Dielectric Spectroscopy Analysis of Liquid Crystals Recovered from End-of-Life Liquid Crystal Displays
<p>Dielectric spectra of a non-purified LC mixture at room temperature (20 °C), using 20 µm cells in (<b>a</b>) homeotropic and (<b>b</b>) homogeneous alignment, for two amplitudes of the oscillating voltage: 0.1 and 1 V.</p> "> Figure 2
<p>(<b>a</b>) Relative permittivity and (<b>b</b>) dielectric anisotropy of three non-purified LC mixtures as function of frequency. Measurements were taken at 1 V and room temperature (20 °C) with 20 µm cells in homogeneous and homeotropic alignments. NP-M stands for non-purified LCs mixtures.</p> "> Figure 3
<p>Dielectric permittivity of purified LCs doped with different concentrations of DNPs (0.05, 0.1, and 0.2 wt%): (<b>a</b>) real and (<b>b</b>) imaginary parts in homeotropic alignment, (<b>c</b>) real and (<b>d</b>) imaginary parts in homogeneous alignment, and (<b>e</b>) dielectric anisotropy. The spectra were measured under identical experimental conditions (P stands for purified LC mixtures; P + 0.05D, P + 0.1D, and P + 0.2D correspond to purified LC mixtures doped with 0.05, 0.1, and 0.2 wt% of DNPs, respectively).</p> "> Figure 4
<p>Real part of the complex conductivity in (<b>a</b>) homeotropic and (<b>b</b>) homogeneous alignments as a function of frequency of non-purified, purified, and DNP-doped (0.05 wt%) LC mixtures. The experimental data are represented by symbols and the red lines show the curves obtained applying Jonscher’s model. NP corresponds to non-purified; P is for purified; and P + 0.05D stands for LC mixtures doped with 0.05 wt% of DNPs.</p> "> Figure 5
<p>Variation of DC conductivity as a function of concentration of DNPs added to a purified LC mixture.</p> "> Figure 6
<p>(<b>a</b>) End-of-life LCD, (<b>b</b>) LCD display composition, (<b>c</b>) Non-purified and (<b>d</b>) purified LCs mixtures, and (<b>e</b>) Texture of purified LC mixtures observed under polarizing optical microscope (POM) Olympus BX60 (Olympus Corporation, Tokyo, Japan), presenting a nematic Schlieren texture. Conditions: LC sample sandwiched between un-aligned glass and coverslip; crossed polarizers; and room temperature.</p> "> Figure 7
<p>Textures of a purified LC mixture in (<b>a</b>) homogeneous and (<b>b</b>) homeotropic alignments. The micrographs are recorded by POM under cross-polarized condition at room temperature.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dielectric Measurements: Effect of the Amplitude of the Oscillating Voltage
2.2. Effect of Alignment on Dielectric Properties of Non-Purified LCs Mixtures
2.3. Dielectric Anisotropy of Purified LC Mixtures and Doped with DNPs
2.4. Frequency Dependence of Real Conductivity for Non-Purified, Purified and Nanoparticle Doped LC Mixtures
3. Materials and Methods
3.1. Materials
3.2. Purification and Characterization of LC Mixtures
3.3. Addition of DNPs to Purified LC Mixtures
3.4. Dielectric Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Collings, P.J.; Hird, M. Introduction to Liquid Crystals: Chemistry and Physics, 1st ed.; Taylor & Francis Ltd.: London, UK, 2017; ISBN 9781351989244. [Google Scholar]
- Yang, D.K.; Wu, S.T. Fundamentals of Liquid Crystal Devices, 1st ed.; John Wiley & Sons Ltd.: Chichester, UK, 2014; ISBN 9781118751992. [Google Scholar]
- Oswald, P.; Pieranski, P. Nematic and Cholesteric Liquid Crystals, 1st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy, 1st ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003; ISBN 9783540434078. [Google Scholar]
- Bulja, S.; Mirshekar-Syahkal, D.; James, R.; Day, S.E.; Fernandez, F.A. Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength. IEEE Trans. Microw. Theory Tech. 2010, 58, 3493–3501. [Google Scholar] [CrossRef]
- LCD Waste Recycling System-Circular Economy-Sustainable Environment-Innovations & Applications-Industrial Technology Research Institute. Available online: https://www.itri.org.tw/english/ListStyle.aspx?DisplayStyle=01_content&SiteID=1&MmmID=1037333532432522160&MGID=1037350654202216363 (accessed on 30 March 2021).
