A Facile One-Pot Preparation and Properties of Nanocellulose-Reinforced Ionic Conductive Hydrogels
<p>SEM image of the PVA-CNF hydrogel.</p> "> Figure 2
<p>Schematic diagram of the preparation process of the PVA/CNF hydrogel.</p> "> Figure 3
<p>FT-IR spectra of PVA/CNF-0 and PVA/CNF-1.5 dehydrated hydrogels.</p> "> Figure 4
<p>Tensile strength values and elongation at the break of hydrogels with different CNF contents.</p> "> Figure 5
<p>Mechanical properties of the hydrogel.: (<b>a</b>) initial hydrogel (<b>b</b>) stretched (<b>c</b>) knotted (<b>d</b>) stretched after knotted (<b>e</b>) twisted (<b>f</b>) stretched after twisted (<b>g</b>) hydrogel 200 g load demo.</p> "> Figure 6
<p>(<b>a</b>–<b>f</b>) Brightness change of LED lamp after hydrogel deformation. (<b>g</b>) Resistance change with the increase in tensile strain.</p> "> Figure 7
<p>Relative resistance curves of the hydrogel at 50% strain. “①” denotes original length and “②” denotes 1.5 times the original length.</p> "> Figure 8
<p>(<b>a</b>) Self-powered device schematic diagram. (<b>b</b>) Hydrogel as an electrolyte to form a self-powered device with a primary battery structure.</p> "> Figure 9
<p>Relative resistance change of hydrogels with different Al<sup>3+</sup> concentrations.</p> "> Figure 10
<p>Relative resistance of hydrogel strain sensors at varying finger angles (30°, 60°, and 90°).</p> "> Figure 11
<p>Variation of different pressure and relative resistance. “①” denotes release and “②” denotes press.</p> "> Figure 12
<p>The brightness change of the LED lamp after 24 h of freezing.</p> "> Figure 13
<p>Mass change pattern and change curve of hydrogel before and after drying.</p> "> Figure 14
<p>Electronic pen made from PVA-CNF hydrogel can unlock the desktop (<b>a</b>) and draw (<b>b</b>–<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Topography
2.2. Infrared Spectroscopy Analysis
2.3. Mechanical Property Analysis
2.4. Ionic Conductivity
2.5. Sensing Performance
2.6. Anti-Freezing and Moisture Performance
2.7. Touch Properties of Hydrogels
3. Experimental Section
3.1. Materials
3.2. Preparation of the PVA-CNF Hydrogels
3.3. Scanning Electron Microscope
3.4. Fourier Transform Infrared Spectroscopy
3.5. Mechanical Properties
3.6. Ionic Conductive Property
3.7. Anti-Freezing Test
3.8. Moisture Retention Property Measurements
3.9. Sensor Characterization and Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, H.; Xu, T.; Cai, C.; Liu, K.; Liu, W.; Zhang, M.; Du, H.; Si, C.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082. [Google Scholar] [CrossRef]
- Peng, Y.; Yan, B.; Li, Y.; Lan, J.; Shi, L.; Ran, R. Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J. Mater. Sci. 2020, 55, 1280–1291. [Google Scholar] [CrossRef]
- Elanjeitsenni, V.P.; Vadivu, K.S.; Prasanth, B.M. A review on thin films, conducting polymers as sensor devices. Mater. Res. Express 2022, 9, 022001. [Google Scholar] [CrossRef]
