Multimode Robust Lasing in a Dye-Doped Polymer Layer Embedded in a Wedge-Shaped Cholesteric
<p>The sketch of the CLC-DDPL wedge-shaped cell.</p> "> Figure 2
<p>Absorption and emission spectra of DDPL.</p> "> Figure 3
<p>Experimental setup for investigation of laser generation in CLC-DDPL wedge-shaped system, where (1) Laser, (2) <math display="inline"><semantics> <mi>λ</mi> </semantics></math>/2 wave plate, (3) Polarizing beam splitter, (4) Lens with 200 <math display="inline"><semantics> <mi>mm</mi> </semantics></math> focus, (5) CLC-DDPL sample, (6) Fibre, (7) Spectrometer.</p> "> Figure 4
<p>(<b>a</b>) The fluorescence spectrum of the laser dye dissolved in the polymer before and after polymerization. (<b>b</b>) Transmission spectrum from DDPL for left (LCP) and right (RCP) circularly polarized light.</p> "> Figure 5
<p>The experimentally recorded transmission spectra from CLC-DDPL wedge-shaped system corresponding to the 32.5 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>, 40.7 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> and 48.3 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> thicknesses of the cell, namely close to the edges and the intermediate part of the wedge cell (see <a href="#molecules-26-06089-f001" class="html-fig">Figure 1</a>).</p> "> Figure 6
<p>The experimentally recorded lasing generation from different thicknesses of the CLC-DDPL wedge-shaped cell. Measurements were carried out with constant 6 kW/pulse pumping energy.</p> "> Figure 7
<p>The wavelength of the generated laser peaks dependence on the thickness of the CLC-DDPL wedge-shaped cell.</p> "> Figure 8
<p>Lasing (Pulse laser), fluorescence (CW laser) and transmission spectra from the CLC-DDPL wedge-shaped cell.</p> "> Figure 9
<p>(<b>a</b>) The sketch of the CLC-IDL system considered in the theoretical simulations. (<b>b</b>) Distribution of CLC helices around the IDL showing a non-standard boundary conditions of CLC molecules.</p> "> Figure 10
<p>The defect modes when refractive index of defect layer is (<b>a</b>) n = 1.3, (<b>b</b>) n = 1.4, (<b>c</b>) n = 1.5, (<b>d</b>) n = 1.6 and (<b>e</b>) n = 1.68. Each panel has an inset above showing enlarged 6.1–6.4 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> region of CLC thicknesses. The CLC thickness changes from 4.3 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> to 9.5 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>. The thickness of defect layer is 30 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>. Panel (<b>f</b>) shows the transmission spectrum for defect thickness change from 30 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> to 35.8 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>, and for the CLC thickness 5.8 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>. An inset for the Panel (f) for 31 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>–33 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> is also presented.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Sample Preparation
2.2. Experimental Setup
3. Results and Discussion
4. Methods of Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Balamurugan, R.; Liu, J.H. A review of the fabrication of photonic band gap materials based on cholesteric liquid crystals. React. Funct. Polym. 2016, 105, 1–59. [Google Scholar] [CrossRef]
- Comoretto, D. Organic and Hybrid Photonic Crystals; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Vakhrushev, A. Theoretical Foundations and Application of Photonic Crystals; BoD–Books on Demand: London, UK, 2018. [Google Scholar]
- Chilaya, G. Cholesteric liquid crystals: Optics, electro-optics, and photo-optics. In Chirality in Liquid Crystals; Springer: New York, NY, USA, 2001; pp. 159–185. [Google Scholar]
