Identification of Candidate Lung Function-Related Plasma Proteins to Pinpoint Drug Targets for Common Pulmonary Diseases: A Comprehensive Multi-Omics Integration Analysis
<p>Study Workflow. We conducted a comprehensive omics integration analysis under a cutting-edge analytic framework by sequential using PWAS, MR, and COLOC to identify the plasma proteins associated with lung function indices and explore the potential mediating mechanism underlying the effect of proteins on lung diseases. We first identified protein-index associations by PWAS, followed by enrichment analysis and PPI analysis to reveal the underlying biological processes and pathways. Then, we performed MR and COLOC to further identify proteins causally associated with lung function indices followed by replication analysis. Mediation analysis was further performed to investigate the mediating role of these indices regarding the association between proteins and common lung disorders. Finally, we prioritized the potential drug targets. Abbreviations: pQTL, protein quantitative trait loci; GWAS, genome-wide association studies; PWAS, proteome-wide association study; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MR mendelian randomization; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; PEF, peak expiratory flow; COPD, chronic obstructive pulmonary disease; PPI, protein–protein interaction network.</p> "> Figure 2
<p>Results of PWAS and subsequent enrichment analysis. We identified a total of 210 protein-index associations and subsequently performed a gene set enrichment analysis using Metascape, with the top 20 significant GO terms or top 10 KEGG pathways displayed. (<b>a</b>) Manhattan plot for PWAS analysis of four lung function indices; (<b>b</b>) Bubble chart for GO enrichment analysis; (<b>c</b>) Bubble chart for KEGG enrichment analysis; (<b>d</b>) PPI with genes enriched in significant pathways. Abbreviations: FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; PEF, peak expiratory flow; PPI, Protein–protein interaction network.</p> "> Figure 3
<p>Results of the two-sample MR analysis. We used the ARIC data and deCODE data for discovery and replication analysis, respectively. The forest plot is utilized to illustrate the β values, <span class="html-italic">p</span>-values, and confidence intervals of mendelian randomization. FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; PEF, peak expiratory flow; IVW, inverse variance weighted method.</p> "> Figure 4
<p>Mediation effects of protein on lung diseases via lung function indices. Mediation analyses to quantify the effects of three proteins on lung diseases via lung function indices. (<b>a</b>) EFEMP1 effect on COPD mediated by FEV1/FVC; (<b>b</b>) MARK3 effect on asthma mediated by FEV1/FVC; (<b>c</b>) NPNT effect on COPD mediated by FEV1/FVC. