Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways
Abstract
:1. Introduction: An Overview of Chronic Pain
2. Metabolite-Sensing Receptors
2.1. General Signaling Mechanisms of GPCRs
2.2. Structural Characteristics and Ligand Specificity of Metabolite-Sensing Receptors
3. The Role of Metabolite-Sensing Receptors in Chronic Pain
Animal Model | Animal Strain | Treatment | Results | Author |
---|---|---|---|---|
Partial sciatic nerve ligation neuropathic pain model | Gpr3−/− and Gpr3+/+ mice | - | Deletion of GPR3 receptor:
| [74] |
Partial sciatic nerve ligation | Sprague–Dawley rats | GPR7 agonists: neuropeptide W-23/B intrathecal injection 0.1–10 μg | Activation of GPR7:
| [84] |
Formalin-induced pain Chronic constriction injury model | Sprague–Dawley rats | GPR7 agonists: neuropeptide W-23/B intrathecal injection 0.1–10 μg | Activation of GPR7:
| [51] |
Formalin-induced pain | Sprague–Dawley rats | GPR7 agonist NPW30 Microinjection 5 μg in the RVM, LC, and PAG | Activation of GPR7:
| [85] |
Partial ligation of the sciatic nerve neuropathic pain | Sprague–Dawley rats | N-arachidonyl-glycine intrathecal injections (700 nmol) | Activation of GPR18:
| [86] |
Partial ligation of the sciatic nerve neuropathic pain | Sprague–Dawley rats | N-arachidonyl-glycine intrathecal injections (500 nmol bilaterally) into the ventrolateral PAG | Activation of GPR18:
| [55] |
siRNA 107 IU into the ventrolateral PAG | Knockdown of GPR18:
| |||
Complete Freund’s adjuvant-induced inflammatory chronic pain | Male ddY mice | GPR40 agonists: DHA (50 µg), GW9508 (1.0–25 µg) intracerebroventricular injection | Activation of GPR40:
| [87] |
Spinal nerve ligation neuropathic pain model Complete Freund’s adjuvant-induced inflammatory chronic pain Carrageenan-induced inflammatory pain | C57BL/6 J mice | GPR40 agonist GW950 intrathecal injection 100 pm | GPR40 activation dose-dependently:
| [77] |
L5/L6 spinal nerve ligation neuropathic pain model | Wistar rats | GPR40 agonist GW9508 intracerebroventricular injection 1 μg | Activation of GPR40:
| [59] |
Formalin-induced pain | ddY mice | GPR40 agonist GW9508 intracerebroventricular injection 1 μg | Activation of GPR40:
| [78] |
Streptozotocin-induced type 1 diabetes mouse model | C57BL/6 mice | GPR40 agonist GW9508 (50 mg/kg) | Activation of GPR40:
| [81] |
GPR40 −/− mice | - | Deletion of GPR40:
| ||
Zymosan-induced thermal hypersensitivity | C57BL/6NRj mice | GPR 40 agonist oleic acid 50 mM intraplantar injection | Activation of GPR40:
| [79] |
GPR40 deficient mice | - | Knockout of GPR40:
| ||
Formalin-induced pain | CD-1 mice | GPR 40 agonist quercetin-3-oleate 100 µg subcutaneous injection | Activation of GPR40:
| [88] |
Dextran sulfate sodium-induced colitis model | C57BL/6 mice | GPR43 agonists compounds 110 and 187 (30 mg/kg) | Activation of GPR43:
| [65] |
Chronic constriction injury model Spared nerve injury model | Rats (strain not specified) | siGpr160 or neutralizing anti-GPR160 Ab daily intrathecal injections | Activation of GPR160:
| [68] |
Sciatic nerve constriction neuropathic pain model | GPR160-floxed and GPR160 knockout mice | - | Knockout of GPR160:
| [89] |
Spared nerve injury model | C57BL/6 mice | INT-777 5 μL intrathecal injection | Activation of TGR5:
| [90] |
Partial sciatic nerve ligation mouse model | C57BL/6J mice | INT-777 administered perisciatically at 50 mg/mL | Activation of TGR5:
| [91] |
Cre-dependent shRNA lentivirus administered perineurally at 4 × 106 TU | Knockdown of TGR5:
|