- Rafayelyan, M.; Brasselet, E. Bragg-Berry mirrors: Reflective broadband q-plates. Opt. Lett. 2016, 41, 3972–3975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, H.; Fujii, A.; Yoshino, K.; Ozaki, M. Photonic band-gap modeling of cholesteric liquid crystals with periodic pitch modulations. Mol. Cryst. Liq. Cryst. 2008, 480, 231–240. [Google Scholar] [CrossRef]
- Abdulhalim, I. Omnidirectional reflection from anisotropic periodic dielectric stack. Opt. Commun. 2000, 174, 43–50. [Google Scholar] [CrossRef]
- Chen, J.Y.; Chen, L.W. Polarization-dependent filters based on chiral photonic structures with defects. J. Opt. A Pure Appl. Opt. 2005, 7, 558–566. [Google Scholar] [CrossRef]
- Ozaki, R.; Sanda, T.; Yoshida, H.; Matsuhisa, Y.; Ozaki, M.; Yoshino, K. Defect mode in cholesteric liquid crystal consisting of two helicoidal periodicities. Jpn. J. Appl. Phys. 2006, 45, 493–496. [Google Scholar] [CrossRef]
- Schmidtke, J.; Stille, W. Photonic defect modes in cholesteric liquid crystal films. Eur. Phys. J. 2003, 12, 553–564. [Google Scholar] [CrossRef]
- Gevorgyan, A.H.; Oganesyan, K.B. Defect modes of chiral photonic crystals with an isotropic defect. Opt. Spectrosc. 2011, 110, 952–960. [Google Scholar] [CrossRef]
- Gevorgyan, A.H.; Harutyunyan, M.Z. Chiral photonic crystals with an anisotropic defect layer. Phys. Rev. E 2007, 76, 031701. [Google Scholar] [CrossRef]
- Matsui, T.; Ozaki, M.; Yoshino, K. Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix. Phys. Rev. E 2004, 69, 061715. [Google Scholar]
- Alaverdyan, R.B.; Gevorgyan, A.H.; Gharagulyan, H.; Grigoryan, H. Experimental investigation of the polarization plane rotation of light in cholesteric liquid-crystalline film with an anisotropic defect layer. Mol. Cryst. Liq. Cryst. 2012, 559, 23–30. [Google Scholar] [CrossRef]
- Gao, S.; Zhai, Y.; Zhang, X.; Song, X.; Wang, J.; Drevensek-Olenik, I.; Rupp, R.A.; Xu, J. Coupling of Defect Modes in Cholesteric Liquid Crystals Separated by Isotropic Polymeric Layers. Polymers 2018, 10, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takanishi, Y.; Ohtsuka, Y.; Suzaki, G.; Nishimura, S.; Takezoe, H. Low threshold lasing from dye-doped cholesteric liquid crystal multi-layered structures. Opt. Express 2010, 18, 12909–12914. [Google Scholar] [CrossRef]
- Fuh, A.Y.G.; Lin, T.H.; Liu, J.H.; Wu, F.C. Lasing in chiral photonic liquid crystals and associated frequency tuning. Opt. Express 2004, 12, 1857–1863. [Google Scholar] [CrossRef]
- Chilaya, G.; Chanishvili, A.; Petriashvili, G.; Barberi, R.; De Santo, M.P.; Matranga, M.A. Different approaches of employing cholesteric liquid crystals in dye lasers. Mater. Sci. Appl. 2011, 2, 116–129. [Google Scholar] [CrossRef] [Green Version]
- Kopp, V.I.; Fan, B.; Vithana, H.K.M.; Genack, A.Z. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 1998, 23, 1707–1709. [Google Scholar] [CrossRef]
- Lin, J.D.; Hsieh, M.H.; Wei, G.J.; Mo, T.S.; Huang, S.Y.; Lee, C.R. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant. Opt. Express 2013, 21, 15765–15776. [Google Scholar] [CrossRef]
- Jeong, M.Y.; Choi, H.; Wu, J.W. Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell. Appl. Phys. Lett. 2008, 92, 051108. [Google Scholar] [CrossRef]
- Shankarling, G.S.; Jarag, K.J. Laser dyes. Resonance 2010, 15, 804–818. [Google Scholar] [CrossRef]
- Barberi, R.; Chilaya, G. Strategies for tunable cholesteric lasers. In Liquid Crystal Microlasers; Blinov, L.M., Bartolino, R., Eds.; Transworld Research Network: Trivandrum, India, 2010. [Google Scholar]
- Jeong, M.Y.; Wu, J.W. Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals. Opt. Express 2010, 18, 24221–24228. [Google Scholar] [CrossRef] [Green Version]
