2] and Its Diphenylketone Insertion Product [Mg(dpp-bian).−{OC(Ph2)C≡CPh}(thf)]. Angew. Chem. Int. Ed. 2003, 42, 5223–5226. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Eremenko, O.V.; Skatova, A.A.; Piskunov, A.V.; Fukin, G.K.; Ketkov, S.Y.; Irran, E.; Schumann, H. Binuclear Zinc Complexes with Radical-Anionic Diimine Ligands. Organometallics 2009, 28, 3863–3868. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Nikipelov, A.S.; Morozov, A.G.; Skatova, A.A.; Cherkasov, A.V.; Abakumov, G.A. Addition of Alkynes to a Gallium Bis-Amido Complex: Imitation of Transition-Metal-Based Catalytic Systems. Chem. Eur. J. 2012, 18, 255–266. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Moskalev, M.V.; Lukoyanov, A.N.; Tishkina, A.N.; Baranov, E.V.; Abakumov, G.A. Dialane with a Redox-Active Bis-amido Ligand: Unique Reactivity towards Alkynes. Chem. Eur. J. 2012, 18, 11264–11276. [Google Scholar] [CrossRef] [PubMed]
- Moskalev, M.V.; Yakub, A.M.; Morozov, A.G.; Baranov, E.V.; Kazarina, O.V.; Fedushkin, I.L. Hydroarylation of Alkynes with Phenols in the Presence of Gallium Complexes of a Labile N-Ligand: Synthesis of Chromenes. Eur. J. Org. Chem. 2015, 2015, 5781–5788. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Moskalev, M.V.; Baranov, E.V.; Abakumov, G.A. Addition of diphenylacetylene and methylvinylketone to aluminum complex of redox-active diimine ligand. J. Organomet. Chem. 2013, 747, 235–240. [Google Scholar] [CrossRef]
- Beattie, R.J.; Sutton, A.D.; Scott, B.L.; Clark, D.L.; Kiplinger, J.L.; Gordon, J.C. Lutetium functionalities supported by a sterically encumbered β-diketiminate ligand. J. Organomet. Chem. 2018, 857, 187–190. [Google Scholar] [CrossRef]
- Klementyeva, S.V.; Afonin, M.Y.; Bogomyakov, A.S.; Gamer, M.T.; Roesky, P.W.; Konchenko, S.N. Mono- and Dinuclear Rare earth Chlorides Ligated by a Mesityl-Substituted β-Diketiminate. Eur. J. Inorg. Chem. 2016, 2016, 3666–3672. [Google Scholar] [CrossRef]
- Bambirra, S.; Perazzolo, F.; Boot, S.J.; Sciarone, T.J.J.; Meetsma, A.; Hessen, B. Strategies for the Synthesis of Lanthanum Dialkyl Complexes with Monoanionic Ancillary Ligands. Organometallics 2008, 27, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.-J.; Yao, Y.-M.; Zhang, Y.; Shen, Q.; Yu, K.-B. Synthesis, Reactivity and Crystal Structure of β-Diketiminate Ytterbium Chlorides. Chin. J. Chem. 2004, 22, 187–190. [Google Scholar] [CrossRef]
- Lee, L.W.M.; Piers, W.E.; Elsegood, M.R.J.; Clegg, W.; Parvez, M. Synthesis of Dialkylscandium Complexes Supported by β-Diketiminato Ligands and Activation with Tris(pentafluorophenyl)borane. Organometallics 1999, 18, 2947–2949. [Google Scholar] [CrossRef]
- Yao, Y.; Xue, M.; Luo, Y.; Zhang, Z.; Jiao, R.; Zhang, Y.; Shen, Q.; Wong, W.; Yu, K.; Sun, J. Synthesis and characterization of β-diketiminate lanthanide complexes: The effect of the bulkiness of ancillary ligand on the reaction. J. Organomet. Chem. 2003, 678, 108–116. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Cui, D.; Zhang, X. β-Diketiminato Rare earth Metal Complexes. Structures, Catalysis, and Active Species for Highly cis-1,4-Selective Polymerization of Isoprene. Organometallics 2010, 29, 2186–2193. [Google Scholar] [CrossRef]