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>β</mi> </mrow> <mrow> <mi>E</mi> <mi>M</mi> </mrow> </msub> </mrow> </semantics></math> represents the effect of exposure on mediator, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>β</mi> </mrow> <mrow> <mi>M</mi> <mi>O</mi> </mrow> </msub> </mrow> </semantics></math> represents the effect of mediator on outcome, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>β</mi> </mrow> <mrow> <mi>E</mi> <mi>O</mi> </mrow> </msub> </mrow> </semantics></math> represents the total effect of exposure on outcome. IV, instrumental variable; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; COPD, chronic obstructive pulmonary disease.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. GWAS Data Source
2.2. Human Plasma pQTL Data
2.3. Statistical Analysis
2.3.1. Proteome-Wide Association Study (PWAS)
2.3.2. Enrichment Analysis and Protein–Protein Interaction Network
2.3.3. Mendelian Randomization (MR) Analysis
2.3.4. Bayesian Colocalization Analysis
2.3.5. Mediation Analysis
2.3.6. Candidate Druggable Targets
3. Results
3.1. PWAS Identified 210 Protein-Index Associations
3.2. MR and COLOC Confirmed 59 Protein-Index Causal Relationships
3.3. Forty-Two Protein-Index Causal Relationships Were Replicated
3.4. Mediation Analysis Highlighted 3 Potential Pathways
3.5. Drug-Gene Interaction and Molecular Docking Discovery
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvestre, O.M.; Nadruz, W., Jr.; Querejeta Roca, G.; Claggett, B.; Solomon, S.D.; Mirabelli, M.C.; London, S.J.; Loehr, L.R.; Shah, A.M. Declining Lung Function and Cardiovascular Risk: The ARIC Study. J. Am. Coll. Cardiol. 2018, 72, 1109–1122. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Chen, N.; Mirabelli, M.C.; Lakshminarayan, K.; Knopman, D.S.; Vossel, K.A.; Gottesman, R.F.; Mosley, T.H.; Alonso, A. Impaired Lung Function, Lung Disease, and Risk of Incident Dementia. Am. J. Respir. Crit. Care Med. 2019, 199, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Marcon, A.; Locatelli, F.; Dharmage, S.C.; Svanes, C.; Heinrich, J.; Leynaert, B.; Burney, P.; Corsico, A.; Caliskan, G.; Calciano, L.; et al. The coexistence of asthma and COPD: Risk factors, clinical history and lung function trajectories. Eur. Respir. J. 2021, 58, 33863744. [Google Scholar] [CrossRef]
- Dharmage, S.C.; Bui, D.S.; Walters, E.H.; Lowe, A.J.; Thompson, B.; Bowatte, G.; Thomas, P.; Garcia-Aymerich, J.; Jarvis, D.; Hamilton, G.S.; et al. Lifetime spirometry patterns of obstruction and restriction, and their risk factors and outcomes: A prospective cohort study. Lancet Respir. Med. 2023, 11, 273–282. [Google Scholar] [CrossRef]
- Agusti, A.; Noell, G.; Brugada, J.; Faner, R. Lung function in early adulthood and health in later life: A transgenerational cohort analysis. Lancet Respir. Med. 2017, 5, 935–945. [Google Scholar] [CrossRef]
- Vasquez, M.M.; Zhou, M.; Hu, C.; Martinez, F.D.; Guerra, S. Low Lung Function in Young Adult Life Is Associated with Early Mortality. Am. J. Respir. Crit. Care Med. 2017, 195, 1399–1401. [Google Scholar] [CrossRef] [PubMed]