- Garbovskiy, Y. Switching between purification and contamination regimes governed by the ionic purity of nanoparticles dispersed in liquid crystals. Appl. Phys. Lett. 2016, 108, 121104. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Glushchenko, I. Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena. Crystals 2015, 5, 501–533. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Express 2021, 2, 012004. [Google Scholar] [CrossRef]
- Osipov, M.A.; Gorkunov, M.V.; Lagerwall, J.P.F.; Scalia, G. Nematic liquid crystals doped with nanoparticles: Phase behavior and dielectric properties. Ser. Soft Condens. Matter 2016, 1–2, 135–175. [Google Scholar] [CrossRef] [Green Version]
- Podgornov, F.V.; Wipf, R.; Stühn, B.; Ryzhkova, A.V.; Haase, W. Low-frequency relaxation modes in ferroelectric liquid crystal/gold nanoparticle dispersion: Impact of nanoparticle shape. Liq. Cryst. 2016, 43, 1536–1547. [Google Scholar] [CrossRef]
- Basu, R. Soft memory in a ferroelectric nanoparticle-doped liquid crystal. Phys. Rev. E 2014, 89, 022508. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.-Y.; Huang, S.-M.; Lee, W. Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles. J. Phys. D Appl. Phys. 2011, 44. [Google Scholar] [CrossRef]
- Yadav, G.; Katiyar, R.; Pathak, G.; Manohar, R. Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal. J. Theor. Appl. Phys. 2018, 12, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Prakash, J.; Khan, S.; Chauhan, S.; Biradar, A. Metal oxide-nanoparticles and liquid crystal composites: A review of recent progress. J. Mol. Liq. 2020, 297, 112052. [Google Scholar] [CrossRef]
- Porov, P.; Chandel, V.S. Carbon Nanotube Doped Liquid Crystals. J. Sci. Arts. 2016, 3, 249–264. [Google Scholar]
- Tomylko, S.; Yaroshchuk, O.; Kovalchuk, O.; Maschke, U.; Yamaguchi, R. Dielectric and Electro-Optical Properties of Liquid Crystals Doped with Diamond Nanoparticles. Mol. Cryst. Liq. Cryst. 2011, 541, 35–273. [Google Scholar] [CrossRef]
- Tomylko, S.; Yaroshchuk, O.; Kovalchuk, O.; Maschke, U.; Yamaguchi, R. Dielectric properties of nematic liquid crystal modified with diamond nanoparticles. Ukr. J. Phys. 2012, 57, 239–243. [Google Scholar]
- Agrahari, K.; Pathak, G.; Vimal, T.; Kurp, K.; Srivastava, A.; Manohar, R. Dielectric and spectroscopic study of nano-sized diamond dispersed ferroelectric liquid crystal. J. Mol. Liq. 2018, 264, 510–514. [Google Scholar] [CrossRef]
- Gaur, D.K.; Rastogi, A.; Trivedi, H.; Parmar, A.S.; Manohar, R.; Singh, S. Investigation of dielectric and optical properties of pure and diamond nanoparticles dispersed nematic liquid-crystal PCH5. Liq. Cryst. 2020, 48, 1–11. [Google Scholar] [CrossRef]
- Wilkinson, T.D.; Butt, H.; Montelongo, Y. Holographic Liquid Crystals for Nanophotonics. In Nanosciense and Technology; Quan, L., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–33. [Google Scholar]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2011, 7, 11–23. [Google Scholar] [CrossRef]
- Hadjichristov, G.B.; E Vlakhov, T.; Marinov, Y.G. Impedance and dielectric spectroscopy study of graphene-doped liquid crystal E7. J. Phys. Conf. Ser. 2019, 1186, 012032. [Google Scholar] [CrossRef]