- Yao, Y.M.; Luo, Y.J.; Jiao, R.; Shen, Q.; Yu, K.B.; Weng, L.H. Synthesis of lanthanide chlorides supported by β-diketiminate ligands and molecular structures of L1SmCl2(THF)2 and L2SmCl2(THF)2 [L1=PhNC(Me)CHC(Me)NPh; L2=p-ClPhNC(Me)CHC(Me)NPh(2,6-Pri 2)]. Polyhedron 2003, 22, 441–446. [Google Scholar] [CrossRef]
- Drees, D.; Magull, J. Neue Komplexe der Lanthanoiden mit zweizähnigen Liganden. Die Strukturen von [(C17H17N2)GdBr2(thf)2] und [(C17H17N2)3Ln] (L = Sm, Gd). Z. Anorg. Allg. Chem. 1994, 620, 814–818. [Google Scholar] [CrossRef]
- Mironova, O.A.; Sukhikh, T.S.; Konchenko, S.N.; Pushkarevsky, N.A. Study of the Possibility of Using Salt Metathesis Reactions for the Synthesis of the Neodymium and Samarium β-Diketiminate Chalcogenide Complexes. Unexpected Reduction of Sm(III) to Sm(II). Russ. J. Coord. Chem. 2020, 46, 241–250. [Google Scholar] [CrossRef]
- Klementyeva, S.V.; Smolentsev, A.I.; Abramov, P.A.; Konchenko, S.N. Yttrium 3,5-di-tert-butyl-catecholates supported by 2,6-diisopropylphenyl substituted β-diketiminate. Inorg. Chem. Commun. 2017, 86, 154–158. [Google Scholar] [CrossRef]
- Klementyeva, S.V.; Petrov, P.A.; Starikova, A.A.; Konchenko, S.N. Erbium Mixed-Ligand β-Diketiminato-Diamido Complex: Unusual Structure of Diamide Ligand. ChemistrySelect 2018, 3, 1262–1267. [Google Scholar] [CrossRef]
- Mironova, O.A.; Ryadun, A.A.; Sukhikh, T.S.; Konchenko, S.N.; Pushkarevsky, N.A. Synthesis and luminescence studies of lanthanide complexes (Gd, Tb, Dy) with phenyl- and 2-pyridylthiolates supported by a bulky β-diketiminate ligand. Impact of the ligand environment on terbium(III) emission. New J. Chem. 2020, 44, 19769–19779. [Google Scholar] [CrossRef]
- Mironova, O.A.; Sukhikh, T.S.; Konchenko, S.N.; Pushkarevsky, N.A. Synthesis, structural and IR spectral studies of lanthanide (Nd, Sm) phenyl- and 2-pyridylthiolates supported by bulky 2,6-diisopropylphenyl substituted β-diketiminate ligand. Polyhedron 2019, 159, 337–344. [Google Scholar] [CrossRef]
- Mironova, O.A.; Sukhikh, T.S.; Konchenko, S.N.; Pushkarevsky, N.A. Structural Diversity and Multielectron Reduction Reactivity of Samarium(II) Iodido-β-diketiminate Complexes Dependent on Tetrahydrofuran Content. Inorg. Chem. 2022, 61, 15484–15498. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Maslova, O.V.; Lukoyanov, A.N.; Fukin, G.K. Anionic and neutral bis(diimine)lanthanide complexes. C. R. Chim. 2010, 13, 584–592. [Google Scholar] [CrossRef]
- Pan, C.L.; Chen, W.; Song, J. Lanthanide(II)−Alkali Sandwich Complexes with Cation−Arene π Interactions: Synthesis, Structure, and Solvent-Mediated Redox Transformations. Organometallics 2011, 30, 2252–2260. [Google Scholar] [CrossRef]