- Joo, M.J.; Au, D.H.; Lee, T.A. Use of spirometry in the diagnosis of chronic obstructive pulmonary disease and efforts to improve quality of care. Transl. Res. 2009, 154, 103–110. [Google Scholar] [CrossRef]
- Bailey, K.L. The importance of the assessment of pulmonary function in COPD. Med. Clin. N. Am. 2012, 96, 745–752. [Google Scholar] [CrossRef]
- Majellano, E.C.; Clark, V.L.; Winter, N.A.; Gibson, P.G.; McDonald, V.M. Approaches to the assessment of severe asthma: Barriers and strategies. J. Asthma Allergy 2019, 12, 235–251. [Google Scholar] [CrossRef]
- Shrine, N.; Guyatt, A.L.; Erzurumluoglu, A.M.; Jackson, V.E.; Hobbs, B.D.; Melbourne, C.A.; Batini, C.; Fawcett, K.A.; Song, K.; Sakornsakolpat, P.; et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 2019, 51, 481–493. [Google Scholar] [CrossRef]
- Wyss, A.B.; Sofer, T.; Lee, M.K.; Terzikhan, N.; Nguyen, J.N.; Lahousse, L.; Latourelle, J.C.; Smith, A.V.; Bartz, T.M.; Feitosa, M.F.; et al. Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function. Nat. Commun. 2018, 9, 2976. [Google Scholar] [CrossRef] [PubMed]
- Al-Nesf, M.A.Y.; Abdesselem, H.B.; Bensmail, I.; Ibrahim, S.; Saeed, W.A.H.; Mohammed, S.S.I.; Razok, A.; Alhussain, H.; Aly, R.M.A.; Al Maslamani, M.; et al. Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications. Nat. Commun. 2022, 13, 946. [Google Scholar] [CrossRef]
- Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 2017, 16, 19–34. [Google Scholar] [CrossRef]
- Sunyer, J.; Pistelli, R.; Plana, E.; Andreani, M.; Baldari, F.; Kolz, M.; Koenig, W.; Pekkanen, J.; Peters, A.; Forastiere, F. Systemic inflammation, genetic susceptibility and lung function. Eur. Respir. J. 2008, 32, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Keefe, J.; Yao, C.; Hwang, S.J.; Courchesne, P.; Lee, G.Y.; Dupuis, J.; Mizgerd, J.P.; O’Connor, G.; Washko, G.R.; Cho, M.H.; et al. An Integrative Genomic Strategy Identifies sRAGE as a Causal and Protective Biomarker of Lung Function. Chest 2022, 161, 76–84. [Google Scholar] [CrossRef]
- Engstrom, G.; Lind, P.; Hedblad, B.; Wollmer, P.; Stavenow, L.; Janzon, L.; Lindgarde, F. Lung function and cardiovascular risk: Relationship with inflammation-sensitive plasma proteins. Circulation 2002, 106, 2555–2560. [Google Scholar] [CrossRef]
- Dahl, M.; Tybjaerg-Hansen, A.; Vestbo, J.; Lange, P.; Nordestgaard, B.G. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001, 164, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Wingo, T.S.; Liu, Y.; Gerasimov, E.S.; Gockley, J.; Logsdon, B.A.; Duong, D.M.; Dammer, E.B.; Lori, A.; Kim, P.J.; Ressler, K.J.; et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat. Neurosci. 2021, 24, 810–817. [Google Scholar] [CrossRef]
- Zhao, H.; Rasheed, H.; Nost, T.H.; Cho, Y.; Liu, Y.; Bhatta, L.; Bhattacharya, A.; Global Biobank Meta-analysis, I.; Hemani, G.; Davey Smith, G.; et al. Proteome-wide Mendelian randomization in global biobank meta-analysis reveals multi-ancestry drug targets for common diseases. Cell Genom. 2022, 2, 100195. [Google Scholar] [CrossRef]