- Perkowski, P.; Łada, D.; Ogrodnik, K.; Rutkowska, J.; Piecek, W.; Raszewski, Z. Technical aspects of dielectric spectroscopy measurements of liquid crystals. Opto-Electronics Rev. 2008, 16, 271–276. [Google Scholar] [CrossRef]
- Buivydas, M.; Gouda, F.; Andersson, G.; Lagerwall, S.T.; Stebler, B.; Bomelburg, J.; Heppke, G.; Gestblom, B. Collective and non-collective excitations in antiferroelectric and ferrielectric liquid crystals studied by dielectric relaxation spectroscopy and electro-optic measurements. Liq. Cryst. 1997, 23, 723–739. [Google Scholar] [CrossRef]
- Dhar, R. An impedance model to improve the higher frequency limit of electrical measurements on the capacitor cell made from electrodes of finite resistances. Indian J. Pure Appl. Phys. 2004, 42, 56–61. [Google Scholar]
- Wojciechowski, M.; Bąk, G.W.; Tykarska, M. Dielectric properties of LC mixture with induced antiferroelectric phase. Opto-Electronics Rev. 2008, 16, 257–261. [Google Scholar] [CrossRef]
- Perkowski, P. Dielectric spectroscopy of liquid crystals. Electrodes resistivity and connecting wires inductance influence on dielectric measurements. Opto-Electronics Rev. 2012, 20, 180–186. [Google Scholar] [CrossRef]
- Merck. Liquid Crystal Mixtures for Electro-Optic Displays; Merck KGaA: Darmstadt, Germany, 1994. [Google Scholar]
- Kelly, S.; Oneill, M. Liquid crystals for electro-optic applications. In Handbook of Advanced Electronic and Photonic Materials and Devices; Elsevier BV: Amsterdam, The Netherlands, 2001; Volume 7, pp. 1–66. [Google Scholar]
- Wang, W.; Rong, M.; Murphy, A.B.; Wu, Y.; Spencer, J.W.; Yan, J.D.; Fang, M.T.C. Thermophysical properties of carbon–argon and carbon–helium plasmas. J. Phys. D Appl. Phys. 2011, 44. [Google Scholar] [CrossRef]
- Jonscher, A.K. The ‘universal’ dielectric response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Prasad, S.K.; Kumar, M.V.; Shilpa, T.; Yelamaggad, C.V. Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal. RSC Adv. 2014, 4, 4453–4462. [Google Scholar] [CrossRef]
- Kamaliya, B.; Kumar, M.V.; Yelamaggad, C.V.; Prasad, S.K. Enhancement of electrical conductivity of a liquid crystal-gold nanoparticle composite by a gel network of aerosil particles. Appl. Phys. Lett. 2015, 106, 083110. [Google Scholar] [CrossRef]
- Kılıç, M.; Özdemir, Z.G.; Canli, N.Y.; Bulgurcuoğlu, A.E.; Köysal, O.; Yılmaz, Ö.; Okutan, M. The impact of NiPc additive and laser light dielectric properties of E63 nematic liquid crystal. Ferroelectrics 2016, 505, 102–113. [Google Scholar] [CrossRef]
- Patari, S.; Nath, A. Frequency Tuned Dielectric and Electrical Properties of a Thermotropic Liquid Crystal Compound 9OBA. Mater. Today: Proc. 2018, 5, 2105–2111. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Cook, G.B. Reply to comments by almond and west on Na b-alumina immittance data analysis. J. Electroanal. Chem. Interfacial Electrochem. 1985, 193, 57–74. [Google Scholar] [CrossRef]
- Porzi, G.; Concilio, C. Halogen—metal interconversion in 2,7-dibromonaphthalene and 2,7-dibromoanthracene. J. Organomet. Chem. 1977, 128, 95–98. [Google Scholar] [CrossRef]
