Expression Analysis and Functional Validation of DcTPSb1 in Terpene Synthesis of Dendrobium chrysotoxum
<p>Comparison of amino acid sequence of DoTPSb1 protein in <span class="html-italic">Dendrobium chrysotoxum</span> with four high similarity sequences from NCBI (PKU83075.1, Alpha-terpineol synthase of <span class="html-italic">Dendrobium catenatum</span>; KAI0507613.1, hypothetical proteins KFK09_013739 of <span class="html-italic">Dendrobium nobile</span>; XP_020590622.1, terpene synthase 10-like of <span class="html-italic">Phalaenopsis equestris</span>; QIN90833.1, terpenoid synthase of the <span class="html-italic">Oncidium hybrid cultivar</span>). Meanwhile, three motifs critical for monoterpene synthesis, including two motifs rich in aspartic acid residues, DDxxD and NSE/DTE, and the arginine–tryptophan motif, RRX8W, are marked out in the above image. Completely identical sequences are marked in black, four identical amino acids are marked with boxes, and the rest of the alignments are not marked. Related detailed information is shown in <a href="#app1-cimb-47-00025" class="html-app">Table S3</a>.</p> "> Figure 2
<p>The evolutionary tree was formed based on the neighbor-joining method in the MEGA 11.0 tool. All sequences belonging to several different plants were obtained from NCBI. Seven TPS subfamilies were shown in six colors, in which DcTPSb1 protein from <span class="html-italic">D. chrysotoxum</span> was distributed in the largest blue area of the TPS-b family (marked with red star). All sequence information can be found in <a href="#app1-cimb-47-00025" class="html-app">Supplementary Table S3</a>.</p> "> Figure 3
<p>Graph of the result of an experiment on subcellular localization of DcTPSb1 from <span class="html-italic">D. chrysotoxum</span>. Red represents chloroplast autofluorescence; green represents GFP display fluorescence; yellow represents fluorescence of the fusion protein connecting GFP and DcTPSb1, i.e., indicating cellular localization of the DcTPSb1 protein.</p> "> Figure 4
<p>Different tissues of <span class="html-italic">D. chrysotoxum</span>, include leaf, stem, root (<b>a</b>) and three developmental stages of flowers (<b>b</b>). (<b>c</b>) Expression levels of <span class="html-italic">DcTPSb1</span> in different <span class="html-italic">D. chrysotoxum</span> tissues 18S served as the internal standard. HB, bud stage; BK, half blooming stage; SK, full blooming stage. Each bar represents the mean ± standard error of three independent biological replicates. The one-way ANOVA was performed to identify the differences among experimental groups, and different lowercase letters indicated significant differences <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>Functional characterization of DcTPSb1. (<b>a</b>) Purification of DcTPSb1 recombinant protein. M, marker; S, supernatant; R, rinse solution. The red frame indicates purified target protein; Eluted protein represents GST-DcTPSb1 protein with 89.2 KDa. (<b>b</b>) Gas chromatograms of three monoterpenes generated by DcTPSb1 when GPP (Geranyl pyrophosphate) was used as a substrate. Control added high-temperature inactivated DcTPSb1 protein, in which no products were generated.</p> "> Figure 6
<p>The distributions, categories, and numbers of twenty cis-acting elements in 2000 bp upstream region of the initiation codon (ATG) of <span class="html-italic">DcTPSb1</span> in <span class="html-italic">D. chrysotoxum</span>. The above figure represents a wide distribution throughout the entire region of 20 cis-acting elements (represented by 20 types of blocks, respectively) distributed throughout the entire region with three categories in three colors. The following figure shows 20 types of cis-acting components belonging to three categories, represented by three colors. The detailed distribution of motifs is shown in <a href="#app1-cimb-47-00025" class="html-app">Table S4</a>.</p> "> Figure 7