- Basalov, I.V.; Lyubov, D.M.; Fukin, G.K.; Cherkasov, A.V.; Trifonov, A.A. Reactivity of Ytterbium(II) Hydride. Redox Reactions: Ytterbium(II) vs Hydrido Ligand. Metathesis of the Yb–H Bond. Organometallics 2013, 32, 1507–1516. [Google Scholar] [CrossRef]
- Long, J.; Shestakov, B.G.; Liu, D.; Chibotaru, L.F.; Guari, Y.; Cherkasov, A.V.; Fukin, G.K.; Trifonov, A.A.; Larionova, J. An organolanthanide(iii) single-molecule magnet with an axial crystal-field: Influence of the Raman process over the slow relaxation. Chem. Commun. 2017, 53, 4706–4709. [Google Scholar] [CrossRef] [Green Version]
- Richeson, D.S.; Mitchell, J.F.; Theopold, K.H. Facile insertion of nitriles into paramagnetic chromium(III) alkyls. Crystal structure of a .mu.2-ketimino complex. J. Am. Chem. Soc. 1987, 109, 5868–5870. [Google Scholar] [CrossRef]
- Cirera, J.; Ruiz, E.; Alvarez, S. Continuous Shape Measures as a Stereochemical Tool in Organometallic Chemistry. Organometallics 2005, 24, 1556–1562. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Girera, J.; Al-emany, P.; Alvarez, S. SHAPE 2.1 Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools; SHAPE, Version 2.1; Universitat de Barcelona: Barcelona, Spain, 2013. [Google Scholar]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Lukoyanov, A.N.; Baranov, E.V. Lanthanum Complexes with a Diimine Ligand in Three Different Redox States. Inorg. Chem. 2018, 57, 4301–4309. [Google Scholar] [CrossRef]
- Vasudevan, K.; Cowley, A.H. Synthesis and structures of 1,2-bis(imino)acenaphthene (BIAN) lanthanide complexes that involve the transfer of zero, one, or two electrons. Chem. Commun. 2007, 33, 3464–3466. [Google Scholar] [CrossRef]
- Klementyeva, S.V.; Lukoyanov, A.N.; Afonin, M.Y.; Mörtel, M.; Smolentsev, A.I.; Abramov, P.A.; Starikova, A.A.; Khusniyarov, M.M.; Konchenko, S.N. Europium and ytterbium complexes with o-iminoquinonato ligands: Synthesis, structure, and magnetic behavior. Dalton Trans. 2019, 48, 3338–3348. [Google Scholar] [CrossRef]
- Baryshnikova, S.V.; Poddel’sky, A.I.; Bellan, E.V.; Smolyaninov, I.V.; Cherkasov, A.V.; Fukin, G.K.; Berberova, N.T.; Cherkasov, V.K.; Abakumov, G.A. Ferrocene-containing tin(IV) complexes based on o-benzoquinone and o-iminobenzoquinone ligands. Synthesis, molecular structure and electrochemical properties. Inorg. Chem. 2020, 59, 6774–6784. [Google Scholar] [CrossRef]
- Sun, X.; Chun, H.; Hildenbrand, K.; Bothe, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. o-Iminobenzosemiquinonato(1−) and o-Amidophenolato(2−) Complexes of Palladium(II) and Platinum(II): A Combined Experimental and Density Functional Theoretical Study. Inorg. Chem. 2002, 41, 4295–4303. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.N. Metrical oxidation states of 2-amidophenoxide and catecholate ligands: Structural signatures of metal-ligand π bonding in potentially noninnocent ligands. Inorg. Chem. 2012, 51, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Abakumov, G.A.; Druzhkov, N.O.; Kurskii, Y.A.; Shavyrin, A.S. NMR study of products of thermal transformation of substituted N-aryl-o-quinoneimines. Russ. Chem. Bull. 2003, 52, 712–717. [Google Scholar] [CrossRef]