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic Pain as a Symptom or a Disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Kidwai, A.; Rakhamimova, E.; Elias, M.; Caldwell, W.; Bergese, S.D. Clinical Diagnosis and Treatment of Chronic Pain. Diagnostics 2023, 13, 3689. [Google Scholar] [CrossRef]
- Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic Pain: A Review of Its Epidemiology and Associated Factors in Population-Based Studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef] [PubMed]
- Sá, K.N.; Moreira, L.; Baptista, A.F.; Yeng, L.T.; Teixeira, M.J.; Galhardoni, R.; de Andrade, D.C. Prevalence of Chronic Pain in Developing Countries: Systematic Review and Meta-Analysis. Pain Rep. 2019, 4, e779. [Google Scholar] [CrossRef] [PubMed]
- Dahlhamer, J.; Lucas, J.; Zelaya, C.; Nahin, R.; Mackey, S.; DeBar, L.; Kerns, R.; Von Korff, M.; Porter, L.; Helmick, C. Prevalence of Chronic Pain and High-Impact Chronic Pain Among Adults—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Nahin, R.L.; Feinberg, T.; Kapos, F.P.; Terman, G.W. Estimated Rates of Incident and Persistent Chronic Pain Among US Adults, 2019–2020. JAMA Netw. Open 2023, 6, e2313563. [Google Scholar] [CrossRef] [PubMed]
- Apkarian, A.V.; Bushnell, M.C.; Treede, R.; Zubieta, J. Human Brain Mechanisms of Pain Perception and Regulation in Health and Disease. Eur. J. Pain 2005, 9, 463–484. [Google Scholar] [CrossRef]
- Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and Molecular Mechanisms of Pain. Cell 2009, 139, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Malcangio, M. Role of the Immune System in Neuropathic Pain. Scand. J. Pain 2019, 20, 33–37. [Google Scholar] [CrossRef]
- Meade, E.; Garvey, M. The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy. Int. J. Mol. Sci. 2022, 23, 8574. [Google Scholar] [CrossRef]
- Kuner, R.; Kuner, T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol. Rev. 2021, 101, 213–258. [Google Scholar] [CrossRef]
- Zouikr, I.; Karshikoff, B. Lifetime Modulation of the Pain System via Neuroimmune and Neuroendocrine Interactions. Front. Immunol. 2017, 8, 276. [Google Scholar] [CrossRef]
- Donnelly, C.R.; Andriessen, A.S.; Chen, G.; Wang, K.; Jiang, C.; Maixner, W.; Ji, R.-R. Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain. Neurotherapeutics 2020, 17, 846–860. [Google Scholar] [CrossRef] [PubMed]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Nabila, J.; Adelusi Temitope, I.; Wang, S. Current Etiological Comprehension and Therapeutic Targets of Acetaminophen-Induced Hepatotoxicity. Pharmacol. Res. 2020, 161, 105102. [Google Scholar] [CrossRef]
- Edlund, M.J.; Martin, B.C.; Russo, J.E.; DeVries, A.; Braden, J.B.; Sullivan, M.D. The Role of Opioid Prescription in Incident Opioid Abuse and Dependence Among Individuals With Chronic Noncancer Pain. Clin. J. Pain 2014, 30, 557–564. [Google Scholar] [CrossRef]
- Freo, U.; Ruocco, C.; Valerio, A.; Scagnol, I.; Nisoli, E. Paracetamol: A Review of Guideline Recommendations. J. Clin. Med. 2021, 10, 3420. [Google Scholar] [CrossRef] [PubMed]
- Carman, W.J.; Su, S.; Cook, S.F.; Wurzelmann, J.I.; McAfee, A. Coronary Heart Disease Outcomes among Chronic Opioid and Cyclooxygenase-2 Users Compared with a General Population Cohort. Pharmacoepidemiol. Drug Saf. 2011, 20, 754–762. [Google Scholar] [CrossRef]
- Gupta, A.; Bah, M. NSAIDs in the Treatment of Postoperative Pain. Curr. Pain Headache Rep. 2016, 20, 62. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, Z.; Ke, Y.; Jiang, Y.; Liu, Y.; Liu, Z. Links Between Cellular Energy Metabolism and Pain Sensation. Anesth. Analg. 2024; online ahead of print. [Google Scholar]