<p>Analysis of volatile metabolome results of GC-MS analysis between DcTPSb1-overexpressed tobacco and wild type. (<b>a</b>) Ring diagram of metabolite class composition. Each color represents a metabolite category, and the area of the color block indicates the proportion of that category; (<b>b</b>) Heat map of differential metabolite clustering. On the left side of the figure is the sample clustering line, and on the top is the sample clustering line. Class is the first level classification of substances. Different colors are the colors filled with different values obtained after standardizing the relative content. Red represents high content, and green represents low content; (<b>c</b>) Dynamic distribution of differences in levels of differential metabolites. Each point represents a substance, with green points representing the top ten substances ranked downwards and red points representing the top ten substances ranked upwards.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Gene Cloning, Sequence Alignment, and Phylogenetic Analysis of the DcTPSb1
2.3. Subcellular Location Prediction and Validation of DcTPSb1
2.4. Real-Time Quantitative PCR Analysis
2.5. Preliminary Parse of Cis-Acting Elements Inside DcTPSb1’s Promoter Area
2.6. Prokaryotic Expression and Purification of DcTPSb1 Protein
2.7. Functional Verification of DcTPSb1 by Enzyme Assay In Vitro
2.8. Detection of Volatile Metabolome in DcTPSb1 Overexpressing N. benthamiana Using GC-MS
3. Results
3.1. Gene Cloning and Structural Analysis of DcTPSb1 from D. chrysotoxum Flowers
3.2. Sequence Alignment Analysis of DcTPSb1 from the D. chrysotoxum Genome
3.3. Phylogenetic Analysis of DcTPSb1 Protein
3.4. Subcellular Localization of DcTPSb1
3.5. Expression Mode Analysis of DcTPSb1 in Different Tissues from D. chrysotoxum
3.6. Prokaryotic Protein Expression and In Vitro Functional Validation of DcTPSb1
3.7. Discernment of Cis-Acting Elements in the Promoter Region of DcTPSb1
3.8. Analysis of Volatile Metabolite Differences Between Tobacco Overexpressing DcTPSb1 and Wild-Type Using GC-MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Ke, Y.; Yu, R.; Yue, Y.; Amanullah, S.; Jahangir, M.M.; Fan, Y. Volatile terpenoids: Multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 2017, 246, 803–816. [Google Scholar] [CrossRef]
- Wang, S.; Du, Z.; Yang, X.; Wang, L.; Xia, K.; Chen, Z. An integrated analysis of metabolomics and transcriptomics reveals significant differences in floral scents and related gene expression between two varieties of Dendrobium loddigesii. Appl. Sci. 2022, 12, 1262. [Google Scholar] [CrossRef]
- Du, Z.; Jin, Y.; Yang, X.; Xia, K.; Chen, Z. Multi-omics analyses and botanical perfumer hypothesis provide insights into the formation and maintenance of aromatic characteristics of Dendrobium loddigesii flowers. Plant Physiol. Biochem. 2024, 214, 108891. [Google Scholar] [CrossRef]
- Du, Z.; Jin, Y.; Wang, W.; Xia, K.; Chen, Z. Molecular and metabolic insights into floral scent biosynthesis during flowering in Dendrobium chrysotoxum. Front. Plant Sci. 2022, 13, 1030492. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Meng, X.; Xinfeng, Z.; Jinjing, L.; Jinping, S. Studies on volatile constituents of 11 families of Dendrobium officinale flowers. Chin. J. Exp. Tradit. Med. Formulae 2016, 6, 52–57. [Google Scholar]
- Li, C.; Mingzhong, H.; Shaohua, H.; Junmei, Y. Volatile components in flowers of four Dendrobium species. J. Trop. Subtrop. Bot. 2015, 4, 454–462. [Google Scholar]
- Yang, Y.; Xia, K.; Wu, Q.; Lu, X.; Lu, S.; Zhao, Z.; Qiu, S. Combined Analysis of Volatile Compounds and Extraction of Floral Fragrance Genes in Two Dendrobium Species. Horticulturae 2023, 9, 745. [Google Scholar] [CrossRef]
- Simkin, A.J.; Guirimand, G.; Papon, N.; Courdavault, V.; Thabet, I.; Ginis, O.; Bouzid, S.; Giglioli-Guivarc’h, N.; Clastre, M. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 2011, 234, 903–914. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar]
- Abbas, F.; Ke, Y.; Yu, R.; Fan, Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’. Planta 2019, 249, 71–93. [Google Scholar] [CrossRef]