- Chen, L.; Peters, J.E.; Prins, B.; Persyn, E.; Traylor, M.; Surendran, P.; Karthikeyan, S.; Yonova-Doing, E.; Di Angelantonio, E.; Roberts, D.J.; et al. Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke. Nat. Commun. 2022, 13, 6143. [Google Scholar] [CrossRef]
- Rydell, A.; Nowak, C.; Janson, C.; Lisspers, K.; Stallberg, B.; Iggman, D.; Leppert, J.; Hedberg, P.; Sundstrom, J.; Ingelsson, E.; et al. Plasma proteomics and lung function in four community-based cohorts. Respir. Med. 2021, 176, 106282. [Google Scholar] [CrossRef]
- Kim, W.; Prokopenko, D.; Sakornsakolpat, P.; Hobbs, B.D.; Lutz, S.M.; Hokanson, J.E.; Wain, L.V.; Melbourne, C.A.; Shrine, N.; Tobin, M.D.; et al. Genome-Wide Gene-by-Smoking Interaction Study of Chronic Obstructive Pulmonary Disease. Am. J. Epidemiol. 2021, 190, 875–885. [Google Scholar] [CrossRef]
- Donertas, H.M.; Fabian, D.K.; Valenzuela, M.F.; Partridge, L.; Thornton, J.M. Common genetic associations between age-related diseases. Nat. Aging 2021, 1, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Pietzner, M.; Wheeler, E.; Carrasco-Zanini, J.; Cortes, A.; Koprulu, M.; Worheide, M.A.; Oerton, E.; Cook, J.; Stewart, I.D.; Kerrison, N.D.; et al. Mapping the proteo-genomic convergence of human diseases. Science 2021, 374, eabj1541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dutta, D.; Kottgen, A.; Tin, A.; Schlosser, P.; Grams, M.E.; Harvey, B.; Consortium, C.K.; Yu, B.; Boerwinkle, E.; et al. Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nat. Genet. 2022, 54, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Ferkingstad, E.; Sulem, P.; Atlason, B.A.; Sveinbjornsson, G.; Magnusson, M.I.; Styrmisdottir, E.L.; Gunnarsdottir, K.; Helgason, A.; Oddsson, A.; Halldorsson, B.V.; et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 2021, 53, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Gusev, A.; Ko, A.; Shi, H.; Bhatia, G.; Chung, W.; Penninx, B.W.; Jansen, R.; de Geus, E.J.; Boomsma, D.I.; Wright, F.A.; et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 2016, 48, 245–252. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Timpson, N.J.; Higgins, J.P.T.; Dimou, N.; Langenberg, C.; et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 2021, 375, n2233. [Google Scholar] [CrossRef]
- Stock, J.H.; Wright, J.H.; Yogo, M. A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments. J. Bus. Econ. Stat. 2002, 20, 518–529. [Google Scholar] [CrossRef]
- Giambartolomei, C.; Vukcevic, D.; Schadt, E.E.; Franke, L.; Hingorani, A.D.; Wallace, C.; Plagnol, V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014, 10, e1004383. [Google Scholar] [CrossRef]