- Vizuete, A.F.K.; Fróes, F.; Seady, M.; Zanotto, C.; Bobermin, L.D.; Roginski, A.C.; Wajner, M.; Quincozes-Santos, A.; Gonçalves, C.A. Early Effects of LPS-Induced Neuroinflammation on the Rat Hippocampal Glycolytic Pathway. J. Neuroinflamm. 2022, 19, 255. [Google Scholar] [CrossRef] [PubMed]
- Kong, E.; Li, Y.; Deng, M.; Hua, T.; Yang, M.; Li, J.; Feng, X.; Yuan, H. Glycometabolism Reprogramming of Glial Cells in Central Nervous System: Novel Target for Neuropathic Pain. Front. Immunol. 2022, 13, 861290. [Google Scholar] [CrossRef]
- Dai, C.-Q.; Guo, Y.; Chu, X.-Y. Neuropathic Pain: The Dysfunction of Drp1, Mitochondria, and ROS Homeostasis. Neurotox. Res. 2020, 38, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Lian, X.; Liu, H.; Zhang, Y.; Li, Q.; Cai, Y.; Ma, H.; Yu, X. Understanding Diabetic Neuropathy: Focus on Oxidative Stress. Oxid. Med. Cell Longev. 2020, 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Recio, C.; Lucy, D.; Iveson, P.; Iqbal, A.J.; Valaris, S.; Wynne, G.; Russell, A.J.; Choudhury, R.P.; O’Callaghan, C.; Monaco, C.; et al. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxid. Redox Signal 2018, 29, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Liao, Q.; Xu, Y.; Zhao, Q.; Wu, B.; Ye, R.D. Anti-Inflammatory Signaling through G Protein-Coupled Receptors. Acta Pharmacol. Sin. 2020, 41, 1531–1538. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. Mechanism of Action of Aspirin-like Drugs. Semin. Arthritis Rheum. 1997, 26, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Schenk, S.; Saberi, M.; Olefsky, J.M. Insulin Sensitivity: Modulation by Nutrients and Inflammation. J. Clin. Investig. 2008, 118, 2992–3002. [Google Scholar] [CrossRef] [PubMed]
- Shoelson, S.E.; Herrero, L.; Naaz, A. Obesity, Inflammation, and Insulin Resistance. Gastroenterology 2007, 132, 2169–2180. [Google Scholar] [CrossRef]
- Littlewood-Evans, A.; Sarret, S.; Apfel, V.; Loesle, P.; Dawson, J.; Zhang, J.; Muller, A.; Tigani, B.; Kneuer, R.; Patel, S.; et al. GPR91 Senses Extracellular Succinate Released from Inflammatory Macrophages and Exacerbates Rheumatoid Arthritis. J. Exp. Med. 2016, 213, 1655–1662. [Google Scholar] [CrossRef]
- Tan, J.K.; McKenzie, C.; Mariño, E.; Macia, L.; Mackay, C.R. Metabolite-Sensing G Protein–Coupled Receptors—Facilitators of Diet-Related Immune Regulation. Annu. Rev. Immunol. 2017, 35, 371–402. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, D.; Wu, M.; Guo, Y.; Guo, W.; Zhong, L.; Cai, X.; Dai, A.; Jang, W.; Shakhnovich, E.I.; et al. Common Activation Mechanism of Class A GPCRs. Elife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Seyedabadi, M.; Ghahremani, M.H.; Albert, P.R. Biased Signaling of G Protein Coupled Receptors (GPCRs): Molecular Determinants of GPCR/Transducer Selectivity and Therapeutic Potential. Pharmacol. Ther. 2019, 200, 148–178. [Google Scholar] [CrossRef]
- Vilardaga, J.-P.; Jean-Alphonse, F.G.; Gardella, T.J. Endosomal Generation of CAMP in GPCR Signaling. Nat. Chem. Biol. 2014, 10, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Liggett, S.B. Phosphorylation Barcoding as a Mechanism of Directing GPCR Signaling. Sci. Signal 2011, 4, pe36. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hua, T.; Liu, Z.-J. Structural Features of Activated GPCR Signaling Complexes. Curr. Opin. Struct. Biol. 2020, 63, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Katritch, V.; Fenalti, G.; Abola, E.E.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Allosteric Sodium in Class A GPCR Signaling. Trends Biochem. Sci. 2014, 39, 233–244. [Google Scholar] [CrossRef]