- Abubshait, H.A.; Saad, M.; Iqbal, S.; Abubshait, S.A.; Bahadur, A.; Raheel, M.; Alshammari, F.H.; Alwadai, N.; Alrbyawi, H.; Abourehab, M.A.S.; et al. Co-doped zinc oxide nanoparticles embedded in Polyvinylalcohol Hydrogel as solar light derived photocatalyst disinfection and removal of coloured pollutants. J. Mol. Struct. 2023, 1271, 134100. [Google Scholar] [CrossRef]
- Kuiper, J.P.; Puttlitz, C.M.; Rawlinson, J.E.; Dobbs, R.; Labus, K.M. A mechanical evaluation of polyvinyl alcohol hydrogels for temporomandibular joint disc replacement. Front. Phys. 2022, 10, 928579. [Google Scholar] [CrossRef]
- Miao, L.; Wang, X.; Li, S.; Tu, Y.; Hu, J.; Huang, Z.; Lin, S.; Gui, X. An Ultra-Stretchable Polyvinyl Alcohol Hydrogel Based on Tannic Acid Modified Aramid Nanofibers for Use as a Strain Sensor. Polymers 2022, 14, 3532. [Google Scholar] [CrossRef] [PubMed]
- Fitriani, F.; Aprilia, S.; Bilad, M.R.; Arahman, N.; Usman, A.; Huda, N.; Kobun, R. Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology. Polymers 2022, 14, 3006. [Google Scholar] [CrossRef]
- Kawady, N.A.; Gawad, E.A.E.; Mubark, A.E. Modified grafted nano cellulose based bio-sorbent for uranium (VI) adsorption with kinetics modeling and thermodynamics. Korean J. Chem. Eng 2022, 39, 408–422. [Google Scholar] [CrossRef]
- Wang, S.X.; Zeng, J.S.; Cheng, Z.; Yuan, Z.; Wang, X.J.; Wang, B. Precisely controlled preparation of uniform nanocrystalline cellulose via microfluidic technology. J. Ind. Eng. Chem. 2022, 106, 77–85. [Google Scholar] [CrossRef]
- Hosseinzadeh, R.; Aghili, N.; Mavvaji, M. Synthesis and characterization of nano-cellulose immobilized phenanthroline-copper (I) complex as a recyclable and efficient catalyst for preparation of diaryl ethers, N-aryl amides and N-aryl heterocycles. Polyhedron 2022, 213, 115631. [Google Scholar] [CrossRef]
- Cherian, R.M.; Tharayil, A.; Varghese, R.T.; Antony, T.; Kargarzadeh, H.; Chirayil, C.J.; Thomas, S. A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydr. Polym. 2022, 282, 119123. [Google Scholar] [CrossRef]
- Sanchez-Salvador, J.L.; Balea, A.; Negro, C.; Monte, M.C.; Blanco, A. Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in Papermaking. Nanomaterials 2022, 12, 790. [Google Scholar] [CrossRef]
- Yin, D.; Pan, Y.; Wang, Y.; Guo, Q.; Hu, S.Q.; Huang, J.T. Preparation and performance of electroless silver composite films based on micro-/nano-cellulose. Wood Sci. Technol. 2022, 56, 649–668. [Google Scholar] [CrossRef]
- Koga, H.; Saito, T.; Kitaoka, T.; Nogi, M.; Suganuma, K.; Isogai, A. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 2013, 14, 1160–1165. [Google Scholar] [CrossRef]
- Hamedi, M.M.; Hajian, A.; Fall, A.B.; Hakansson, K.; Salajkova, M.; Lundell, F.; Wagberg, L.; Berglund, L.A. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 2014, 8, 2467–2476. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.J.; Cao, S.; Shen, F.; Wang, Y.Y.; Ren, J.L.; Wang, X.H. Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels. Carbohydr. Polym. 2019, 224, 115147. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Jia, K.; Liu, C.; Wang, L.; Lin, G.; Huang, Y.; Liu, S.; Liu, X. A Solvent Regulated Hydrogen Bond Crosslinking Strategy to Prepare Robust Hydrogel Paint for Oil/Water Separation. Adv. Funct. Mater. 2021, 31, 2104701. [Google Scholar] [CrossRef]