- Carter, A.R.; Sanderson, E.; Hammerton, G.; Richmond, R.C.; Davey Smith, G.; Heron, J.; Taylor, A.E.; Davies, N.M.; Howe, L.D. Mendelian randomisation for mediation analysis: Current methods and challenges for implementation. Eur. J. Epidemiol. 2021, 36, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Freshour, S.L.; Kiwala, S.; Cotto, K.C.; Coffman, A.C.; McMichael, J.F.; Song, J.J.; Griffith, M.; Griffith, O.L.; Wagner, A.H. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021, 49, D1144–D1151. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Tabei, Y.; Nakajima, Y. IL-1beta-activated PI3K/AKT and MEK/ERK pathways coordinately promote induction of partial epithelial-mesenchymal transition. Cell Commun. Signal. 2024, 22, 392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fan, Y.; Qin, L.; Fang, X.; Zhang, C.; Yue, J.; Bai, W.; Wang, G.; Chen, Z.; Renz, H.; et al. IL-1beta augments TGF-beta inducing epithelial-mesenchymal transition of epithelial cells and associates with poor pulmonary function improvement in neutrophilic asthmatics. Respir. Res. 2021, 22, 216. [Google Scholar] [CrossRef]
- Zeng, L.H.; Barkat, M.Q.; Syed, S.K.; Shah, S.; Abbas, G.; Xu, C.; Mahdy, A.; Hussain, N.; Hussain, L.; Majeed, A.; et al. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022, 11, 1774. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, L.; Zhuo, X.; Yang, C.; Zhang, Y. Hedgehog Signaling Pathway in Fibrosis and Targeted Therapies. Biomolecules 2024, 14, 1485. [Google Scholar] [CrossRef]
- Foronjy, R.; Imai, K.; Shiomi, T.; Mercer, B.; Sklepkiewicz, P.; Thankachen, J.; Bodine, P.; D’Armiento, J. The divergent roles of secreted frizzled related protein-1 (SFRP1) in lung morphogenesis and emphysema. Am. J. Pathol. 2010, 177, 598–607. [Google Scholar] [CrossRef]
- Aros, C.J.; Pantoja, C.J.; Gomperts, B.N. Wnt signaling in lung development, regeneration, and disease progression. Commun. Biol. 2021, 4, 601. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Li, F.; Luo, M.; Wei, J.; Liu, X. Distinct Roles of Wnt/beta-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Mediat. Inflamm. 2017, 2017, 3520581. [Google Scholar] [CrossRef] [PubMed]
- Tsukui, T.; Sun, K.H.; Wetter, J.B.; Wilson-Kanamori, J.R.; Hazelwood, L.A.; Henderson, N.C.; Adams, T.S.; Schupp, J.C.; Poli, S.D.; Rosas, I.O.; et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 2020, 11, 1920. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Morimura, N.; Tezuka, Y.; Watanabe, N.; Yasuda, M.; Miyatani, S.; Hozumi, N.; Tezuka Ki, K. Molecular cloning of POEM: A novel adhesion molecule that interacts with alpha8beta1 integrin. J. Biol. Chem. 2001, 276, 42172–42181. [Google Scholar] [CrossRef]
- Brandenberger, R.; Schmidt, A.; Linton, J.; Wang, D.; Backus, C.; Denda, S.; Muller, U.; Reichardt, L.F. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J. Cell Biol. 2001, 154, 447–458. [Google Scholar] [CrossRef]
- Livingstone, I.; Uversky, V.N.; Furniss, D.; Wiberg, A. The Pathophysiological Significance of Fibulin-3. Biomolecules 2020, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Giltay, R.; Timpl, R.; Kostka, G. Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix Biol. 1999, 18, 469–480. [Google Scholar] [CrossRef]