- He, T.; Huang, J.; Chen, L.; Han, G.; Stanmore, D.; Krebs-Haupenthal, J.; Avkiran, M.; Hagenmüller, M.; Backs, J. Cyclic AMP Represses Pathological MEF2 Activation by Myocyte-Specific Hypo-Phosphorylation of HDAC5. J. Mol. Cell Cardiol. 2020, 145, 88–98. [Google Scholar] [CrossRef]
- Lagman, J.; Sayegh, P.; Lee, C.S.; Sulon, S.M.; Jacinto, A.Z.; Sok, V.; Peng, N.; Alp, D.; Benovic, J.L.; So, C.H. G Protein-Coupled Receptor Kinase 5 Modifies Cancer Cell Resistance to Paclitaxel. Mol. Cell Biochem. 2019, 461, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Shi, Y.; Xiang, B.; Qu, B.; Su, W.; Zhu, M.; Zhang, M.; Bao, G.; Wang, F.; Zhang, X.; et al. A Nuclear Function of β-Arrestin1 in GPCR Signaling: Regulation of Histone Acetylation and Gene Transcription. Cell 2005, 123, 833–847. [Google Scholar] [CrossRef]
- Sveidahl Johansen, O.; Ma, T.; Hansen, J.B.; Markussen, L.K.; Schreiber, R.; Reverte-Salisa, L.; Dong, H.; Christensen, D.P.; Sun, W.; Gnad, T.; et al. Lipolysis Drives Expression of the Constitutively Active Receptor GPR3 to Induce Adipose Thermogenesis. Cell 2021, 184, 3502–3518.e33. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Miyagi, T.; Dohi, E.; Seki, T.; Hide, I.; Sotomaru, Y.; Saeki, Y.; Antonio Chiocca, E.; Matsumoto, M.; Sakai, N. Developmental Expression of GPR3 in Rodent Cerebellar Granule Neurons Is Associated with Cell Survival and Protects Neurons from Various Apoptotic Stimuli. Neurobiol. Dis. 2014, 68, 215–227. [Google Scholar] [CrossRef]
- Tanaka, S.; Ishii, K.; Kasai, K.; Yoon, S.O.; Saeki, Y. Neural Expression of G Protein-Coupled Receptors GPR3, GPR6, and GPR12 Up-Regulates Cyclic AMP Levels and Promotes Neurite Outgrowth. J. Biol. Chem. 2007, 282, 10506–10515. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Staffen, N.; Wu, Z.; Xu, X.; Pan, J.; Inoue, A.; Shi, T.; Gmeiner, P.; Du, Y.; Xu, J. Structural and Functional Characterization of the Endogenous Agonist for Orphan Receptor GPR3. Cell Res. 2024, 34, 262–265. [Google Scholar] [CrossRef]
- Ishii, M.; Fei, H.; Friedman, J.M. Targeted Disruption of GPR7, the Endogenous Receptor for Neuropeptides B and W, Leads to Metabolic Defects and Adult-Onset Obesity. Proc. Natl. Acad. Sci. USA 2003, 100, 10540–10545. [Google Scholar] [CrossRef]
- Singh, G.; Davenport, A.P. Neuropeptide B and W: Neurotransmitters in an Emerging G-protein-coupled Receptor System. Br. J. Pharmacol. 2006, 148, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Maguire, J.J.; Kuc, R.E.; Fidock, M.; Davenport, A.P. Identification and Cellular Localisation of NPW1 (GPR7) Receptors for the Novel Neuropeptide W-23 by [125I]-NPW Radioligand Binding and Immunocytochemistry. Brain Res. 2004, 1017, 222–226. [Google Scholar] [CrossRef]
- Jackson, V.R.; Lin, S.H.; Wang, Z.; Nothacker, H.; Civelli, O. A Study of the Rat Neuropeptide B/Neuropeptide W System Using in Situ Techniques. J. Comp. Neurol. 2006, 497, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Yoshida, T.; Miyamoto, N.; Motoike, T.; Kurosu, H.; Shibata, K.; Yamanaka, A.; Williams, S.C.; Richardson, J.A.; Tsujino, N.; et al. Characterization of a Family of Endogenous Neuropeptide Ligands for the G Protein-Coupled Receptors GPR7 and GPR8. Proc. Natl. Acad. Sci. USA 2003, 100, 6251–6256. [Google Scholar] [CrossRef]