- Paulovicova, A.; El-Ayaan, U.; Shibayama, K.; Morita, T.; Fukuda, Y. Mixed-Ligand Copper(II) Complexes with the Rigid Bidentate Bis(N-arylimino)acenaphthene Ligand: Synthesis, Spectroscopic-, and X-ray Structural Characterization. Eur. J. Inorg. Chem. 2001, 2001, 2641–2646. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Complex | 1 (Ln = Dy) | 2 (Ln = Er) | 3 (Ln = Y) |
---|---|---|---|
Bond, Å | |||
Ln1–N1 | 2.204(2) | 2.250(3) | 2.184(2) |
Ln1–N2 | 2.208(2) | 2.309(3) | 2.235(2) |
Ln1–N3 | 2.303(2) | 2.385(3) | 2.289(2) |
Ln1–N4 | 2.321(2) | 2.421(3) | 2.334(2) |
N1–C1 | 1.399(2) | 1.399(5) | 1.409(3) |
N2–C2 | 1.407(2) | 1.400(5) | 1.401(3) |
N3–C3 | 1.320(2) | 1.332(5) | 1.340(3) |
N4–C5 | 1.340(2) | 1.325(6) | 1.343(3) |
C1–C2 | 1.411(2) | 1.407(5) | 1.400(3) |
C3–C4 | 1.427(2) | 1.421(6) | 1.403(4) |
C4–C5 | 1.411(2) | 1.416(6) | 1.413(4) |
Angle, ° | |||
N1–Ln1–N2 | 84.47(5) | 81.26(12) | 83.65(7) |
N3–Ln1–N4 | 81.67(5) | 78.98(11) | 82.21(7) |
torsion N1–C1–C2–N2 | −0.06 | 1.14 | 1.71 |
torsion N3–C3–C5–N4 | −7.34 | 0.32 | 0.96 |
<(Ln1N1N2, N1C1C2N2) | 50.49 | 49.95 | 47.13 |
<(Ln1N3N4, N3C3C5N4) | 59.76 | 60.81 | 56.11 |
Complex | 4 (Ln = Dy) | 5 (Ln = Er) | 6 (Ln = Y) |
---|---|---|---|
Bond, Å | |||
Ln1–N1 | 2.301(3) | 2.279(3) | 2.284(2) |
Ln1–O1 | 2.110(3) | 2.090(2) | 2.091(2) |
Ln1–N2 | 2.329(4) | 2.273(3) | 2.290(3) |
Ln1–N3 | 2.278(3) | 2.274(3) | 2.285(3) |
Ln1–O2 | 2.411(4) | 2.367(3) | 2.383(2) |
O1–C1 | 1.352(5) | 1.350(4) | 1.343(3) |
N1–C2 | 1.386(6) | 1.395(4) | 1.404(4) |
N2–C3 | 1.331(6) | 1.321(5) | 1.324(4) |
N3–C5 | 1.338(6) | 1.326(5) | 1.332(4) |
C1–C2 | 1.435(6) | 1.417(5) | 1.432(4) |
C3–C4 | 1.410(7) | 1.405(6) | 1.411(5) |
C4–C5 | 1.404(8) | 1.409(6) | 1.401(5) |
Angle, ° | |||
N1–Ln1–O1 | 71.54(12) | 72.85(10) | 72.57(8) |
N2–Ln1–N3 | 79.09(14) | 81.69(11) | 80.77(10) |
O1–Ln1–O2 | 162.07(13) | 160.06(9) | 159.70(8) |
torsion O1–C1–C2–N1 | 0.19 | 2.23 | −2.26 |
torsion N2–C3–C5–N3 | 1.87 | 2.19 | −2.39 |
<(Ln1O1N1, O1C1C2N1) | 2.45 | 1.16 | 1.00 |
<(Ln1N2N3, N2C3C5N3) | 34.45 | 36.17 | 36.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klementyeva, S.V.; Sukhikh, T.S.; Abramov, P.A.; Poddel’sky, A.I. Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals. Molecules 2023, 28, 1994. https://doi.org/10.3390/molecules28041994
Klementyeva SV, Sukhikh TS, Abramov PA, Poddel’sky AI. Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals. Molecules. 2023; 28(4):1994. https://doi.org/10.3390/molecules28041994
Chicago/Turabian StyleKlementyeva, Svetlana V., Taisiya S. Sukhikh, Pavel A. Abramov, and Andrey I. Poddel’sky. 2023. "Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals" Molecules 28, no. 4: 1994. https://doi.org/10.3390/molecules28041994
APA StyleKlementyeva, S. V., Sukhikh, T. S., Abramov, P. A., & Poddel’sky, A. I. (2023). Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals. Molecules, 28(4), 1994. https://doi.org/10.3390/molecules28041994