- McNeill, J.N.; Lee, D.H.; Hwang, S.J.; Courchesne, P.; Yao, C.; Huan, T.; Joehanes, R.; O’Connor, G.T.; Ho, J.E.; Levy, D. Association of 71 cardiovascular disease-related plasma proteins with pulmonary function in the community. PLoS ONE 2022, 17, e0266523. [Google Scholar] [CrossRef]
- Njalsson, R. Glutathione synthetase deficiency. Cell Mol. Life Sci. 2005, 62, 1938–1945. [Google Scholar] [CrossRef]
- Pan, T.C.; Zhang, R.Z.; Markova, D.; Arita, M.; Zhang, Y.; Bogdanovich, S.; Khurana, T.S.; Bonnemann, C.G.; Birk, D.E.; Chu, M.L. COL6A3 protein deficiency in mice leads to muscle and tendon defects similar to human collagen VI congenital muscular dystrophy. J. Biol. Chem. 2013, 288, 14320–14331. [Google Scholar] [CrossRef] [PubMed]
- Ucero, A.; Bakiri, L.; Suzuki, M.; Fustero-Torre, C.; Ximenez-Embun, P.; Hernandez, A.; Wagner, E. Collagen-producing macrophages can mediate lung fibrosis throughFra-2/AP-1 expression. Eur. Respir. J. 2018, 52 (Suppl. 62), LSC-1216. [Google Scholar] [CrossRef]
- Lee, J.S.; Rosengart, M.R.; Kondragunta, V.; Zhang, Y.; McMurray, J.; Branch, R.A.; Choi, A.M.; Sciurba, F.C. Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: A cross-sectional cohort study. Respir. Res. 2007, 8, 64. [Google Scholar] [CrossRef]
- Hancox, R.J.; Gray, A.R.; Sears, M.R.; Poulton, R. Systemic inflammation and lung function: A longitudinal analysis. Respir. Med. 2016, 111, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Agassandian, M.; Shurin, G.V.; Ma, Y.; Shurin, M.R. C-reactive protein and lung diseases. Int. J. Biochem. Cell Biol. 2014, 53, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Kachuri, L.; Johansson, M.; Rashkin, S.R.; Graff, R.E.; Bosse, Y.; Manem, V.; Caporaso, N.E.; Landi, M.T.; Christiani, D.C.; Vineis, P.; et al. Immune-mediated genetic pathways resulting in pulmonary function impairment increase lung cancer susceptibility. Nat. Commun. 2020, 11, 27. [Google Scholar] [CrossRef]
- Eriksson Strom, J.; Pourazar, J.; Linder, R.; Blomberg, A.; Lindberg, A.; Bucht, A.; Behndig, A.F. Airway regulatory T cells are decreased in COPD with a rapid decline in lung function. Respir. Res. 2020, 21, 330. [Google Scholar] [CrossRef]
- Johnson, P.R.; Roth, M.; Tamm, M.; Hughes, M.; Ge, Q.; King, G.; Burgess, J.K.; Black, J.L. Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med. 2001, 164, 474–477. [Google Scholar] [CrossRef]
- Hirst, S.J.; Martin, J.G.; Bonacci, J.V.; Chan, V.; Fixman, E.D.; Hamid, Q.A.; Herszberg, B.; Lavoie, J.P.; McVicker, C.G.; Moir, L.M.; et al. Proliferative aspects of airway smooth muscle. J. Allergy Clin. Immunol. 2004, 114, S2–S17. [Google Scholar] [CrossRef]
- Wilson, C.L.; Hung, C.F.; Schnapp, L.M. Endotoxin-induced acute lung injury in mice with postnatal deletion of nephronectin. PLoS ONE 2022, 17, e0268398. [Google Scholar] [CrossRef]
Lung Function Index | Gene | Chr | PWAS.P | Beta (95% CI) | PP.H4 | Replicated | Existing Drug |
---|---|---|---|---|---|---|---|
FEV1 | ASPN | 9 | 1.12 × 10−6 | −0.020 (−0.032, −0.008) | 0.800 | NO | NO |