- Shimomura, Y.; Harada, M.; Goto, M.; Sugo, T.; Matsumoto, Y.; Abe, M.; Watanabe, T.; Asami, T.; Kitada, C.; Mori, M.; et al. Identification of Neuropeptide W as the Endogenous Ligand for Orphan G-Protein-Coupled Receptors GPR7 and GPR8. J. Biol. Chem. 2002, 277, 35826–35832. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Liu, Y.; Deng, M.; Wang, H.-P.; Abdul, M.; Zhang, F.-F.; Zhang, Z.; Cao, J.-L. The Synergistic Effects of Opioid and Neuropeptide B/W in Rat Acute Inflammatory and Neuropathic Pain Models. Eur. J. Pharmacol. 2021, 898, 173979. [Google Scholar] [CrossRef] [PubMed]
- Console-Bram, L.; Brailoiu, E.; Brailoiu, G.C.; Sharir, H.; Abood, M.E. Activation of GPR 18 by Cannabinoid Compounds: A Tale of Biased Agonism. Br. J. Pharmacol. 2014, 171, 3908–3917. [Google Scholar] [CrossRef]
- Sotudeh, N.; Morales, P.; Hurst, D.P.; Lynch, D.L.; Reggio, P.H. Towards A Molecular Understanding of The Cannabinoid Related Orphan Receptor GPR18: A Focus on Its Constitutive Activity. Int. J. Mol. Sci. 2019, 20, 2300. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Lago-Fernandez, A.; Hurst, D.P.; Sotudeh, N.; Brailoiu, E.; Reggio, P.H.; Abood, M.E.; Jagerovic, N. Therapeutic Exploitation of GPR18: Beyond the Cannabinoids? J. Med. Chem. 2020, 63, 14216–14227. [Google Scholar] [CrossRef]
- Narasimhan, M.; Mahimainathan, L.; Reddy, P.H.; Benamar, K. GPR18-NAGly System in Periaqueductal Gray and Chronic Neuropathic Pain. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020, 1866, 165974. [Google Scholar] [CrossRef]
- Yonezawa, T.; Kurata, R.; Yoshida, K.; Murayama, M.; Cui, X.; Hasegawa, A. Free Fatty Acids-Sensing G Protein-Coupled Receptors in Drug Targeting and Therapeutics. Curr. Med. Chem. 2013, 20, 3855–3871. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Y.; Syn, W.-K.; Li, A.-J.; Ritter, W.S.; Wank, S.A.; Lopes-Virella, M.F.; Huang, Y. GPR40 Deficiency Is Associated with Hepatic FAT/CD36 Upregulation, Steatosis, Inflammation, and Cell Injury in C57BL/6 Mice. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E30–E42. [Google Scholar] [CrossRef]
- Park, S.-K.; Herrnreiter, A.; Pfister, S.L.; Gauthier, K.M.; Falck, B.A.; Falck, J.R.; Campbell, W.B. GPR40 Is a Low-Affinity Epoxyeicosatrienoic Acid Receptor in Vascular Cells. J. Biol. Chem. 2018, 293, 10675–10691. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.-F.; Wu, H.-Y.; Tang, X.-Q.; Ali, U.; Liu, H.; Wang, Y.-X. Activation of GPR40 Produces Mechanical Antiallodynia via the Spinal Glial Interleukin-10/β-Endorphin Pathway. J. Neuroinflamm. 2019, 16, 84. [Google Scholar] [CrossRef]
- Kimura, I.; Ichimura, A.; Ohue-Kitano, R.; Igarashi, M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2020, 100, 171–210. [Google Scholar] [CrossRef]
- Ho, J.D.; Chau, B.; Rodgers, L.; Lu, F.; Wilbur, K.L.; Otto, K.A.; Chen, Y.; Song, M.; Riley, J.P.; Yang, H.-C.; et al. Structural Basis for GPR40 Allosteric Agonism and Incretin Stimulation. Nat. Commun. 2018, 9, 1645. [Google Scholar] [CrossRef]
- Yamashima, T. Dual Effects of the Non-Esterified Fatty Acid Receptor ‘GPR40’ for Human Health. Prog. Lipid Res. 2015, 58, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Usui, R.; Yabe, D.; Fauzi, M.; Goto, H.; Botagarova, A.; Tokumoto, S.; Tatsuoka, H.; Tahara, Y.; Kobayashi, S.; Manabe, T.; et al. GPR40 Activation Initiates Store-Operated Ca2+ Entry and Potentiates Insulin Secretion via the IP3R1/STIM1/Orai1 Pathway in Pancreatic β-Cells. Sci. Rep. 2019, 9, 15562. [Google Scholar] [CrossRef]