- Yang, W.X.; Shao, B.W.; Liu, T.Y.; Zhang, Y.Y.; Huang, R.; Chen, F.; Qiang, F. Robust and Mechanically and Electrically Self-Healing Hydrogel for Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 8245–8257. [Google Scholar] [CrossRef]
- Li, M.F.; Tu, Q.Y.; Long, X. Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor. Int. J. Biol. Macromol. 2021, 166, 1526–1534. [Google Scholar] [CrossRef]
- Wei, Y.; Qian, Y.; Zhu, P. Nanocellulose-templated carbon nanotube enhanced conductive organohydrogel for highly-sensitive strain and temperature sensor. Cellulose 2022, 29, 3829–3844. [Google Scholar] [CrossRef]
- Li, M.; Chen, D.; Sun, X. An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor. Carbohydr. Polym. 2022, 284, 119199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; He, Z.; Yin, S. Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Compos. Part B Eng. 2021, 220, 108984. [Google Scholar] [CrossRef]
- Heidarian, P.; Kouzani, A.Z.; Kaynak, A. Double dynamic cellulose nanocomposite hydrogels with environmentally adaptive self-healing and pH-tuning properties. Cellulose 2020, 27, 1407–1422. [Google Scholar] [CrossRef]
- Yin, J.; Lu, C.; Li, C. A UV-filtering, environmentally stable, healable and recyclable ionic hydrogel towards multifunctional flexible strain sensor. Compos. Part B Eng. 2022, 230, 109528. [Google Scholar] [CrossRef]
Sample | PVA | CNF | AlCl3∙6 H2O | DMSO | CNT |
---|---|---|---|---|---|
PVA-CNF-0 | 3.6 g | 20 g (0.0 wt% CNF) | 1.2 g | 20 g | 0.18 g |
PVA-CNF-1 | 3.6 g | 20 g (0.1 wt% CNF) | 1.2 g | 20 g | 0.18 g |
PVA-CNF-1.5 | 3.6 g | 20 g (0.15 wt% CNF) | 1.2 g | 20 g | 0.18 g |
PVA-CNF-2 | 3.6 g | 20 g (0.2 wt% CNF) | 1.2 g | 20 g | 0.18 g |
PVA-CNF-2.5 | 3.6 g | 20 g (0.25 wt% CNF) | 1.2 g | 20 g | 0.18 g |
PVA-CNF-AlCl3-0.05 | 3.6 g | 20 g (0.2 wt% CNF) | 0.24 g | 20 g | 0.18 g |
PVA-CNF-AlCl3-0.075 | 3.6 g | 20 g (0.2 wt% CNF) | 0.36 g | 20 g | 0.18 g |
PVA-CNF-AlCl3-0.1 | 3.6 g | 20 g (0.2 wt% CNF) | 0.48 g | 20 g | 0.18 g |
PVA-CNF-AlCl3-0.125 | 3.6 g | 20 g (0.2 wt% CNF) | 0.6 g | 20 g | 0.18 g |
PVA-CNF | 3.6 g | 20 g (0.2 wt% CNF) | 0.6 g | 20 g(H2O) | 0.18 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wang, Y.; Wang, Y.; Yang, L. A Facile One-Pot Preparation and Properties of Nanocellulose-Reinforced Ionic Conductive Hydrogels. Molecules 2023, 28, 1301. https://doi.org/10.3390/molecules28031301
Huang X, Wang Y, Wang Y, Yang L. A Facile One-Pot Preparation and Properties of Nanocellulose-Reinforced Ionic Conductive Hydrogels. Molecules. 2023; 28(3):1301. https://doi.org/10.3390/molecules28031301
Chicago/Turabian StyleHuang, Xinmin, Yaning Wang, Yifei Wang, and Lianhe Yang. 2023. "A Facile One-Pot Preparation and Properties of Nanocellulose-Reinforced Ionic Conductive Hydrogels" Molecules 28, no. 3: 1301. https://doi.org/10.3390/molecules28031301
APA StyleHuang, X., Wang, Y., Wang, Y., & Yang, L. (2023). A Facile One-Pot Preparation and Properties of Nanocellulose-Reinforced Ionic Conductive Hydrogels. Molecules, 28(3), 1301. https://doi.org/10.3390/molecules28031301