- Moynihan, C.T. Analysis of electrical relaxation in ionically conducting glasses and melts. J. Non-Crystalline Solids 1996, 203, 359–363. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics II. Direct Current Characteristics. J. Chem. Phys. 1942, 10, 98–105. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polym. 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Dyre, J.C. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 1988, 64, 2456–2468. [Google Scholar] [CrossRef] [Green Version]
- Binet, C.; Allart, A.; Judeinstein, P.; Roussel, F. Anisotropic charge transport in ion-conductive photoresponsive polyethylene oxide–based mesomorphic materials. Phys. Rev. E 2017, 95, 012708. [Google Scholar] [CrossRef] [PubMed]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Maschke, U.; Moundoungou, I.; Fossi-Tabieguia, G.J. Method for Extracting the Liquid Crystals Contained in an Element that Comprises a First Support And A Second Support-Associated Device. Patent No. EP3111276 (A1), 1 April 2017. [Google Scholar]
- Perkowski, P. How to determine parameters of soft mode from dielectric spectroscopy performed using cells with ITO electrodes? Opto-Electronics Rev. 2011, 19, 76–82. [Google Scholar] [CrossRef]
- Belyaev, B.A.; Drokin, N.A.; Maslennikov, A.N. Impedance spectroscopy investigation of liquid crystals doped with ionic surfactants. Phys. Solid State 2014, 56, 1455–1462. [Google Scholar] [CrossRef]
Sample | σDC (S·m−1) | n | fc (Hz) | R2 | ||||
---|---|---|---|---|---|---|---|---|
HT | HG | HT | HG | HT | HG | HT | HG | |
NP | 5.8 × 10−8 ± 3.5 × 10−11 | 2.9 × 10−8 ± 1.6 × 10−11 | 1.799 ± 0.010 | 1.728 ± 0.01 | 11,642.5 ± 133.50 | 26,951.9 ± 213.23 | 0.9996 | 0.9998 |
P | 5.1 × 10−8 ± 2.7 × 10−12 | 2.5 × 10−9 ± 1.3 × 10−12 | 1.760 ± 0.011 | 1.750 ± 0.01 | 1798.4 ± 38.45 | 5719.6 ± 71.57 | 0.9993 | 0.9997 |
P + 0.05D | 1.3 × 10−10 ± 1.1 × 10−13 | 3.0 × 10−11 ± 2.5 × 10−14 | 1.605 ± 0.030 | 0.7890 ± 0.02 | 352.2 ± 16.66 | 56.1 ± 5.77 | 0.9961 | 0.9930 |
P + 0.1D | 1.1 × 10−10 ± 9.6 × 10−14 | 2.0 × 10−11 ± 2.4 × 10−14 | 1.425 ± 0.034 | 0.9078 ± 0.01 | 245.4 ± 14.64 | 43.4 ± 4.03 | 0.9944 | 0.9961 |
P + 0.2D | 1.01 × 10−10 ± 1.3 × 10−13 | 1.7 × 10−11 ± 1.4 × 10−14 | 1.515 ± 0.035 | 0.7822 ± 0.01 | 214.2 ± 14.27 | 21.1 ± 1.52 | 0.9938 | 0.9983 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera, A.; Binet, C.; Dubois, F.; Hébert, P.-A.; Supiot, P.; Foissac, C.; Maschke, U. Dielectric Spectroscopy Analysis of Liquid Crystals Recovered from End-of-Life Liquid Crystal Displays. Molecules 2021, 26, 2873. https://doi.org/10.3390/molecules26102873
Barrera A, Binet C, Dubois F, Hébert P-A, Supiot P, Foissac C, Maschke U. Dielectric Spectroscopy Analysis of Liquid Crystals Recovered from End-of-Life Liquid Crystal Displays. Molecules. 2021; 26(10):2873. https://doi.org/10.3390/molecules26102873
Chicago/Turabian StyleBarrera, Ana, Corinne Binet, Frédéric Dubois, Pierre-Alexandre Hébert, Philippe Supiot, Corinne Foissac, and Ulrich Maschke. 2021. "Dielectric Spectroscopy Analysis of Liquid Crystals Recovered from End-of-Life Liquid Crystal Displays" Molecules 26, no. 10: 2873. https://doi.org/10.3390/molecules26102873
APA StyleBarrera, A., Binet, C., Dubois, F., Hébert, P.-A., Supiot, P., Foissac, C., & Maschke, U. (2021). Dielectric Spectroscopy Analysis of Liquid Crystals Recovered from End-of-Life Liquid Crystal Displays. Molecules, 26(10), 2873. https://doi.org/10.3390/molecules26102873