- Nakajima, A.; Nakatani, A.; Hasegawa, S.; Irie, J.; Ozawa, K.; Tsujimoto, G.; Suganami, T.; Itoh, H.; Kimura, I. The Short Chain Fatty Acid Receptor GPR43 Regulates Inflammatory Signals in Adipose Tissue M2-Type Macrophages. PLoS ONE 2017, 12, e0179696. [Google Scholar] [CrossRef]
- Park, B.-O.; Kang, J.S.; Paudel, S.; Park, S.G.; Park, B.C.; Han, S.-B.; Kwak, Y.-S.; Kim, J.-H.; Kim, S. Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model. Biomol. Ther. 2022, 30, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chang, J.; Wu, W.; Deng, Y.; Zhou, P.; Jiang, W.; Wang, C.; Huang, F. Activation of GPR43 Suppresses TNF-α-Induced Inflammatory Response in Human Fibroblast-like Synoviocytes. Arch. Biochem. Biophys. 2020, 684, 108297. [Google Scholar] [CrossRef] [PubMed]
- Pirozzi, C.; Francisco, V.; Guida, F.D.; Gómez, R.; Lago, F.; Pino, J.; Meli, R.; Gualillo, O. Butyrate Modulates Inflammation in Chondrocytes via GPR43 Receptor. Cell. Physiol. Biochem. 2018, 51, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Yosten, G.L.C.; Harada, C.M.; Haddock, C.; Giancotti, L.A.; Kolar, G.R.; Patel, R.; Guo, C.; Chen, Z.; Zhang, J.; Doyle, T.M.; et al. GPR160 De-Orphanization Reveals Critical Roles in Neuropathic Pain in Rodents. J. Clin. Investig. 2020, 130, 2587–2592. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Huang, H.; Wang, N.; Chen, R.; Chen, N.; Han, H.; Wang, Q.; Siwko, S.; Liu, M.; Qian, M.; et al. Metabolite-Sensing G Protein Coupled Receptor TGR5 Protects Host From Viral Infection Through Amplifying Type I Interferon Responses. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Ge, Y.; Ma, L.; Chen, Q.; Liu, H.; Du, Y.; Ye, R.D.; Hu, H.; Ren, R. Cryo-EM Structure of Activated Bile Acids Receptor TGR5 in Complex with Stimulatory G Protein. Signal Transduct. Target. Ther. 2020, 5, 142. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, Y.; Fujii, R.; Hosoya, M.; Harada, M.; Yoshida, H.; Miwa, M.; Fukusumi, S.; Habata, Y.; Itoh, T.; Shintani, Y.; et al. A G Protein-Coupled Receptor Responsive to Bile Acids. J. Biol. Chem. 2003, 278, 9435–9440. [Google Scholar] [CrossRef]
- Keitel, V.; Gertzen, C.G.W.; Schäfer, S.; Klindt, C.; Wöhler, C.; Deutschmann, K.; Reich, M.; Gohlke, H.; Häussinger, D. Bile Acids and TGR5 (Gpbar1) Signaling. In Mammalian Sterols; Springer International Publishing: Cham, Switzerland, 2020; pp. 81–100. [Google Scholar]
- Chen, P.; Jiang, X.; Fu, J.; Ou, C.; Li, Y.; Jia, J.; Liao, C. The Potential Mechanism of Action of Gut Flora and Bile Acids through the TGR5/TRPV1 Signaling Pathway in Diabetic Peripheral Neuropathic Pain. Front. Endocrinol. 2024, 15. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Medina, J.; Ledent, C.; Valverde, O. GPR3 Orphan Receptor Is Involved in Neuropathic Pain after Peripheral Nerve Injury and Regulates Morphine-Induced Antinociception. Neuropharmacology 2011, 61, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Zaratin, P.F.; Quattrini, A.; Previtali, S.C.; Comi, G.; Hervieu, G.; Scheideler, M.A. Schwann Cell Overexpression of the GPR7 Receptor in Inflammatory and Painful Neuropathies. Mol. Cell. Neurosci. 2005, 28, 55–63. [Google Scholar] [CrossRef]
- Kelly, M.A.; Beuckmann, C.T.; Williams, S.C.; Sinton, C.M.; Motoike, T.; Richardson, J.A.; Hammer, R.E.; Garry, M.G.; Yanagisawa, M. Neuropeptide B-Deficient Mice Demonstrate Hyperalgesia in Response to Inflammatory Pain. Proc. Natl. Acad. Sci. USA 2005, 102, 9942–9947. [Google Scholar] [CrossRef] [PubMed]