- Chen, G.; Mostafa, S.; Lu, Z.; Du, R.; Cui, J.; Wang, Y.; Liao, Q.; Lu, J.; Mao, X.; Chang, B.; et al. The Jasmine (Jasminum sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates. Genom. Proteom. Bioinform. 2023, 21, 127–149. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Zhu, M.J.; Yu, X.; Bi, Y.Y.; Zhou, Z.; Chen, M.K.; Chen, J.; Zhang, D.; Ai, Y.; Liu, Z.J.; et al. Genome-Wide Identification and Expression Analysis of Terpene Synthase Genes in Cymbidium faberi. Front. Plant Sci. 2021, 12, 751853. [Google Scholar] [CrossRef]
- Huang, H.; Kuo, Y.W.; Chuang, Y.C.; Yang, Y.P.; Huang, L.M.; Jeng, M.F.; Chen, W.H.; Chen, H.H. Terpene Synthase-b and Terpene Synthase-e/f Genes Produce Monoterpenes for Phalaenopsis bellina Floral Scent. Front. Plant Sci. 2021, 12, 700958. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, Z.; Silva, J.A.T.D.; He, C.; Wang, H.; Si, C.; Zhang, M.; Zeng, D.; Duan, J. Functional Characterization of a Dendrobium officinale Geraniol Synthase DoGES1 Involved in Floral Scent Formation. Int. J. Mol. Sci. 2020, 21, 7005. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhang, G.; Teixeira da Silva, J.A.; Zhao, C.; Duan, J. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development. Plant Sci. 2021, 309, 110952. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, C.; Zhang, G.; Teixeira da Silva, J.A.; Duan, J. Genome-Wide Identification and Expression Profile of TPS Gene Family in Dendrobium officinale and the Role of DoTPS10 in Linalool Biosynthesis. Int. J. Mol. Sci. 2020, 21, 5419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, G.Q.; Zhang, D.; Liu, X.D.; Xu, X.Y.; Sun, W.H.; Yu, X.; Zhu, X.; Wang, Z.W.; Zhao, X.; et al. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. Hortic. Res. 2021, 8, 183. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Yang, X.; Zhou, S.; Jin, Y.; Wang, W.; Xia, K.; Chen, Z. Aromatic Terpenes and Their Biosynthesis in Dendrobium, and Conjecture on the Botanical Perfumer Mechanism. Curr. Issues Mol. Biol. 2023, 45, 5305–5316. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Geourjon, C.; Deléage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 1995, 11, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Chou, K.-C.; Shen, H.-B. Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc. 2008, 3, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Whittington, D.A.; Wise, M.L.; Urbansky, M.; Coates, R.M.; Croteau, R.B.; Christianson, D.W. Nonlinear partial differential equations and applications: Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl. Acad. Sci. USA 2002, 99, 15375–15380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Peters, R.J. Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants. Phytochemistry 2009, 70, 366–369. [Google Scholar] [CrossRef]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef]
- Williams, D.C.; McGarvey, D.J.; Katahira, E.J.; Croteau, R. Truncation of Limonene Synthase Preprotein Provides a Fully Active ‘Pseudomature’ Form of This Monoterpene Cyclase and Reveals the Function of the Amino-Terminal Arginine Pair. Biochemistry 1998, 37, 12213–12220. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Brown, R.; Köllner, T.G.; Fu, J.; Chen, X.; Wong, G.K.; Gershenzon, J.; Peters, R.J.; Chen, F. Origin and early evolution of the plant terpene synthase family. Proc. Natl. Acad. Sci. USA 2022, 119, e2100361119. [Google Scholar] [CrossRef]
- Karunanithi, P.S.; Zerbe, P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Vining, K.J.; Qi, X.; Yu, X.; Zheng, Y.; Liu, Z.; Fang, H.; Li, L.; Bai, Y.; Liang, C.; et al. Genome-Wide Analysis of Terpene Synthase Gene Family in Mentha longifolia and Catalytic Activity Analysis of a Single Terpene Synthase. Genes 2021, 12, 518. [Google Scholar] [CrossRef]
- Bohlmann, J.; Meyer-Gauen, G.; Croteau, R. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA 1998, 95, 4126–4133. [Google Scholar] [CrossRef]
- Hadiarto, T.; Tran, L.S. Progress studies of drought-responsive genes in rice. Plant Cell Rep. 2011, 30, 297–310. [Google Scholar] [CrossRef]