FEV1 | EFEMP1 | 2 | 4.42 × 10−12 | −0.039 (−0.060, −0.018) | 0.976 | Yes | NO |
FEV1 | FKBP4 | 12 | 1.12 × 10−12 | 0.041 (0.030, 0.053) | 1.000 | Yes | Yes |
FEV1 | FN1 | 2 | 2.22 × 10−6 | 0.044 (0.027, 0.061) | 0.969 | NO | NO |
FEV1 | GM2A | 5 | 6.49 × 10−10 | −0.023 (−0.034, −0.013) | 0.981 | NO | Yes |
FEV1 | GMPR2 | 14 | 1.64 × 10−6 | −0.027 (−0.037, −0.017) | 0.991 | Yes | NO |
FEV1 | KYNU | 2 | 3.06 × 10−5 | −0.015 (−0.021, −0.008) | 0.959 | Yes | NO |
FEV1 | OGN | 9 | 5.43 × 10−9 | 0.023 (0.009, 0.037) | 0.978 | Yes | NO |
FEV1 | SCARF2 | 22 | 3.60 × 10−9 | 0.047 (0.034, 0.061) | 0.999 | Yes | NO |
FEV1 | SELM | 22 | 7.69 × 10−7 | −0.076 (−0.114, −0.037) | 0.963 | Yes | NO |
FEV1 | SFRP1 | 8 | 1.55 × 10−5 | −0.038 (−0.067, −0.009) | 0.984 | Yes | NO |
FEV1/FVC | AGER | 6 | 9.29 × 10−173 | −0.186 (−0.199, −0.173) | 1.000 | NO | NO |
FEV1/FVC | ARFIP1 | 4 | 1.02 × 10−6 | 0.027 (0.016, 0.038) | 0.976 | NO | NO |
FEV1/FVC | BOC | 3 | 6.47 × 10−8 | 0.049 (0.034, 0.063) | 0.988 | Yes | NO |
FEV1/FVC | BTN3A3 | 6 | 1.28 × 10−6 | 0.016 (0.008, 0.025) | 0.859 | Yes | NO |
FEV1/FVC | COL6A3 | 2 | 1.39 × 10−9 | −0.053 (−0.096, −0.011) | 0.999 | Yes | Yes |
FEV1/FVC | EFEMP1 | 2 | 1.41 × 10−16 | 0.047 (0.020, 0.074) | 0.891 | Yes | NO |
FEV1/FVC | FAM213A | 10 | 6.04 ×10−7 | −0.187 (−0.238, −0.136) | 0.983 | Yes | NO |
FEV1/FVC | GM2A | 5 | 4.37 × 10−11 | −0.027 (−0.036, −0.018) | 0.770 | Yes | Yes |
FEV1/FVC | HP | 16 | 2.04 × 10−8 | 0.021 (0.013, 0.029) | 0.973 | NO | NO |
FEV1/FVC | IL1RL1 | 2 | 3.28 × 10−11 | 0.017 (0.007, 0.028) | 0.999 | Yes | NO |
FEV1/FVC | LTBP4 | 19 | 1.53 × 10−28 | −0.197 (−0.229, −0.165) | 1.0000 | NO | NO |
FEV1/FVC | MANSC4 | 12 | 4.84 × 10−7 | −0.016 (−0.022, −0.010) | 0.856 | Yes | NO |
FEV1/FVC | MAPK3 | 16 | 3.93 × 10−10 | 0.025 (0.016, 0.033) | 0.999 | Yes | Yes |
FEV1/FVC | NID2 | 14 | 8.49 × 10−6 | 0.016 (0.008, 0.024) | 0.868 | Yes | NO |
FEV1/FVC | NOG | 17 | 1.80 × 10−7 | 0.064 (0.032, 0.096) | 0.995 | NO | NO |
FEV1/FVC | NPNT | 4 | 7.84 × 10−116 | 0.146 (0.070, 0.221) | 1.000 | Yes | NO |
FEV1/FVC | PAPPA | 9 | 9.05 × 10−28 | 0.350 (0.287, 0.412) | 0.993 | NO | NO |
FEV1/FVC | SCARF2 | 22 | 1.19 × 10−19 | 0.069 (0.055, 0.083) | 0.999 | Yes | NO |
FEV1/FVC | SERPING1 | 11 | 2.32 × 10−10 | 0.017 (0.010, 0.023) | 0.996 | Yes | Yes |
FEV1/FVC | TMEM2 | 9 | 4.67 × 10−8 | −0.061 (−0.082, −0.039) | 0.998 | Yes | NO |
FEV1/FVC | XPNPEP1 | 10 | 1.32 × 10−5 | −0.041 (−0.058, −0.024) | 0.933 | Yes | Yes |
FVC | CA3 | 8 | 3.02 × 10−7 | −0.046 (−0.062, −0.029) | 0.997 | NO | NO |
FVC | CCDC126 | 7 | 1.14 × 10−6 | −0.026 (−0.052, −0.001) | 0.880 | Yes | NO |
FVC | DNER | 2 | 7.47 × 10−10 | 0.038 (0.011, 0.066) | 0.998 | Yes | Yes |
FVC | EFEMP1 | 2 | 2.16 × 10−32 | −0.066 (−0.089, −0.044) | 0.999 | Yes | NO |
FVC | FER | 5 | 5.67 × 10−7 | 0.051 (0.032, 0.071) | 0.997 | Yes | Yes |
FVC | FKBP4 | 12 | 5.24 × 10−18 | 0.049 (0.038, 0.061) | 1.000 | Yes | Yes |
FVC | GMPR2 | 14 | 1.51 × 10−5 | −0.025 (−0.036, −0.015) | 0.963 | Yes | NO |