- Karki, P.; Kurihara, T.; Nakamachi, T.; Watanabe, J.; Asada, T.; Oyoshi, T.; Shioda, S.; Yoshimura, M.; Arita, K.; Miyata, A. Attenuation of Inflammatory and Neuropathic Pain Behaviors in Mice through Activation of Free Fatty Acid Receptor GPR40. Mol. Pain 2015, 11, 6. [Google Scholar] [CrossRef]
- Nakamoto, K.; Nishinaka, T.; Sato, N.; Aizawa, F.; Yamashita, T.; Mankura, M.; Koyama, Y.; Kasuya, F.; Tokuyama, S. The Activation of Supraspinal GPR 40/FFA 1 Receptor Signalling Regulates the Descending Pain Control System. Br. J. Pharmacol. 2015, 172, 1250–1262. [Google Scholar] [CrossRef] [PubMed]
- Sendetski, M.; Wedel, S.; Furutani, K.; Hahnefeld, L.; Angioni, C.; Heering, J.; Zimmer, B.; Pierre, S.; Banica, A.-M.; Scholich, K.; et al. Oleic Acid Released by Sensory Neurons Inhibits TRPV1-Mediated Thermal Hypersensitivity via GPR40. iScience 2024, 27, 110552. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wang, X.; Li, J.; Li, X.; Wang, J.; Liu, Y.; Wang, Z.; Yang, X.; Gao, J.; Wu, J.; et al. Critical Role of G Protein-Coupled Receptor 40 in B Cell Response and the Pathogenesis of Rheumatoid Arthritis in Mice and Patients. Cell Rep. 2024, 43, 114858. [Google Scholar] [CrossRef]
- Königs, V.; Pierre, S.; Schicht, M.; Welss, J.; Hahnefeld, L.; Rimola, V.; Lütjen-Drecoll, E.; Geisslinger, G.; Scholich, K. GPR40 Activation Abolishes Diabetes-Induced Painful Neuropathy by Suppressing VEGF-A Expression. Diabetes 2022, 71, 774–787. [Google Scholar] [CrossRef]
- Xiao, J.; Cai, T.; Fang, Y.; Liu, R.; Flores, J.J.; Wang, W.; Gao, L.; Liu, Y.; Lu, Q.; Tang, L.; et al. Activation of GPR40 Attenuates Neuroinflammation and Improves Neurological Function via PAK4/CREB/KDM6B Pathway in an Experimental GMH Rat Model. J. Neuroinflamm. 2021, 18, 160. [Google Scholar] [CrossRef]
- Engel, D.F.; Bobbo, V.C.D.; Solon, C.S.; Nogueira, G.A.; Moura-Assis, A.; Mendes, N.F.; Zanesco, A.M.; Papangelis, A.; Ulven, T.; Velloso, L.A. Activation of GPR40 Induces Hypothalamic Neurogenesis through P38- and BDNF-Dependent Mechanisms. Sci. Rep. 2020, 10, 11047. [Google Scholar] [CrossRef]
- Yamamoto, T.; Saito, O.; Shono, K.; Tanabe, S. Effects of Intrathecal and i.c.v. Administration of Neuropeptide W-23 and Neuropeptide B on the Mechanical Allodynia Induced by Partial Sciatic Nerve Ligation in Rats. Neuroscience 2006, 137, 265–273. [Google Scholar] [CrossRef]
- Nakamura, S.; Nonaka, T.; Yoshida, K.; Yamada, T.; Yamamoto, T. Neuropeptide W, an Endogenous NPBW1 and NPBW2 Ligand, Produced an Analgesic Effect via Activation of the Descending Pain Modulatory System during a Rat Formalin Test. Mol. Pain 2021, 17, 1744806921992187. [Google Scholar] [CrossRef] [PubMed]
- Vuong, L.A.Q.; Mitchell, V.A.; Vaughan, C.W. Actions of N-Arachidonyl-Glycine in a Rat Neuropathic Pain Model. Neuropharmacology 2008, 54, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K.; Nishinaka, T.; Sato, N.; Mankura, M.; Koyama, Y.; Kasuya, F.; Tokuyama, S. Hypothalamic GPR40 Signaling Activated by Free Long Chain Fatty Acids Suppresses CFA-Induced Inflammatory Chronic Pain. PLoS ONE 2013, 8, e81563. [Google Scholar] [CrossRef] [PubMed]
- Pessina, F.; Casini, I.; Gamberucci, A.; Carullo, G.; Signorini, C.; Brizzi, A.; Aiello, F.; Aloisi, A.M.; Pieretti, S. Anti-Inflammatory and Antinociceptive Properties of the Quercetin-3-Oleate AV2, a Novel FFAR1 Partial Agonist. Int. J. Mol. Sci. 2024, 25, 11635. [Google Scholar] [CrossRef] [PubMed]