- Gevorgyan, A.H.; Harutyunyan, M.Z.; Matinyan, G.K.; Oganesyan, K.B.; Rostovtsev, Y.V.; Kurizki, G.; Scully, M. Absorption and emission in defective cholesteric liquid crystal cells. Laser Phys. Lett. 2016, 13, 046002. [Google Scholar] [CrossRef]
- Ortega, J.; Folcia, C.L.; Etxebarria, J. Upgrading the performance of cholesteric liquid crystal lasers: Improvement margins and limitations. Materials 2018, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Yuelan, L.; Yang, Y.; Wang, Y.; Wang, L.; Ma, J.; Zhang, L.; Sun, W.; Liu, Y. Tunable liquid-crystal microshell-laser based on whispering-gallery modes and photonic band-gap mode lasing. Opt. Express 2018, 26, 3277–3285. [Google Scholar]
- Shibaev, P.V.; Kopp, V.I.; Genack, A.Z. Photonic materials based on mixtures of cholesteric liquid crystals with polymers. J. Phys. Chem. B 2003, 107, 6961–6964. [Google Scholar] [CrossRef]
- Rafayelyan, M.S.; Gharagulyan, H.; Sarukhanyan, T.M.; Gevorgyan, A.H.; Hakobyan, R.S.; Alaverdyan, R.B. Light energy accumulation by cholesteric liquid crystal layer at oblique incidence. Liq. Cryst. 2019, 46, 1079–1090. [Google Scholar] [CrossRef]
- Sarukhanyan, T.M.; Gharagulyan, H.; Sargsyan, M.L.; Grigoryan, H.; Hakobyan, R.; Gevorgyan, A.H.; Alaverdyan, R.B. Lasing peculiarities in cholesteric multilayer structure with dye-doped polymer film depending on the concentration of laser dye and pumping energy. Mol. Cryst. Liq. Cryst. 2021, 713, 15–25. [Google Scholar] [CrossRef]
- Rafayelyan, M.; Tkachenko, G.; Brasselet, E. Reflective spin–orbit geometric phase from chiral anisotropic optical media. Phys. Rev. Lett. 2016, 116, 253902. [Google Scholar] [CrossRef] [Green Version]
- Galstian, T. LC Modulator Devices Based on Non-Uniform Electrode Structures. 20170218686. 2017. Available online: https://patentimages.storage.googleapis.com/cf/02/59/b5c423ec1f5b7b/WO2016026055A1.pdf (accessed on 29 August 2021).
- Kreuzer, F.-H.; Andrejewski, D.; Haas, W.; Haberle, N.; Riepl, G.; Spes, P. Cyclic siloxanes with mesogenic side groups. Mol. Cryst. Liq. Cryst. 1991, 199, 345–378. [Google Scholar] [CrossRef]
- Rafayelyan, M.; Agez, G.; Brasselet, E. Ultrabroadband gradient-pitch Bragg-Berry mirrors. Phys. Rev. A 2017, 96, 043862. [Google Scholar] [CrossRef] [Green Version]
- Sarukhanyan, T.M. The Polarization of Laser Generation from the Cholesteric Liquid Crystal–Dye-Doped Polymer Layer–Cholesteric Liquid Crystal System. J. Contemp. Phys. (Armen. Acad. Sci.) 2021, 56, 103–108. [Google Scholar] [CrossRef]
- Berreman, D.W. Optics in stratified and anisotropic media: 4 × 4-matrix formulation. Josa 1972, 62, 502–510. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarukhanyan, T.M.; Gharagulyan, H.; Rafayelyan, M.S.; Golik, S.S.; Gevorgyan, A.H.; Alaverdyan, R.B. Multimode Robust Lasing in a Dye-Doped Polymer Layer Embedded in a Wedge-Shaped Cholesteric. Molecules 2021, 26, 6089. https://doi.org/10.3390/molecules26196089
Sarukhanyan TM, Gharagulyan H, Rafayelyan MS, Golik SS, Gevorgyan AH, Alaverdyan RB. Multimode Robust Lasing in a Dye-Doped Polymer Layer Embedded in a Wedge-Shaped Cholesteric. Molecules. 2021; 26(19):6089. https://doi.org/10.3390/molecules26196089
Chicago/Turabian StyleSarukhanyan, Tatevik M., Hermine Gharagulyan, Mushegh S. Rafayelyan, Sergey S. Golik, Ashot H. Gevorgyan, and Roman B. Alaverdyan. 2021. "Multimode Robust Lasing in a Dye-Doped Polymer Layer Embedded in a Wedge-Shaped Cholesteric" Molecules 26, no. 19: 6089. https://doi.org/10.3390/molecules26196089
APA StyleSarukhanyan, T. M., Gharagulyan, H., Rafayelyan, M. S., Golik, S. S., Gevorgyan, A. H., & Alaverdyan, R. B. (2021). Multimode Robust Lasing in a Dye-Doped Polymer Layer Embedded in a Wedge-Shaped Cholesteric. Molecules, 26(19), 6089. https://doi.org/10.3390/molecules26196089