- Hong, G.J.; Xue, X.Y.; Mao, Y.B.; Wang, L.J.; Chen, X.Y. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell. 2012, 24, 2635–2648. [Google Scholar] [CrossRef] [PubMed]
- Uji, Y.; Akimitsu, K.; Gomi, K. Identification of OsMYC2-regulated senescence-associated genes in rice. Planta 2017, 245, 1241–1246. [Google Scholar] [CrossRef]
- Xu, Z.; Zeng, T.; Li, J.; Zhou, L.; Li, J.; Luo, J.; Zheng, R.; Wang, Y.; Hu, H.; Wang, C. TcbZIP60 positively regulates pyrethrins biosynthesis in Tanacetum cinerariifolium. Front. Plant Sci. 2023, 14, 1133912. [Google Scholar] [CrossRef]
- Zhan, X.; Qian, Y.; Mao, B. Metabolic Profiling of Terpene Diversity and the Response of Prenylsynthase-Terpene Synthase Genes during Biotic and Abiotic Stresses in Dendrobium catenatum. Int. J. Mol. Sci. 2022, 23, 6398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.P.; Zhang, J.L.; Sun, Z.R.; Liu, X.Y.; Shu, L.Z.; Wu, H.; Song, Y.; He, D.H. Genome-wide identification and characterization of terpene synthase genes in Gossypium hirsutum. Gene 2022, 828, 146462. [Google Scholar] [CrossRef]
- Chang, Y.L.; Huang, L.M.; Kuo, X.Z.; Chen, Y.Y.; Lin, S.T.; Jeng, M.F.; Yeh, H.H.; Tsai, W.C.; Chen, H.H. PbABCG1 and PbABCG2 transporters are required for the emission of floral monoterpenes in Phalaenopsis bellina. Plant J. 2023, 114, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, H.; Wang, X.; Li, K.; Dong, M.; Li, Y.; Zhu, Q.; Shang, F. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool. Hortic. Res. 2019, 6, 106. [Google Scholar] [CrossRef]
- Flach, A.; Dondon, R.C.; Singer, R.B.; Koehler, S.; Amaral Mdo, C.; Marsaioli, A.J. The chemistry of pollination in selected Brazilian Maxillariinae orchids: Floral rewards and fragrance. J. Chem. Ecol. 2004, 30, 1045–1056. [Google Scholar] [CrossRef]
- Vassão, D.G.; Gang, D.R.; Koeduka, T.; Jackson, B.; Pichersky, E.; Davin, L.B.; Lewis, N.G. Chavicol formation in sweet basil (Ocimum basilicum): Cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org. Biomol. Chem. 2006, 4, 2733–2744. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Fernández-Martínez, M.; Filella, I.; Junker, R.R.; Peñuelas, J. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions. Front. Plant Sci. 2020, 11, 1154. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, B.; Li, M.; Gao, X.; Fang, Q.; Liu, C.; Ding, H.; Wang, L.; Gao, X. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. J. Exp. Bot. 2018, 69, 4249–4265. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, R.; Zhang, J.; Wang, Y.; Kong, P.; Lu, K.; Adnan Liu, M.; Ao, F.; Zhao, C.; Wang, L.; et al. The biochemical and molecular investigation of flower color and scent sheds lights on further genetic modification of ornamental traits in Clivia miniata. Hortic. Res. 2022, 9, uhac114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Guo, Y.; Shi, X.; Yang, Y.; Chen, J.; Zhang, Q.; Sun, M. Overexpression of LiTPS2 from a cultivar of lily (Lilium ‘Siberia’) enhances the monoterpenoids content in tobacco flowers. Plant Physiol. Biochem. 2020, 151, 391–399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Zhou, S.; Du, Z.; Wang, W.; Chen, Z. Expression Analysis and Functional Validation of DcTPSb1 in Terpene Synthesis of Dendrobium chrysotoxum. Curr. Issues Mol. Biol. 2025, 47, 25. https://doi.org/10.3390/cimb47010025
Jin Y, Zhou S, Du Z, Wang W, Chen Z. Expression Analysis and Functional Validation of DcTPSb1 in Terpene Synthesis of Dendrobium chrysotoxum. Current Issues in Molecular Biology. 2025; 47(1):25. https://doi.org/10.3390/cimb47010025
Chicago/Turabian StyleJin, Yuxuan, Shuting Zhou, Zhihui Du, Weize Wang, and Zhilin Chen. 2025. "Expression Analysis and Functional Validation of DcTPSb1 in Terpene Synthesis of Dendrobium chrysotoxum" Current Issues in Molecular Biology 47, no. 1: 25. https://doi.org/10.3390/cimb47010025
APA StyleJin, Y., Zhou, S., Du, Z., Wang, W., & Chen, Z. (2025). Expression Analysis and Functional Validation of DcTPSb1 in Terpene Synthesis of Dendrobium chrysotoxum. Current Issues in Molecular Biology, 47(1), 25. https://doi.org/10.3390/cimb47010025