- Schafer, R.M.; Giancotti, L.A.; Davis, D.J.; Larrea, I.G.; Farr, S.A.; Salvemini, D. Behavioral Characterization of G-Protein-Coupled Receptor 160 Knockout Mice. Pain 2024, 165, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Qiu, Y.; Su, M.; Wang, L.; Gong, Q.; Wei, X. Activation of the Bile Acid Receptors TGR5 and FXR in the Spinal Dorsal Horn Alleviates Neuropathic Pain. CNS Neurosci. Ther. 2023, 29, 1981–1998. [Google Scholar] [CrossRef]
- Shi, W.; Yao, Y.; Liang, Y.; Lei, J.; Feng, S.; Zhang, Z.; Tian, Y.; Cai, J.; Xing, G.; Fu, K. Activation of TGR5 in the Injured Nerve Site According to a Prevention Protocol Mitigates Partial Sciatic Nerve Ligation–Induced Neuropathic Pain by Alleviating Neuroinflammation. Pain, 2024; online ahead of print. [Google Scholar]
- Whitebread, S.; Dumotier, B.; Armstrong, D.; Fekete, A.; Chen, S.; Hartmann, A.; Muller, P.Y.; Urban, L. Secondary Pharmacology: Screening and Interpretation of off-Target Activities–Focus on Translation. Drug Discov. Today 2016, 21, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Sacco, S. Pain Comorbidities–Understanding and Treating the Complex Patient: IASP Press, 2012. J. Headache Pain 2013, 14, 38. [Google Scholar] [CrossRef]
- Araki, T.; Hirayama, M.; Hiroi, S.; Kaku, K. GPR40-induced Insulin Secretion by the Novel Agonist TAK-875: First Clinical Findings in Patients with Type 2 Diabetes. Diabetes Obes. Metab. 2012, 14, 271–278. [Google Scholar] [CrossRef]
- Hamdouchi, C.; Kahl, S.D.; Patel Lewis, A.; Cardona, G.R.; Zink, R.W.; Chen, K.; Eessalu, T.E.; Ficorilli, J.V.; Marcelo, M.C.; Otto, K.A.; et al. The Discovery, Preclinical, and Early Clinical Development of Potent and Selective GPR40 Agonists for the Treatment of Type 2 Diabetes Mellitus (LY2881835, LY2922083, and LY2922470). J. Med. Chem. 2016, 59, 10891–10916. [Google Scholar] [CrossRef] [PubMed]
- Determination of Safety, Tolerability, Pharmacokinetics, Food Effect & Pharmacodynamics of Single & Multiple Doses of P11187. Available online: https://Clinicaltrials.Gov/Study/NCT01874366 (accessed on day month year).
- Zhao, Y.; Xie, L.; Ou, N.; Wu, J.; Zhang, H.; Zhou, S.; Liu, Y.; Chen, J.; Wang, L.; Wang, L.; et al. Tolerability, Safety, Pharmacokinetics and Pharmacodynamics of SHR0534, a Potent G Protein-Coupled Receptor 40 (GPR40) Agonist, at Single- and Multiple-Ascending Oral Doses in Healthy Chinese Subjects. Xenobiotica 2021, 51, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Safety and Efficacy Study of JTT-851 in Patients With Type 2 Diabetes Mellitus. Available online: https://Clinicaltrials.Gov/Study/NCT01699737 (accessed on day month year).
- Chen, C.; Li, H.; Long, Y.-Q. GPR40 Agonists for the Treatment of Type 2 Diabetes Mellitus: The Biological Characteristics and the Chemical Space. Bioorg. Med. Chem. Lett. 2016, 26, 5603–5612. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pușcașu, C.; Andrei, C.; Olaru, O.T.; Zanfirescu, A. Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways. Curr. Issues Mol. Biol. 2025, 47, 63. https://doi.org/10.3390/cimb47010063
Pușcașu C, Andrei C, Olaru OT, Zanfirescu A. Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways. Current Issues in Molecular Biology. 2025; 47(1):63. https://doi.org/10.3390/cimb47010063
Chicago/Turabian StylePușcașu, Ciprian, Corina Andrei, Octavian Tudorel Olaru, and Anca Zanfirescu. 2025. "Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways" Current Issues in Molecular Biology 47, no. 1: 63. https://doi.org/10.3390/cimb47010063
APA StylePușcașu, C., Andrei, C., Olaru, O. T., & Zanfirescu, A. (2025). Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways. Current Issues in Molecular Biology, 47(1), 63. https://doi.org/10.3390/cimb47010063