FVC | IL17RD | 3 | 4.71 × 10−6 | 0.017 (0.006, 0.029) | 0.820 | Yes | NO |
FVC | MRC2 | 17 | 2.51 × 10−11 | 0.025 (0.013, 0.036) | 0.956 | Yes | NO |
FVC | OGN | 9 | 2.17 × 10−5 | 0.017 (0.003, 0.031) | 0.793 | Yes | NO |
FVC | PARK7 | 1 | 3.87 × 10−7 | −0.019 (−0.027, −0.012) | 0.978 | Yes | NO |
FVC | RHOC | 1 | 1.83 × 10−7 | 0.056 (0.036, 0.076) | 0.989 | Yes | NO |
FVC | TRIL | 7 | 9.55 × 10−6 | 0.045 (0.024, 0.066) | 0.980 | Yes | NO |
PEF | ACAN | 15 | 4.95 × 10−7 | −0.066 (−0.088, −0.044) | 1.000 | Yes | NO |
PEF | AGER | 6 | 1.13 × 10−37 | −0.091 (−0.105, −0.078) | 0.999 | NO | NO |
PEF | CACYBP | 2 | 2.98 × 10−5 | −0.023 (−0.034, −0.013) | 0.944 | Yes | NO |
PEF | FKBP4 | 12 | 6.54 × 10−7 | 0.030 (0.016, 0.044) | 0.998 | NO | Yes |
PEF | FN1 | 2 | 2.27 × 10−9 | 0.053 (0.035, 0.072) | 0.996 | NO | NO |
PEF | GM2A | 5 | 9.64 × 10−8 | −0.022 (−0.032, −0.013) | 0.951 | NO | Yes |
PEF | GSS | 20 | 1.66 × 10−9 | 0.037 (0.020, 0.055) | 0.886 | Yes | NO |
PEF | HAPLN1 | 5 | 1.44 × 10−24 | −0.202 (−0.232, −0.173) | 0.976 | Yes | NO |
PEF | LILRB2 | 19 | 2.79 × 10−6 | 0.018 (0.011, 0.026) | 0.998 | Yes | NO |
PEF | LTBP4 | 19 | 8.36 × 10−6 | −0.093 (−0.127, −0.059) | 1.000 | NO | NO |
PEF | NOG | 17 | 4.18 × 10−12 | 0.102 (0.068, 0.136) | 0.959 | NO | NO |
PEF | NPNT | 4 | 1.55 × 10−42 | 0.092 (0.044, 0.140) | 1.000 | NO | NO |
PEF | SCARF2 | 22 | 4.88 × 10−7 | 0.041 (0.026, 0.056) | 0.995 | Yes | NO |
PEF | XPNPEP1 | 10 | 1.59 × 10−5 | −0.043 (−0.062, −0.025) | 0.924 | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Shen, L.; Yan, R.; Liu, L.; Guo, P.; Liu, S.; Chen, Y.; Yuan, Z.; Gong, W.; Ji, J. Identification of Candidate Lung Function-Related Plasma Proteins to Pinpoint Drug Targets for Common Pulmonary Diseases: A Comprehensive Multi-Omics Integration Analysis. Curr. Issues Mol. Biol. 2025, 47, 167. https://doi.org/10.3390/cimb47030167
Zhao Y, Shen L, Yan R, Liu L, Guo P, Liu S, Chen Y, Yuan Z, Gong W, Ji J. Identification of Candidate Lung Function-Related Plasma Proteins to Pinpoint Drug Targets for Common Pulmonary Diseases: A Comprehensive Multi-Omics Integration Analysis. Current Issues in Molecular Biology. 2025; 47(3):167. https://doi.org/10.3390/cimb47030167
Chicago/Turabian StyleZhao, Yansong, Lujia Shen, Ran Yan, Lu Liu, Ping Guo, Shuai Liu, Yingxuan Chen, Zhongshang Yuan, Weiming Gong, and Jiadong Ji. 2025. "Identification of Candidate Lung Function-Related Plasma Proteins to Pinpoint Drug Targets for Common Pulmonary Diseases: A Comprehensive Multi-Omics Integration Analysis" Current Issues in Molecular Biology 47, no. 3: 167. https://doi.org/10.3390/cimb47030167
APA StyleZhao, Y., Shen, L., Yan, R., Liu, L., Guo, P., Liu, S., Chen, Y., Yuan, Z., Gong, W., & Ji, J. (2025). Identification of Candidate Lung Function-Related Plasma Proteins to Pinpoint Drug Targets for Common Pulmonary Diseases: A Comprehensive Multi-Omics Integration Analysis. Current Issues in Molecular Biology, 47(3), 167. https://doi.org/10.3390/cimb47030167